
Generalized-norm conjugate direction solver

Mohammad Maysami and Nader Moussa

ABSTRACT

In optimization problems, the L1 norm outperforms the L2 norm in presence of
noise and when a blocky or sparse solution is appropriate. These applications
call for a solver that can redefine the optimum criteria for a particular problem.
We have implemented a generalized norm solver that is useful for a wide range
of problems. Our solver modularizes the norm function so that it can easily be
interchanged to experiment with different schemes on any particular geophysical
problem. We implement L1, L2, and two additional norms: Huber and Hybrid
L1/L2. These are useful for problems that seek the benefits of both the L1 and
L2 norms.

INTRODUCTION

Strict L1 norm optimization has numerous applications in geophysical inversion prob-
lems. Examples include solving for sparse functions, such as those that describe
blocky, layered geology. However, we find that approximations to L1, or modified
L1/L2 systems, are more computationally feasible than pure L1 solutions. These
non-strict L1/L2 norms – the Huber (Huber, 1973; Guitton, 2000) and Hybrid norms
– still satisfy our desire to find sparse-functions, and are suitable for most of our
geophysical needs.

For many years, SEP has relied on a single incarnation of the conjugate-direction
descent solver. This code is based on work by Claerbout (2008). For some time in
the 1990s, SEP also used a competing least squares approach, LSQR, developed by
Paige and Saunders (1982). Because numerical optimization is such an embedded
part of many geophysical algorithms, it is extremely desirable to have a backward-
compatible program framework that can continue to work within these decades-old
codes. For this reason, we chose to implement our solver with the same interface as
the conjugate-direction L2 solver (Claerbout, 2008). Our new solver implements a
generalized definition of the norm used for minimization.

It should be noted that the term “norm” is used for convenience; whereas in fact,
some of the numeric measures under consideration do not strictly satisfy the necessary
mathematical criteria to be a proper norm. Notably, the Huber and Hybrid norms
exhibit non-linearity with regard to a scalar multiplication (Bube and Langan, 1997).
We will use this terminology for simplicity, but the cautious reader should note that
these functions do not satisfy all necessary properties of a norm.

SEP–139

Maysami and Moussa 2 Generalized solver

We considered many solver options in our original quest for a numeric solution
to the strict L1 optimization problem. We investigated a weighted-median algorithm
to descend to the L1-sense minimum. Early development showed that, despite the
theoretical promise of the weighted-median methodology, it did not suitably achieve
the desired solution on non-trivial test problems. This work led to development of
a new solver, discussed below, based on theory developed in Claerbout (2009). This
solver is based on a generalized plane-search using Taylor series expansion of the
norm.

In this paper, we will describe our implementation of this solver framework. It
is based on SEP’s conjugate-direction L2 solver, but it also allows us to substitute
different norms, including L1 and our non-strict L1/L2 norms. First we will review the
available norms which can be used as the optimization criteria. Then we will discuss
the mechanics of our new solver framework and describe a technique for iterative
plane-search, potentially enabling faster convergence for certain classes of problems.
Finally, we will reference applications which are described in other SEP reports (Li
and Maysami, 2009; Wong et al., 2009).

NORM OPTIONS

Our solver framework allows easy interchangeability between several norms. Although
the code allows easy switching of the optimization measure, we recommend a thor-
ough understanding of the theoretical and numerical caveats that result from the
application of each solver criterion.

Norm Description
L2 Conventional L2 norm, utilizing the new solver framework
L1 L1 norm with discontinuous 1st and 2nd order derivatives
Huber Huber L1/L2 norm with with 1st order derivative continuity
Hybrid L1/L2 hybrid norm with 1st and 2nd order derivative continuity

The equations below summarize the analytical formulation for the listed norms above.
C, C ′, and C ′′ represent the norm function, its first-order derivative and its second-
order derivative, respectively. Figure 1 shows these norm functions along with their
derivatives. Note discontinuous derivatives and zero-valued curvatures in some cases.
These analytical forms are used in the Taylor series expansion for the adapted conjugate-
direction plane-search.

L2 (Least Squares):

C(r) = r2/2

C ′(r) = r (1)

C ′′(r) = 1

SEP–139

Maysami and Moussa 3 Generalized solver

L1:

C(r) = |r|
C ′(r) = sgn(r) (2)

C ′′(r) = 0 or ∞

Huber:

C(r) =

{
|r| − |rt|/2 |r/rt| ≥ 1

r2/2rt |r/rt| < 1

C ′(r) =

{
sgn(r/rt) |r/rt| ≥ 1

r/rt |r/rt| < 1
(3)

C ′′(r) =

{
0 |r/rt| ≥ 1

1/rt |r/rt| < 1

Hybrid:

C(r) = r2
t

(√
1 + r2/r2

t − 1

)
C ′(r) =

r√
1 + r2/r2

t

(4)

C ′′(r) =
1

(1 + r2/r2
t)

3
2

The choice of norm is specified as an input argument to our solver. A further
benefit of this implementation is that other norms can be added with minimal mod-
ification to the overall solver framework. To add a new norm, all that is necessary is
adding the appropriate definition of the norm and its derivatives in the code.

SOLVER INTERNAL MECHANISMS

In any optimization scheme, we always attempt to minimize some measure of a data
or model residual, r. This measure, C(r), is usually a convex function (commonly
the L2 norm, for least-squares fitting). For our solver, C(r) can be any of the norms
listed in previous section. As proposed by Claerbout (2009), the numerical value of a
norm at an updated residual value, C(r2) can be estimated based on a second-order
Taylor series decomposition at point r1:

C(r2) ≈ C(r1) +
(r2 − r1)

1!
C ′(r1) +

(r2 − r1)
2

2!
C ′′(r1) (5)

where r2 is the point in a close neighborhood of r1. With this generalization, we can
conduct an iterative plane-search at any point r2, without re-evaluating the forward
operator. For operators with a high-op count per sample this is a less costly by finding
a more optimal update to the solution.

SEP–139

Maysami and Moussa 4 Generalized solver

(a)

(b)

(c)

(d)

Figure 1: Norm functions and their first and second derivatives plotted for r =
−250, 250 interval, with rt = 100 where applicable. Rows from top to bottom are
representing (a)L2, (b) L1, (c) Huber, and (d) Hybrid. Columns from left to right
are representing norm function, first-order derivative, second-order derivative. [ER]

SEP–139

Maysami and Moussa 5 Generalized solver

Iterated Plane-Search

In the conjugate-direction descent (Claerbout, 2008), the update in the model and
residual is defined by a linear combination of the current gradient of the objective
function and the direction of the previous update step. However, this update can
be iterated inside an inner loop, assuming a linearization of the gradient around the
current residual. Our algorithm can perform an iterated search in the plane defined
by the current gradient and the previous update step. This search can locate the
optimal update without a full re-evaluation of the gradient operator. In practice,
this is equivalent to finding the solution of a 2 × 2 system of equations, where the
unknowns are the step lengths in the direction of the gradient g(m) and the previous
step s(m).

Taylor series expansion of the objective function around the initial residual value,
assumes a small local neighborhood for the plane-search. We re-calculate this approx-
imation at every inner iteration; this is an essential element of the plane-search, to
ensure a reasonable degree of accuracy without a full re-computation of the forward
operator in the main body of solver.

Algorithm Pseudo-code

The steps of actual solver have a structure very similar steps as the L2 solver. The
chief difference lies in the generalization to allow for different norms in the gradient
calculation. The generalized form of the gradient for a given norm C(·) is given by

g(m) = ∆m = FT C ′(r) , (6)

where F is the forward operator, m is the model value and g(m) is the gradient. In
addition, our code allows for an iterative plane-search to update r, the intermediate
estimated residual. The pseudo-code in Algorithm 1 summarizes the implementation
for a simple solver (see Claerbout (2009) for more details). The benefit of our frame-
work is that it can be easily modified to allow regularization and preconditioning
without extensively changing the main solver algorithm. Such modifications primar-
ily affect the stepper code. Fortran implementations of plane-search stepper function
for both conjugate-direction and our generalized norm stepper are given in the appen-
dices. Note that we approximate the data-space value of the gradient throughout the
entire plane-search by a constant, to avoid re-evaluating the forward operator every
iteration.

Fg
(m)
i ≈ Fg

(m)
0 (7)

This assumption forces our plane-search to remain in a local neighborhood around
r1, which is the desired outcome for this local approximation anyway.

SEP–139

Maysami and Moussa 6 Generalized solver

Algorithm 1 Generalized Norm Solver Algorithm

m = m0

s(m), s(d) = 0

∆m = 0
∆r = 0
α = 0, β = 0

!! Main iteration loop
for iter = 1, niter do

r = Fm− d

g(m) = ∆m = F′ C ′(r) !! Gradient in model space
g(d) = ∆r = F g(m) !! Gradient in data space

!! Plane-search loop
for i = 1, psiter do

!! Solve for α, β∑
C ′′

i (r)

[(
g

(d)
i

s
(d)
i

)(
g

(d)
i s

(d)
i

)][α
β

]
= −

∑
C ′

i(r)

(
g

(d)
i

s
(d)
i

)

s(m) = ∆m = α g(m) + β s(m) !! update solution step
s(d) = ∆r = α g(d) + β s(d) !! update residual step

m = m + s(m) !! update solution
r = r + s(d) !! update residual

if
∑

‖s(m)
i /mi‖ < 10−6 then

Quit plane-search iteration loop
end if

end for

end for

SEP–139

Maysami and Moussa 7 Generalized solver

NEW EXTERNAL PARAMETERS

Setting threshold with percentile

The benefit of a mixed L1/L2 norm is that small residuals can be optimized in an
L2 sense while large residuals are treated by L1. This requires a definition of “small
residual”; how small is “small”?

Our implementation addresses this issue with a numerical parameter, rt. This is
the threshold for transition between L1 and L2 in Huber and Hybrid norms. According
to the analytic definition of each norm, rt adjusts the crossover point. Needless to say,
pure L1 and L2 have no such transition. To reduce the problem-specific dependency
of rt, we have configured our solver to compute this threshold based on a user-defined
percentile. By switching to percentile, we retain a physical meaning for this user-
specified parameter. It is possible to use separate thresholds, and even different
norms, for the model- and data-fitting goals of a general regularized or preconditioned
optimization problem.

Plane-search iteration count

Our iterative plane-search adds additional flexibility if the user so desires. The con-
ventional conjugate-direction descent stepper (Claerbout, 2008) lacks this feature
since it only searches the plane of the gradient and the previous step once. To uti-
lize our plane-search the user may specify another value for this parameter, allowing
the solver to scan the local neighborhood around the internally-computed residual
values. When the plane-search iteration is greater than one, the solver will estimate
that many model updates between each full function evaluation. This is particularly
useful if the forward-operator is computationally expensive.

SUMMARY

We have provided this implementation of the generalized norm solver to SEP for
benchmarking and testing on a variety of sample problems. These experiments have
been documented in separate SEP reports which focuses on the geophysical ramifi-
cations of the L1 and modified L1 optimization criteria. In conclusion, our solver
has been designed to be interchangeable with existing codes, requiring minimal code
modification. We hope this will encourage other researchers inside and outside SEP
to experiment with these available optimization objectives.

SEP–139

Maysami and Moussa 8 Generalized solver

APPENDIX A: ANALYTICAL DERIVATION OF
PLANE-SEARCH STEP SIZES

This appendix shows the details on generalization of plane-search algorithm for a
general norm (or measure) C(·). As discussed previously and by Claerbout (2009),
we use Taylor series expansion to find analytical forms for the step sizes in the plane-
search algorithm. We form the updates in the residual value r by a linear combination
of the gradient g(d) and the previous step update of the residual s(d), i.e. r = r +
αg(d) + βs(d). Then the misfit objective function E(r) is given by

E(r) =
∑

i

C(ri + αg
(d)
i + βs

(d)
i)

=
∑

i

C(ri) +
α g

(d)
i + β s

(d)
i

1!
C ′(ri) +

(
α g

(d)
i + β s

(d)
i

)2

2!
C ′′(ri)

(8)

where ri is the residual from the current iteration. The Taylor series expansion in
Equation 8 lets us find analytical derivatives of the misfit function E(r) with respect
to both α and β as follows:

∂E

∂α
=

∑
i

g
(d)
i C ′(ri) + (α g

(d)
i + β s

(d)
i)g

(d)
i C ′′(ri) = 0, (9)

∂E

∂β
=

∑
i

s
(d)
i C ′(ri) + (α g

(d)
i + β s

(d)
i)s

(d)
i C ′′(ri) = 0. (10)

By setting these derivatives to zero and solving the 2× 2 system of equations we find
an optimal step size in both directions g(d) and s(d). The equation below shows the
solutions α and β for this system of equations in a simplified notation.

∑
C ′′

i (r)

[(
g

(d)
i

s
(d)
i

)(
g

(d)
i s

(d)
i

)][α
β

]
= −

∑
C ′

i(r)

(
g

(d)
i

s
(d)
i

)
(11)

APPENDIX B: FORTRAN CODES FOR CGSTEP AND
GENERALIZED CGNORM PLANE-SEARCH STEPPER

This appendix includes the fortran codes for cgstep.f90 and cgnorm.f90. Note that
type of norm and threshold are set inside an initialization subroutine which is called
prior to stepper call.

cgstep.f90

integer function cgs tep (f o rge t , x , g , rr , gg)
real , dimension (:) : : x , g , rr , gg

SEP–139

Maysami and Moussa 9 Generalized solver

log ica l : : f o r g e t
double precision : : a l f a , beta , determ
double precision : : sds , gdg , gds , gdr , sdr
i f (. not . a l l o c a t e d (s)) then

f o r g e t = . t rue .
allocate (s (s ize (x)))
allocate (s s (s ize (r r)))

end i f
i f (f o r g e t) then

s = 0 .
s s = 0 .
beta = 0 . d0 ! steepest descent
i f (dot product (gg , gg) . eq . 0) then

ca l l e r e x i t (’ cgs tep : grad van i she s i d e n t i c a l l y ’)
end i f
a l f a = − sum(dprod (gg , r r)) / sum(dprod (gg , gg))

else
gdg = sum(dprod (gg , gg))
! search plane by solving 2-by-2
sds = sum(dprod (ss , s s))
! G . (R - G*alfa - S*beta) = 0
gds = sum(dprod (gg , s s))
! S . (R - G*alfa - S*beta) = 0
i f (gdg . eq . 0 . . or . sds . eq . 0 .) then

cgs tep = 1
return

end i f
determ = gdg∗ sds ∗ max(1 . d0−(gds/gdg) ∗(gds/ sds) , 1 . d−12)
gdr = − sum(dprod (gg , r r))
sdr = − sum(dprod (ss , r r))
a l f a = (sds ∗ gdr − gds ∗ sdr) / determ
beta = (−gds ∗ gdr + gdg ∗ sdr) / determ

end i f
s = a l f a ∗ g + beta ∗ s ! update solution step
s s = a l f a ∗ gg + beta ∗ s s ! update residual step
x = x + s ! update solution
r r = r r + s s ! update residual
f o r g e t = . f a l s e .
cgs tep = 0

end function

cgnorm.f90

subroutine cgnorm in i t (rthr , norm , p s i t e r)
! Initialize CGNORM Stepper with r_thr, norm type and psiter_in
!
! Arguments IN:
! rthr : RBAR or R_THR for norm
! norm_in : Norm ype to be used (Hybrid or Huber)
! psiter_in : Number of Plane-search iterations on Alpha,Beta
!

SEP–139

Maysami and Moussa 10 Generalized solver

real : : r th r
integer : : p s i t e r
character (10) : : norm
optional : : p s i t e r , norm

ps norm=”huber”
i f (pre sent (norm)) then

ps norm=norm
end i f

p s i t e r=1
i f (pre sent (p s i t e r)) then

p s i t e r=p s i t e r
end i f

r t = abs (r th r) ! Rt is positive
i f (ps norm (1 : 5)==”huber” . or . ps norm (1 : 6)==”hybrid ”) then

i f (r t ==0.0) ca l l e r e x i t (’ r t h r = 0 . i s not a va l i d cho i c e . ’)
endif

end subroutine

! --
! CGNORM function
! --
integer function cgnorm (fo rge t , x , g , rr , gg)

! Iterative Plane-Search Stepper function
! for different norms (Hybrid, Huber, etc.)

! Arguments:
! x, g : x, dx
! rr,gg : R, dR
! forget : set steepest -decsend if true and CG-direction if false

! Output Flag (cgnorm):
! 2 : Exit
! 1 : Exit with vanishing gradient status
! 0 : Done without any exit or error
!
double precision , dimension (:) , allocatable : : sds , gdg , gds
double precision , dimension (:) , allocatable : : c0 , c1 , c2
real , dimension (:) , allocatable : : check
real , dimension (:) : : x , g , rr , gg
log ica l : : f o r g e t
double precision : : a l f a , beta , determ
double precision : : c2dgg , c2dss , c2dgs , c1dg , c1ds
integer : : i , ps , stat

cgnorm = 2
allocate (c0 (s ize (r r)) , c1 (s ize (r r)) , c2 (s ize (r r)))
allocate (gdg (s ize (r r)) , sds (s ize (r r)) , gds (s ize (r r)))
allocate (check (s ize (x)))

i f (. not . a l l o c a t e d (s)) then

SEP–139

Maysami and Moussa 11 Generalized solver

f o r g e t = . t rue .
allocate (s (s ize (x)))
allocate (s s (s ize (r r)))

end i f

! Loop over alpha , Beta
do ps=1, p s i t e r

! === Compute Norm and its derivatives
i f (ps norm (1 : 2)==” l2 ”) then

stat = l2 (rr , c0 , c1 , c2)
else i f (ps norm (1 : 2)==” l1 ”) then

stat = l1 (rr , c0 , c1 , c2)
else i f (ps norm (1 : 6)==”hybrid ”) then

stat = hybrid (rr , c0 , c1 , c2)
else

stat = huber (rr , c0 , c1 , c2)
end i f

! === Pick Line Search or Plane Search
i f (f o r g e t) then

! Steepest Descent
s = 0 .
s s = 0 .
beta = 0 . d0

gdg = dprod (gg , gg)
c2dgg = sum(dprod (c2 , gdg))

!!! Discard C" if C"= 0 (OPTIONAL)
! if (sum(abs(c2))==0.0) c2dgg=sum(gdg)

i f (c2dgg == 0.0) then
cgnorm = 1
ca l l e r e x i t (’NORM CGSTEP: Gradient van i shes : C”∗gg∗gg =0. ’)

end i f
a l f a = − sum(dprod (c1 , gg)) / c2dgg

e l s e
! Plane Search f o r alpha & beta
c1dg = − sum(dprod (c1 , gg)) ! c1dg = −C’∗G
c1ds = − sum(dprod (c1 , s s)) ! c1ds = −C’∗S

gdg = dprod (gg , gg) ! s earch plane by s o l v i n g 2−by−2
sds = dprod (ss , s s) ! C”∗G. (G∗ a l f a + S∗beta) = −C’∗G
gds = dprod (gg , s s) ! C"*S. (G*alfa + S*beta) = -C’*S

c2dgg = sum(dprod (c2 , gdg)) ! c2dgg = C"*G*G
c2dss = sum(dprod (c2 , sds)) ! c2dss = C"*S*S
c2dgs = sum(dprod (c2 , gds)) ! c2dgs = C"*G*S

!if (sum(abs(c2))==0.0) then
! !!! Discard C" if C"= 0 (OPTIONAL)

SEP–139

Maysami and Moussa 12 Generalized solver

! c2dgg=sum(gdg)
! c2dss=sum(sds)
!end if

i f ((c2dgg==0.d0) .OR. (c2dss==0.d0)) then
cgnorm = 1 ;
write (0 ,∗) ’ Plane Search : Gradient van i shes :
C”∗gg∗gg=0 OR C”∗ s s ∗ s s =0. ’
return

end i f
determ = c2dgg ∗ c2dss ∗ max(1 . d0 − (c2dgs /c2dgg) ∗(c2dgs /

c2dss) , 1 . d−12)
a l f a = (c2dss ∗ c1dg − c2dgs ∗ c1ds) / determ
beta = (−c2dgs ∗ c1dg + c2dgg ∗ c1ds) / determ

end i f

! Updates on model and residual
s = a l f a ∗ g + beta ∗ s ! update solution step
s s = a l f a ∗ gg + beta ∗ s s ! update residual step

check=0.
do i =1, s ize (x)

check=check+(s (i) /x (i)) ∗∗2
end do
i f (check< 1 . e−6) exit

x = x + s ! update solution
r r = r r + s s ! update residual
f o r g e t = . f a l s e . ;

!write (0,*) "Alpha, Beta::" ,alfa,beta
!write (0,*) "Determ::" ,determ

end do

deallocate (c0 , c1 , c2)
deallocate (gdg , sds , gds)
cgnorm = 0

end function

REFERENCES

Bube, K. P. and R. T. Langan, 1997, Hybrid l1/l2 minimization with applications to
tomography: Geophysics, 62, 1183–1195.

Claerbout, J. F., 2008, Image estimation by example.
——–, 2009, Blocky models via the l1/l2 hybrid norm: SEP-Report, 139, 1–10.
Guitton, A., 2000, Implementation of a nonlinear solver for minimizing the huber

norm: SEP-Report, 103, 281–289.
Huber, P. J., 1973, Robust regression: Asymptotics, conjectures, and monte carlo:

Annals of Statistics, 1, 799–821.

SEP–139

Maysami and Moussa 13 Generalized solver

Li, Y. E. and M. Maysami, 2009, Dix inversion constrained by l1-norm optimization:
SEP-Report, 139, 23–36.

Paige, C. C. and M. A. Saunders, 1982, Algorithm 583 lsqr: spare linear equations
and sparse least squares problems: ACM Transaction on Mathematical Software,
8, 195–209.

Wong, M., N. W. Moussa, and M. Maysami, 2009, Applications of generalized norm
solver: SEP-Report, 139, 37–48.

SEP–139

