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ABSTRACT

The application of a L1/L2 regression solver, termed the generalized norm solver,
to two test cases, shows that it is potentially an efficient method for L1 inversion
and is easy to parameterize. The generalized norm solver iterates with conjugate
direction. Our first test case, the line fitting problem, shows that the generalized
solver is capable of removing outliers in data. Our second test case, the 1D Galilee
problem, shows that the generalized solver can produce a satisfactory “blocky”
solution. In terms of parameters, a low threshold value, if giving convergent
solution, gives the best result. Experience shows the optimal number of inner
loop iterations is one.

INTRODUCTION

Currently, many geophysics problems are solved with least-squares (L2) model fit-
ting because of its fast convergence, simple parametrization, and easy to understand
numerical analysis. However, L2 minimization places disproportionate emphasis on
large residual values. Therefore, an L1-type norm inversion technique is more ap-
propiate for solving geophysical problems that have a “blocky” model space. One
example is to do adaptive subtraction of multiples Guitton (2005) using IRLS (iter-
ative re-weighted least squares). Other possible applications are tomography (Bube
and Langan (1997)) and deconvolution of noisy data (Chapman and Barrodale 1983).

In geophysics, a popular way to run L1-type inversions is with IRLS (Gersztenkorn
et al. (1986)) . Running with IRLS often improves the results. A drawback is that
its computational time is considerably higher because of repeated application of the
costly forward and adjoint data-fitting operator within two iterative loops. To over-
come this computational deficiency while retaining the benefit of L1-type inversion,
we came up with another solver that does a better job than IRLS. Claerbout (2009)
developed an algorithm of that we call the generalized norm solver, which steps
with conjugate-direction and using the Taylor series expansion. Such a solver allows
us to perform inversion using the L2 or the mixed L1/L2 norm Maysami and Moussa
(2009). For convenience, we will use the term ’norm’ to refers to all kind of mea-
sures and norms. It is understood that a norm has a strict definition in mathematics.
For the theoretical description of the solver, please refer to the report by Claerbout
(2009).

Maysami and Moussa (2009) have implemented such a solver, which allows us to test
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its robustness in this paper. Three norms will be used in our study: the least-squares
(L2), Hybrid, and Huber norms. It is worth mentioning that the theory for using the
least-squares norm with our solver is exactly the same as the theory for solving the
least-squares problem with conventional conjugate-direction algorithm. For the rest
of this paper, we will refer the generalized norm solver with the Hybrid norm as the
hybrid solver and the generalized norm solver with the Huber norm as the Huber
solver.

We have applied the generalized norm solver to two test cases. The first test case
recovers the equation of a straight line given data that are corrupted with Gaussian
noise and spikes. We find that the generalized norm solver recovers the equation of
a straight line when using either the hybrid solver or the Huber solver. The second
test case is called the 1-D Galilee problem. This problem is a simplified version of a
real depth sounding experiment of the Sea of Galilee and a standard test problem in
SEP textbooks, (Claerbout (2008); Claerbout and Fomel (2008)).The synthetic data
for this case are measurements between the water surface and the bottom of the lake.
The first part of the test simply aims to recover the true depth of a 1-D lake given
that the data contain occasional large spikes. The second part of the test has data
corresponding to a water level that change in a step-like manner. We will refer to
these kind of jumps as “drift.” We aim to recover the true depth and sudden drift in
data. We find that the hybrid solver always gives the best result as compared to the
Huber solver and the least-squares solver.

FIRST TEST CASE: LINEAR FITTING PROBLEM

Basic formulation for the linear fitting problem

To verify the L1-norm solver and establish its utility across several geophysical op-
timization problems, we tested on a series of one-dimensional fitting problems. We
began with the simplest fitting problem, a line-fit estimation that would be suitably
solved by least-squares line fitting in most cases.

To show the advantages of an L1-based methodology, we injected both Gaussian and
non-Gaussian noise. In general, while L2 fitters are well suited to wide-spectrum
noise, they are particularly prone to misleading or unphysical results if the noise has
many spike- or burst-like. We experimented with a linear fit of a set of data plus
several spikes.

The problem setup of the line-fit is similar, but simpler, than the other examples. It
serves as a good explanatory case-study of the set-up of a solver. We begin with a
data space, d, representing the noisy sampling of a straight line. We intend to model
this line with a very simple, two-element line model – namely, slope and intercept
according to the conventional y = αx + β formula.

We construct a forward operator, L, which implements the mapping of this model
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space onto our recorded data. I n the presence of interfering noise, there will be
a deviation between predicted data (Lm) and recorded data (d). We have tested
our solver to minimize this deviation according to L2, Huber, and hybrid L1/L2

definitions. This simplified example shows the important ability of the L1-style norms
to reject large data outliers.

In this case, we formally define the model space,

m =

[
α
β

]
, (1)

where α represents thes slope and β represents the y-intercept of a line. And the line
operator,

L =
[
x 1

]
, (2)

We attempt to minimize the objective functions for each defined norm:

rL2 = ||Lm− d||L2 ,

rL1 = ||Lm− d||L1 ,

rHuber = ||Lm− d||Huber,

rHybrid = ||Lm− d||Hybrid,

Because each norm represents a different method for computing the residual, the cor-
responding minimization has different behaviors with regard to the optimal modeled
data. As we will show in the following sections, this impacts the ability of each opti-
mization criterion to produce geophysically useful results in the presence of different
types of interference, and for the different characteriestics of the desired function (e.g.
sparseness or block-like intervals).

Results of the line-fitting problem

The results of solving this problem with the least-squares, hybrid, and Huber norms
are shown in Figure 1. We can see that the fitted line in the L2 norm deviates from
the true line due to the presence of spiked data, whereas for the Huber solver and
the hybrid solver, the fitted line correctly overlaps the true line. We conclude that
our trivial line-fitting example functions properly when using the L1-type hybrid and
Huber norms.
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(a) (b)

(c)

Figure 1: Line fitting using the generalized norm solver: (a)L2 fitting, (b) hybrid
norm fitting, (c) Huber norm fitting. Notice that the L2 fit-line does not match the
actual data trend – this illustrates the susceptibility of least-squares minimization to
strong outliers (spikes), while the other norms are totally unaffected by these data
points. [ER]
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TEST CASE TWO: THE ONE DIMENSIONAL GALILEE
PROBLEM

Formulation of the 1D Galilee Problem

Our next test case is the removal of spikes and drift from a 1-dimensional representa-
tion of the Galilee depth data. We constructed this experiment to be more rigorous
than the earlier line-fitting and noise-removal problem. The 1D Galilee problem is a
synthetic problem that originates from a depth sounding experiment on the Sea of
Galilee. Imagine performing a depth-sounding experiment along a fixed track in the
lake. The lake has a sinusoidal depth with blocky drift and large spikes in time. As
a boat goes back and forth across this 1D lake, it is measuring the sum of the true
lake depth plus the drift in time. Figure 2 shows the true depth of our 1D Galilee
lake and figure 3 shows the recorded data, which is the sum of the drift function and
the true depth. We have added 2 spikes as outliers in the data. These 2 spikes can
be viewed as equipment failure. Note that the data covers the lake back and forth
roughly 6.25 times.

Figure 2: The true depth of the
Sea of Galilee along a fixed track.
[ER]

To formulate the problem for inversion, we have set our unknown model space to be
the lake depth, m, and the drift function, u. Data space d is the recorded depth as
shown in Figure 3. Our data fitting goal can be defined as

0 ≈ Lm + u− d, (3)

where L is the binning operator that matches the data acqusition in time to its
corresponding location in space. For a lake with 4 grid points and 6 data points,
equation 3 would look like this:

0 ≈


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 1 0




m1

m2

m3

m4

 +


u1

u2

u3

u4

u5

u6

−


d1

d2

d3

d4

d5

d6

 .
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(a) (b)

(c)

Figure 3: (a) The drift as a function of aquisition time. (b) The recorded data, which
is the sum of the true lake depth and drift. (c) The recorded data with two outliers.
The two spikes are added to the data to account for equipment failure.[ER]
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Equation 3 by itself is an under-determined problem, because there are more un-
knowns than the recorded data points. If there are nd data points and the lake has
nm grid points, then the model space has a dimension of nm + nd, because we are
solving for both lake depth and drift in time. The data space has a dimension of
nd. To introduce more constraints, we can add a regularization by requiring the drift
function u to be smooth,

0 ≈ d

dt
u. (4)

It is worth pointing we only expect good results when we run this regularization
with L1 or L1-type norms, as L2 smoothing will wipe out the “blockiness” in the
drift function, which is part of the model space. To illustrate the limitation of least-
squares fitting, I will first show the result of applying inversion to the 1D Galilee
problem.

Result of least-squares inversion of the 1D Galilee Problem

Least-squares inversion looks a for solution in the model space that minimizes the
square of the residual. I first run un-regularized inversion on spike-free but drifted
data. That means using the data-fitting goal in equation 3 to fit the data shown
from Figure 3 (b). After L2 fitting, the estimated depth is shown in figure 4 (a),
and the estimated drift is shown in figure 4 (b). An interesting observation from the
un-regularized L2 inversion of the non-spike data is that it gives very good estimate of
the lake depth and drift. Although the problem is still under-determined, the amount
of data collected is sufficient enough to determine the relative jumps from each pass
in the lake. As mentioned before, the data cover the lake back and forth roughly 6.25
times.

At this point, further attempts to solve this problem seem redundant, as we are
getting a nearly perfect result. However, the result is different when I re-run the un-
regularized inversion (equation 3) on the spiked and drifted data (Figure 3 (c)). After
L2 fitting, the estimated depth is shown in figure 4 (c),and while the estimated drift
is shown in Figure 4 (d). This time, the fitted depth deviates from the true depth,
with segments that are clearly affected by spikes. The fitted drift function shows
erratic jumps. This is because by minimizing the square of the residual, L2 inversion
emphasizes large spikes in data. In a situation like this, L1 or L1-type inversion like
the hybrid and Huber solvers should give better results. This is because minimizing
the absolute value of the residual puts less emphasis on large spikes in data. This
assertion will be verified when I apply the hybrid and the Huber solvers in the next
section.

In addition to the two un-regularized least-squares examples above, I also ran a
regularized inversion on the spike-free but drifted data. That means using the fitting
goals in equation 3 and equation 4 on the data shown in Figure 3 (b). After L2 fitting,
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the estimated depth is shown in Figure 4 (e), and the estimated drift is shown in
Figure 4 (f). The regularized drift in this case, shown in Figure 4 (f) , is a smoothed
version of the un-regularized drift as shown in Figure 4 (b). The smoothing is as
expected because of the type of regularization used. One conclusion is that when the
data is spike-free, the L1-type solver is unnecessary, because Figure 4 (b) shows that
we are obtaining a satisfactory result with L2 unregularized fitting. However, Figure
4 (d) demonstrates that L1-type inversion is needed for data containing large spikes.
The next step is to see how the generalized L1 solver handle this problem using the
hybrid and the Huber norms.

Result of the 1D Galilee Problem using the Generalized norm
solver

We begin with the simplest test for any L1-type solver, which is the ability to remove
outliers in the data. When there is no water-level drift in the Galilee sounding ex-
periment, the data is affected only by random spikes (non-Gaussian noise). The ideal
fitted output would be to recover the true depth. The result is shown in figure 5.
When we apply the generalized solver to the problem, L2 gives the worst result, as
expected, because it cannot isolate outliers from the overall fitting goal. The Huber
criteria gives an intermediate result, while the hybrid minimization criteria gives the
best result, almost completely recovering the true depth of the lake without distortion.

Next, I apply the solver to the full 1-D Galilee problem, which is the inversion using
fitting goals from equation 3 and 4 of data that including drifts and spikes, as shown
in Figure 3 (b). The hybrid norm gives the most satisfying result, as summarized in
Figure 6. There are two parameters that can be adjusted in this problem: epsilon,
which describes the level of regularization, and percentile, which describes the
transition point between the L2 and the L1 measure (per the defining equations of
each norm). Please refer to Claerbout (2009) and Maysami and Moussa (2009) for the
definition of each norm. In general, a small epsilon means less weight is placed on the
regularization goal, meaning a less smooth result. The percentile parameter allows
us to configure the degree of confidence that any randomly-selected data element is
a statistical outlier, placing it within either the L1 or the L2 fitting goal. If a low
percentile is set, it indicates that we believe most of the data should be fitted with L1.
For this problem, we have set the percentile to be as low as possible without having
a divergent solution. For the Huber solver, the limit is percentile ≈ 0.3. We found
that the hybrid solver has a better tolerance, and the limit for it is percentile ≈ 0.1.

In terms of convergence, there are two iterative parameter. The first one is niter,
which controls then number of applications of the costly forward and adjoint oper-
ators. Another one is psiter which corresponds to the number of iterations of the
inner loop that determines the step sizes, α and β, in our conjugate direction scheme.
We found that when psiter = 1, we obtain the best result in the full 1-D Galilee
problem. For the outer loop parameter, niter, the L2 solver converges in just 16 it-
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(a) (b)

(c) (d)

(e) (f)

Figure 4: (a,b): L2 inversion without regularizaton using the spike-free data. (c,d):
L2 inversion without regularization using the spiked data. (e,f): L2 inversion with
regularization using the spike-free data. [ER]
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(a) (b)

(c)

Figure 5: Fitting depth for measurements with spiky noise with the generalized norm
solver using (a) L2 norm. (b) Huber norm with eps = 0.1 and percentile = 0.375
(c) Hybrid norm with eps = 0.1 and percentile = 0.275. [ER]
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erations, the Huber solver converges in 36 iterations, and the hybrid solver converges
in 66 iterations. Repeated experience indicates that we can always set psiter to one
when using the generalized norm solver.

Comments on the result

From observating the fitted drift between figure 6 (b) and 6 (d) , the Huber solver is
not doing significantly better than the least-squares solver. One possible explanation
is that the underlying Taylor series assumption failed while trying to solve for the
stepping coeficient α and β. Recall that the formulas for the Huber norm are

C(r) =

{
|r| − |rt|/2 |r/rt| ≥ 1

r2/2rt |r/rt| < 1

C ′(r) =

{
sgn(r/rt) |r/rt| ≥ 1

r/rt |r/rt| < 1
(5)

C ′′(r) =

{
0 |r/rt| ≥ 1

1/rt |r/rt| < 1

Notice that the second derivative vanishes if the residual falls to the threshold value rt.
This could lead to failure of the Huber solver, because the second derivatives are used
in the denonimator when solving for the step size α and β in the conjugate-direction
scheme (Claerbout (2009)).

We are delighted to see that hybrid solver gives a resonable result for the full Galilee
problem as shown in figure 5(c), we can hardly describe the model solution as “blocky.”
This might be because we have used a small threshold value for the model-fitting goal.
For example, a threshold value of 0.30 percentile means we would like to see blocks
about 3 to 4 points long. A higher threshold value for the model-fitting goal (equa-
tion 4) can increase blockiness; however our present solver has restricted us to use the
same threshold value for both the model-fitting and the data-fitting goals (equation
3). One possible improvement for the future is to separate the thresholds for these
goals.

CONCLUSION

The applications of the generalized norm solver show promising results in our two
sample problems. The line-fitting problem shows that our solver can correctly remove
spikes and noise added to the data. The 1-D Galilee problem shows that the solver
can properly produce a blocky model space while removing outliers. In terms of
convergence, the hybrid solver takes longer to converge than the Huber solver. While
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Fitting depth and drift for measurements with both drift and spiky noise
with the generalized norm solver (regularized system) using the L2 norm (a,b); the
Huber norm with eps = 0.1 and percentile = 0.07 (c,d); and the hybrid norm with
eps = 0.1 and percentile = 0.32 (e,f). [ER]
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only the one-dimensional problem is examined with this solver, we plan to further
explore this solver with 2-D field data problem and directly compare the result with
the IRLS algorithm.
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