next up previous [pdf]

Next: Solver internal mechanisms Up: Maysami and Moussa: Generalized Previous: Introduction

Norm Options

Our solver framework allows easy interchangeability between several norms. Although the code allows easy switching of the optimization measure, we recommend a thorough understanding of the theoretical and numerical caveats that result from the application of each solver criterion.
Norm   Description
L2   Conventional $ L_2$ norm, utilizing the new solver framework
L1   $ L_1$ norm with discontinuous $ 1^{st}$ and $ 2^{nd}$ order derivatives
Huber   Huber $ L_1$/$ L_2$ norm with with $ 1^{st}$ order derivative continuity
Hybrid   $ L_1$/$ L_2$ hybrid norm with $ 1^{st}$ and $ 2^{nd}$ order derivative continuity


The equations below summarize the analytical formulation for the listed norms above. $ C, C', {\text and} C''$ represent the norm function, its first-order derivative and its second-order derivative, respectively. Figure 1 shows these norm functions along with their derivatives. Note discontinuous derivatives and zero-valued curvatures in some cases. These analytical forms are used in the Taylor series expansion for the adapted conjugate-direction plane-search.

L2 (Least Squares):

$\displaystyle C( r )$ $\displaystyle =$ $\displaystyle r^2/2 \notag$ (1)
$\displaystyle C' (r)$ $\displaystyle =$ $\displaystyle r$ (2)
$\displaystyle C'' (r)$ $\displaystyle =$ $\displaystyle 1 \notag$ (3)

L1:

$\displaystyle C( r )$ $\displaystyle =$ $\displaystyle \vert r \vert \notag$ (4)
$\displaystyle C' (r)$ $\displaystyle =$ $\displaystyle {\rm sgn}(r)$ (5)
$\displaystyle C'' (r)$ $\displaystyle =$ 0   or$\displaystyle \quad \infty \notag$ (6)

Huber:

$\displaystyle C( r )$ $\displaystyle =$ \begin{displaymath}\begin{cases}
\vert r\vert-\vert r_t\vert/2 \quad\quad &\vert...
...{2 r_t} \quad \quad &\vert{r}/{r_t}\vert < 1
\end{cases} \notag\end{displaymath} (7)
$\displaystyle C' (r)$ $\displaystyle =$ \begin{displaymath}\begin{cases}
{\rm sgn} ({r}/{r_t} ) \quad& \vert{r}/{r_t}\vert \ge 1 \\
{r}/{r_t} \quad &\vert{r}/{r_t}\vert < 1
\end{cases}\end{displaymath} (8)
$\displaystyle C'' (r)$ $\displaystyle =$ \begin{displaymath}\begin{cases}
0 \quad\quad &\vert{r}/{r_t}\vert \ge 1 \\
{1}/{r_t} \quad\quad &\vert{r}/{r_t}\vert < 1
\end{cases} \notag\end{displaymath} (9)

Hybrid:

$\displaystyle C( r )$ $\displaystyle =$ $\displaystyle r_t^2 \left ( \sqrt{ 1+ {r^2}/{r_t^2} } -1 \right ) \notag$ (10)
$\displaystyle C' (r)$ $\displaystyle =$ $\displaystyle \frac{r}{\sqrt{1+ {r^2}/{r_t^2}}}$ (11)
$\displaystyle C'' (r)$ $\displaystyle =$ $\displaystyle \frac{1}{(1+ {r^2}/{r_t^2})^{\frac{3}{2} } } \notag$ (12)

l2-norm l1-norm huber-norm hybrid-norm
l2-norm,l1-norm,huber-norm,hybrid-norm
Figure 1.
Norm functions and their first and second derivatives plotted for $ r=-250,250$ interval, with $ r_t=100$ where applicable. Rows from top to bottom are representing (a)$ L_2$, (b) $ L_1$, (c) Huber, and (d) Hybrid. Columns from left to right are representing norm function, first-order derivative, second-order derivative. [ER]
[pdf] [pdf] [pdf] [pdf] [png] [png] [png] [png]

The choice of norm is specified as an input argument to our solver. A further benefit of this implementation is that other norms can be added with minimal modification to the overall solver framework. To add a new norm, all that is necessary is adding the appropriate definition of the norm and its derivatives in the code.


next up previous [pdf]

Next: Solver internal mechanisms Up: Maysami and Moussa: Generalized Previous: Introduction

2009-10-19