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ABSTRACT

Throughout much of this summer, we experimented with extensions to the con-
jugate direction method to find optimal solutions to sparse geophysical problems.
However, this category of techniques is not unique in its ability to optimize L1-
styled fitting goals. We also investigated a variety of other techniques, including
a pure L1 solution via the weighted median; a steepest-descent algorithm using
the signum-function as a gradient of the true L1 norm; and a totally different
approach using the Simplex Algorithm, by mapping our objective function into
a linear programming form. Categorically, the approaches that relied on the true
L1 method failed due to what we believe is a theoretical shortcoming of the di-
rect application of the pure L1 norm to geophysical optimization problems. The
use of linear programming turned out to be quite successful. This could be an
interesting option for future research in geophysical optimization.

INTRODUCTION

Part of our objective in this summer’s study of the L1 optimization criteria was mo-
tivated by new theoretical ideas for the conjugate direction solver (Claerbout, 2009),
and its corresponding implementation (Maysami and Moussa, 2009). In addition to
this new technique, we also extensively investigated the basic theory of convex op-
timization, motivated by our ultimate desire to find the most generally applicable
toolkit for geophysical inversion on sparse or “blocky” models. Optimization theory
has been subject to much research at Stanford across many fields. Prior art that is
directly applicable to L1 minimization spans the departments of Geophysics (Claer-
bout, 2008; Guitton, 2000), Computer Science (Golub and Van Loan, 1996), Oper-
ations Research, Management Science & Engineering (Paige and Saunders, 1982),
and Electrical Engineering (Boyd and Vandenberghe, 2009). The enormous wealth of
prior research across so many different disciplines has produced numerous algorithms
and mathematical techniques which superficially bear no resemblence to each other
– but all share the same final goal, which is the minimization of a generalized convex
objective function. For the case of conventional geophysical inversion, this objective
is some measure of the error between modeled- and recorded- data.

This broad-based investigation brought attention to techniques, such as linear
programming, which are well-developed and widely used in other fields. However,
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these tools were rarely utilized by SEP (and presumably in the geophysical inversion
community outside Stanford). Our efforts have developed a formulation of these
techniques to convert a standard form geophysical data-fitting and inversion problem
(L m = d) into a linear programming problem.

I demonstrate in the following sections the efforts to construct a pure L1 solver,
and its associated numerical difficulties. Next is our foray into the realm of linear
programming – a well-developed toolset that has seen little application in geophysical
inversion.

PURE L1 SOLUTIONS

Early work focused on a pure conjugate-gradient or steepest-descent method using
the true L1 norm. We implemented a modified version of cg step, implementing a
line search first as a weighted median search, and also with a full, explicit calculation
of the Frechet derivative. It was conclusively shown that the gradient of a pure L1

solution resulted in introduction of local minima, resulting in a failure to converge.
This has been noted in prior work (Bube and Langan, 1997) – the pure L1 norm is
not strictly convex. This can be shown with the trivial example of finding the L1

minimum for a median problem with even number of elements:
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1
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]
=
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1
2

]
(1)

The residual in the L1 case is the sum |m − 1| + |m − 2|, which has nonunique
global minima for all m ∈

[
1, 2

]
. The gradient, in this entire region, is exactly zero.

In a larger, non-trivial data-fitting problem, these zero-value gradients can occur at
locations other than the global optimum - and thus the gradient-based methods do
not function properly.

LINEAR PROGRAMMING

Theory

The goal of Linear Programming, like optimization in general, is to maximize an
objective function, subject to a set of constraints. In this case, the objective function
is a linear equation in x.

Linear programming developed out of the Operations Research community follow-
ing World War II (Dantzig, 1963). It developed from earlier planning algorithms and
optimization methods, finally emerging as one of the simplest tools that could opti-
mally satisfy a set of competing equations. It is commonly used in business analytics,
supply-chain management, and path planning. Variations of the concept have been
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applied to geophysical problems, including tomography inversion (Berryman, 1989);
but in general, the geophysical inversion community has not shown strong adoption
of this body of techniques. This is unfortunate, because the methodology of con-
structing and navigating within a feasible region of solutions enables both numerical
optimization to find a global minimum, as well as heuristic “picking” interpretations
of other valid, non-minimum solutions that satisfy the problem constraints.

We have successfully mapped general-purpose geophysical optimization problems
into this numerical framework, particularly emphasizing data-fitting with linear oper-
ators. Due to its widespread use in other fields, a variety of software tools exist to find
solutions to linear programming problems. A variety of numerical programming en-
vironments provide linear programming solvers natively; we explored several of these
environments and evaluated their solver implementations. The most promising envi-
ronment of the ones we considered is the GNU Scientific Library and the GNU Linear
Programming Kit (GLPK), with language bindings for C, Python, and FORTRAN.
Tools and libraries are also available for GNU Octave and its commercial equivalent,
MATLAB.

The setup for linear programming revolves around a generalized parameter space,
x, which we seek to modify until an optimum is found with respect to some objective
function c subject to constraints b.

We have:

xi = the parameter space (2)

ci = the objective definition (3)

aij = the definition of the constraints (4)

bj = the constraints vector (5)

where i ranges from 1 to the number of parameters; and j ranges from 1 to the number
of constraints.

Additional physical constraints are represented numerically by introducing auxil-
iary variables, denoted xs, and adding an objective coefficient ci for each introduced
constraint. Minimization of |xs| is equivalent to optimal satisfaction of these physical
constraints; this objective competes with the minimization of |x|. This relationship
between model- and data-fitting constraints is the basis of the optimzation problem.

General solutions to this optimization can be found according to the Simplex Algo-
rithm (Dantzig, 1963), design of which is rooted in topological graph theory. To find
an optimal solution, the system is represented in augmented matrix form. A scalar
value Z is constructed, representing the objective function minus the constraints
weightings, for any given intermediate solution. At each iteration, the simplex solver
evaluates the maximal gradient of Z, with respect to a current set of basis equations,[
x|xs

]T
.

This gradient provides a descent direction; the model x is updated accordingly,
traversing the linear system until a vertex of the solution graph is found. At each

SEP–139



Moussa 4 Alternative optimization schemes

vertex, a new basis set is calculated by matrix transvection (or equivalent, but slower,
Gaussian elimination). This allows the objective scalar Z to be expressed in terms

of the new basis
[
x|xs

]T
– in other words, by rotating the state-matrix according to

a transvection operator. (Transvection simply involves adding a scalar multiple of
one row to another row). By choosing the correct transvections, the next descent
direction can be directly read as the coefficients of the matrix representation. It can
be shown that an optimum solution, if one exists, must lie on either a vertex or as
a set of equally-optimum elements on a single edge of the solution space. This lies
within the feasible region defined by the constraining equations.

Mapping Optimization Problems to Linear Programming

This maps to our conventional model-fitting treatment using optimization theory
according to the following:

xi −−−−−−−−−→
parameter space

model space (6)

ci −−−−−−−−−−→
objective function

regularization (7)

aij −−−−−−−−−−−→
constraint functions

forward operator (8)

bj −−−−−−−−−→
constraint vector

data space (9)

with i = 1..(model size) and j = 1..(data size) Conveniently, this allows a direct
representation of geophysical data fitting, including regularization on the model space.
This linear programming setup can be represented in matrix form, as follows:

cT x = Z (10)

Ax ≤ b (11)

I have introduced the scalar, Z, which is the value of the objective. This will
be either minimized or maximized depending on the particular geophysical problem.
Effectively, this means finding a value for x that optimally aligns with the model-
fitting and data-fitting goals.

Correspondingly, for a simple 2× 3 example:

[
c1 c2

] [
x1

x2

]
= Z (12)a11 a12

a21 a22

a31 a32

[
x1

x2

]
≤

b1

b2

b3

 (13)
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To solve according to the L1 norm, we need to take account of the absolute value
in the definition of the L1 error criteria, noting that the ith element of the residual is
defined as an absolute value of the error term:

ri = |L m− d| (14)

To account for this, we extend the linear programming matrix representation
to augmented form. This requires an extension of the x vector. The approach is
not entirely dissimilar to the placement of a regularization in the model vector in a
conventional setup, in that it is reformulating the equations to provide us with a fit
in compliance with our a priori geophyiscal knowledge.

The augmented representation is written in matrix form as

[
1 −cT 0
0 A I

]Z
x
xs

 =

[
0
b

]
(15)

The first row of the augmented form results in the optimization criteria:

Z − cTx = 0 (16)

A large value of Z maximizes the original objective function, subject to the con-
straints in the c matrix. The goal is to put as much “energy” in the Z (objective
function) with as little energy in all other rows of the augmented matrix; this is ac-
complished with the Simplex Algorithm, simultaneously satisfying the minimization
of the pure L1 norm criteria.

L1 Formulation

To satisfy the L1 optimization criteria for a data fitting problem, with data d of length
ND, and model m of size NM , modeled by |Lm− d| = r, we set up the following to
specify the terms in (15) and (16):

A =

[
I2ND

−L
I2ND

−L

]
(17)

b =

[
d
−d

]
(18)

cT =
[
0 12NM

]
(19)

The initial model can be stored in x, which will be updated. The final value of
auxiliary variables xs represents the status of the model regularization constraints
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(which can also be assigned an initial value).

x = m (20)

xs = mregularization (21)

In this format, the matrices can be fed directly into the GLPK function call in C
or Octave.

RESULTS

The linear programming formulation was among our most robust techniques for esti-
mating and tracking water-level drift in our synthetic 1-D Sea of Galilee. Below are
results plotted from a sample experiment. In this case, every single data point was
corrupted by a water-level drift of unknown magnitude, and water-level was allowed
to vary at any time during synthetic data collection. After ten sweeps, the linear pro-
gramming solver is able to nearly perfectly reconstruct the drift profile and correctly
estimates the true lake depth profile (except for minor artifacts).

This problem is an example of an underconstrained inversion problem. The source
data is corrupted by an unknown data drift error function, which we seek to estimate
based on our approximation that it should be defined by a sparse derivative. This
model approximates a boat that is sampling lake-depth while floating on an unknown
water level, illustrated in Figure 1. The problem is under-constrained, because we
do not know the nature of the drift function; but by assuming that its derivative is
sparse, an L1 or linear programming optimization problem is set up. In Figure 2, the
result of the linear programming drift estimation is shown.

I conclude that linear programming yields a fairly deterministic result, even in the
case of an underconstrained inversion problem. The method is stable and straight-
forward. The most serious drawback is that most implementations of the Simplex
Algorithm require an explicit definition of the forward operator (in matrix form) – so
for very large geophysical problems, this can severely limit its applicability.
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Figure 1: The input data for the linear programming Galilee estimation. [CR]
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Figure 2: The estimated lake drift. [CR]
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Figure 3: The estimated lake depth. [CR]
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