next up previous [pdf]

Next: Appendix B: Fortran codes Up: Maysami and Moussa: Generalized Previous: Summary

Appendix A: analytical derivation of plane-search step sizes

This appendix shows the details on generalization of plane-search algorithm for a general norm (or measure) $ C(\cdot)$. As discussed previously and by Claerbout (2009), we use Taylor series expansion to find analytical forms for the step sizes in the plane-search algorithm. We form the updates in the residual value $ \bf r $ by a linear combination of the gradient $ {\bf g}^{(d)}$ and the previous step update of the residual $ {\bf s}^{(d)}$, i.e. $ {\bf r} ={\bf r} +\alpha {\bf g}^{(d)} + \beta {\bf s}^{(d)} $. Then the misfit objective function $ E({\bf r})$ is given by

\begin{displaymath}\begin{split}E ({\bf r}) &= \sum_i C(r_i + \alpha g^{(d)}_i +...
...g^{(d)}_i + \beta  s^{(d)}_i \Big )^2}{2!} C''(r_i) \end{split}\end{displaymath} (16)

where $ r_i$ is the residual from the current iteration. The Taylor series expansion in Equation 8 lets us find analytical derivatives of the misfit function $ E({\bf r})$ with respect to both $ \alpha$ and $ \beta$ as follows:
$\displaystyle \frac{\partial E}{\partial \alpha}$ $\displaystyle =$ $\displaystyle \sum_i g^{(d)}_i C'(r_i) + (\alpha g^{(d)}_i + \beta s^{(d)}_i) g^{(d)}_i C''(r_i) = 0 ,$ (17)
$\displaystyle \frac{\partial E}{\partial \beta}$ $\displaystyle =$ $\displaystyle \sum_i s^{(d)}_i C'(r_i) + (\alpha g^{(d)}_i + \beta s^{(d)}_i) s^{(d)}_i C''(r_i)= 0 .$ (18)

By setting these derivatives to zero and solving the $ 2\times2$ system of equations we find an optimal step size in both directions $ {\bf g}^{(d)}$ and $ {\bf s}^{(d)}$. The equation below shows the solutions $ \alpha$ and $ \beta$ for this system of equations in a simplified notation.

$\displaystyle {\sum}  C''_i(r) \begin{bmatrix}\begin{pmatrix}g^{(d)}_i \ s^{(...
...bmatrix} = -{\sum}  C'_i(r) \begin{pmatrix}g^{(d)}_i \ s^{(d)}_i\end{pmatrix}$ (19)


next up previous [pdf]

Next: Appendix B: Fortran codes Up: Maysami and Moussa: Generalized Previous: Summary

2009-10-19