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ABSTRACT

For oil exploration and reservoir monitoring purposes, we probe the earth’s sub-
surface with a variety of geophysical methods, generating data with different
natures, scales and frequency content. This diversity represents a large problem
when trying to integrate all the gathered information. The concept of a shared
earth by all these geophysical surveys suggests the presence of structural sim-
ilarities in different data sets. For that purpose, it is necessary to work with
geophysical properties that are scale-independent and not physical properties in
individual layers. In this paper, I overview two methods for extracting structural
information from data and using it as a constraint to the seismic tomography
problem to compare different techniques and their effectiveness.

INTRODUCTION

In earth sciences, subsurface structures are studied by collecting large and various
types of geophysical data. Different geophysical attributes of the subsurface are mea-
sured by a variety of geophysical measuring techniques, including but not limited to
seismic, magnetic, and well-logs. For many years, different types of data have been
used for specific stages of oil exploration and production. However, in recent years,
many authors have considered using diverse data in geophysical inversion can reduce
uncertainty (de Nardis et al., 2005; Bosch et al., 2005; Colombo and De Stefano,
2007). One of the main challenges of data integration is the difference in physical
nature, scale, and frequency contents. All of the collected data, however, while mea-
suring different properties, sample of the same geophysical structures. We can extract
mathematical/geophysical properties from a data set that provides structural infor-
mation. This structural information can be used in geophysical problems as auxiliary
data to improve model estimation results by constraining the optimization problem.
Geophysical inversion problems can benefit from this method in the form of a reg-
ularization misfit term that imposes structural similarity between the main and the
auxiliary data fields. It is also applicable to both joint inversion and inversion using
the auxiliary data.
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STRUCTURAL SIMILARITY MEASURES

Properties of the subsurface can have very different dynamic ranges of values, the
frequency band and scale in which they are measured. For example, magnetotelluric
data has a much lower frequency than seismic data, while its dynamic range of ampli-
tudes is broader. In this section, I review two attributes that provide some measure
of structural similarity.

Cross-gradient function

Gallardo and Meju (2004) introduce the cross-gradient as follows:

g = ∇u×∇v, (1)

where u and v are two measured fields. By using normalized values of each data
field, the cross-gradient function vanishes where the two fields are similar in structure
or either one of them is very smooth. Maysami (2008) and Maysami and Clapp
(2009) note that cross-gradient functions can be used as a measure of similarity. The
cross-gradient function can be a suitable choice for the regularization (model-shaping)
term of an optimization problem that imposes the structure of the auxiliary field on
the estimated model. The differentiating nature of these functions, however, raises a
sensitivity issue where there is a large gap between the frequency bands of different
types of data. It is also expected that cross-gradient function is not a very effective
choice for low-frequency data, since the smooth behavior causes the gradient to vanish.

Dip residual

In practice, the frequency spectrum of different types of geophysical data can change
very widely, and there might be cases with no overlap in frequency band. To ad-
dress these types of data integration problems, we need to choose properties that are
frequency-independent. Local dip is one such property, which can be estimated by
solving a regularized optimization (see Fomel (2000) for more details). Given a 2-D
field u(x, z), one can estimate the dip values where the data misfit function is given
by 

arg minpu C(pu)u subject to

εD∆pu ≈ 0

, (2)

where C(pu) is a convolution operator with a 2-D filter based on the local dip, and
D represents an appropriate roughening operator. The estimated local dip values are
frequency independent, making dip a candidate for carrying geological information
from one data field to another. Again, the estimated dips can be used in a regular-
ization term of an optimization problem to impose the structure of the auxiliary data
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on the estimated model. This model misfit function can be given as follows:

rm(x, z) = (
∂

∂x
+ pu

∂

∂z
)v(x, z) ≈ 0. (3)

Note that the structural similarity measures do not include any physical link that
might potentially exist between two fields. In other words, these functions only help
the model-shaping part of optimization, and the physics of estimation lies in the
data-misfit term with the mapping operator.

Figures 1 and 2 show examples where the reflectivity of the Marmousi synthetic
model is used as auxiliary data to impose the geophysical structures on a random
noise field and a smooth velocity field. The optimization problem used to generate
the estimated model shown by Figures 1 and 2 is given by

arg minm

wwwd− I m
www2

2
subject to

ε A(u) m ≈ 0

, (4)

where I is identity matrix; A is either the cross-gradient or dip residual operator; u
and d represent the auxiliary reflectivity field and the data (noise or smooth velocity
field), respectively; and m is the estimated model which incorporates some of the
structural information provided by u. Note that a large ε is needed to emphasize on
model-shaping term and impose structure. Figures 1(a) and 2(b) show the data d
and the auxiliary field u. Figure 1(d) shows a better reconstruction of the Marmousi
structure with dip residual technique than the cross-gradient function (Figure 1(c)).
This is clearly visible by comparing the continuity of reconstructed amplitude along
the geological dips in Figure 1(d)).

Figure 2 shows a similar problem where we start with a smooth velocity of the
Marmousi model instead of noise. Similarly, Figure 2(d) suggests that the dip residual
technique leads to a less noisy partial reconstruction of the Marmousi structure; but
not all the details are included. However, some of the horizontal parts of structures
are reconstructed by the cross-gradient function (Figure 2(c)), but not with the dip
residual (Figure 2(d)). Note that frequency ranges in smooth velocity and reflectivity
are low and high, respectively.

APPLICATION TO SEISMIC TOMOGRAPHY

Following the earlier work by Maysami (2008) and Maysami and Clapp (2009), I apply
the methods discussed above to regularize the seismic velocity tomography problem.
In this optimization problem, the data misfit term includes the physics and kinematics
of the tomography problem, while the regularization (model-shaping) term imposes
the structure present in the auxiliary field, which is chosen to be either the reflectivity
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(a) (b)

(c) (d)

Figure 1: Data integration problem 1: The starting model is random noise (a) and
the auxiliary data is the reflectivity of the Marmousi model (b). Panel (c) shows the
estimated model with the cross-gradient function and panel (d) shows the estimated
model with the dip residual. Note the reconstruction of the structure in the estimated
models and how each method provides different quality of reconstruction. [ER]

SEP-139



Maysami 5 Geophysical data integration

(a) (b)

(c) (d)

Figure 2: Data integration problem 2: The starting model is now changed to a smooth
version of velocity (a) and the auxiliary data is the reflectivity of the Marmousi model
(b) . Next panels show the estimated model with (c) the cross-gradient function and
(d) dip residual. Note that we only expect to reconstruct the structure of the model,
and the formulation of our optimization problems does not include the physics behind
the wave propagation. [ER]
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or the resistivity field (see Figure 3). This problem can be stated as
arg min∆s

www ∆t−TL∆s
www2

2
subject to

ε
www A(r)(s0 + ∆s)

www2

2
≈ 0

, (5)

where s and r are the slowness and auxiliary fields, respectively; ∆t and TL represents
traveltime updates and the linearized tomography mapping operator; and A is the
model-shaping operator, which is picked as either the cross-gradient operator or the
dip residual operator. In the latter case, the regularization operator is given by
A(r) = ∂

∂x
+ pr

∂
∂z

.

Although the reflectivity field is in practice a function of velocity, we assume
that it is an accurate representation. One may consider a more general case, where
the regularization operator is also a function of model, which needs to be linearized
around the current estimation.

Figure 4 shows the results of solving the tomography problem (Equation 5) for an
optimal update in velocity. I start with a smooth velocity as the initial guess. I use
either reflectivity or resistivity as auxiliary data and I choose either the cross-gradient
function or the dip residual for the regularization operator. This leads to four different
updates based on the choice of auxiliary data and data integration method. Note the
different frequency contents of the two types of auxiliary data in Figure 3. Updated
velocities with cross-gradient functions (Figure 4(a) and 4(b)) seem to have more
contribution of structure (model-shaping term) than the physics (data misfit term)
of the problem, as the structure of model is clearly visible in the results. The dip
residual method, however, shows a better portion of physics in the results and less of
the actual structure. This suggests that we may be able to benefit from combining
these methods in a specific fashion to obtain a better velocity estimation.

CONCLUSIONS

As mentioned above, geophysical data integration can greatly affect the quality of
estimation of attributes by reducing the uncertainty in the model. In this paper,
I reviewed the structural similarity and some measurement techniques. The effi-
ciency of these techniques was compared with a simple example, where the physics
were not taken into account to emphasize the effect of data-integration techniques.
The results suggest that the dip-residual method provides better continuity in es-
timated structures than does the cross-gradient function. Model estimation results
using cross-gradient function shows higher sensitivity, which can be explained by its
differentiating nature.

I also compared these methods on a velocity estimation problem, where the physics
are also included in the problem statement. I used two different types of auxiliary data
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(a) (b)

(c) (d)

Figure 3: Synthetic 2-D model used as an example for comparison of different data in-
tegration methods: (a) True velocity, (b) initial guess for velocity, (c) approximation
of resistivity, and (d) true reflectivity. [ER]
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(a) (b)

(c) (d)

Figure 4: Updated velocities for the model shown in Figure 3 obtained by solving
the tomography problem using (a) resistivity and the cross-gradient function, (b)
reflectivity and the cross-gradient function (c), resistivity and the dip residual, and
(d) reflectivity and dip residual. [CR]
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with different frequency content to compare the efficiency of the techniques reviewed
above. In this case, the cross-gradient function shows a stronger structure-imposing
effect. However, the cross-gradient functions are not guaranteed to produce improved
results when the frequency contents of the main data field and the auxiliary data
are very different. The dip- residual method integrates less structural information
by missing some of the anomalies. More examples are suggested to validate the
comparison results.
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