Blocky models via the L1/L2 hybrid norm

Jon Claerbout

ABSTRACT

This paper seeks to define robust, efficient solvers of regressions of L1 nature with
two goals: (1) straightforward parameterization, and (2) “blocky” solutions. It
uses an L1/L2 hybrid norm characterized by a residual R, of transition between
L1 and L2 for data fitting and another R,, for model styling. Both the steepest
descent and conjugate direction methods are included. The 1-D blind decon-
volution problem is formulated in a manner intended to lead to both a blocky
impedance function and a source waveform. No results are given.

INTRODUCTION

I've seen many applications improved when least-squares (L2) model fitting was
changed to least absolute values (L1). I've never seen the reverse. Never-the-less
we always return to L2 because the solving method is easier and faster. It does not
require us to specify parameters of numerical analysis that are unclear how to specify.

Another reason to re-investigate L1 is its natural ability to estimate blocky models.
Sedimentary sections tend to fluctuate randomly, but sometimes there is a homoge-
neous material continuing for some distance. A function with such homogeneous
regions is called “blocky”. The derivative of such a function is called “sparse”. L2
gives huge penalties to large values and minuscule penalties to small ones, hence it
never really produces sparse functions and their integrals are never really blocky. If we
had an easy, reliable L1 solver, we could expect to see many more realistic solutions.

There are reasons to abandon strict L1 and revert to an L1/L2 hybrid solver.
A hybrid solver has a parameter, a threshold, at which L2 behavior transits to L1.
We have good reasons to use two different hybrid solvers, one for the data fitting,
the other for the model styling (prior knowledge or regularization). Each requires
a threshold of residual, let us call it R, for the data fitting, and R, for the model
styling. Processes that require parameters are detestible when we have a poor idea
of the meaning of the parameters (especially if they relate to numerical analysis),
however the meaning of the thresholds R; and R,, is quite clear. When we look at
a shot gather and see about 30% of the area is covered with ground roll, it is clear
we would like to choose Ry to be at about the 70th percentile of the fitting residual.
As for the model styling, if we’d like to see blocks about 20 points long, we’'d like
our spikes to average about 20 points apart, so we would like R,, about the 95th
percentile allowing 5% of the spikes to be of unlimited size, while the others small.
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I was first attracted to strict L1 by its potential for blocky models. But then I
realized for each nonspike (zero) on the time axis, theory says I would need a “basis
equation”. That implies an immense number of iterations, so it is unacceptable in
imaging applications. With the hybrid solvers, instead of exact zeros we have a large
region driven down by the L2 norm and a small L1 region where large spikes are
welcomed.

MODEL DERIVATIVES

Here is the usual definition of residual r; of theoretical data > ; F; jm; from observed

data d;

=) _Fymj)—d; or r=Fm-d. (1)
J

Let C() be a convex function (C” > 0) of a scalar. The penalty function (or norm of
residuals is expressed by
= C(n) (2)

We denote a column vector g with components g; by g = vec(g;). We soon require
the derivative of C'(r) at each residual 7;:

Y (5] o

We often update models in the direction of the gradient of the norm of the residual.

8m 5 87"1 8m k

Define a model update direction by Am = F'g. Since r = Fm — d, we see the
residual update direction will be Ar = FAm. To find the distance o to move in
those directions

m «— m-+aAm (5)
r «— r+aAr (6)

we choose the scalar o to minimize

= Z C(ri + alr;) (7)

The sum in equation (7) is a sum of “dishes”, shapes between L2 parabolas and L1
V’s. The i-th dish is centered on o = —r;/Ar;. It is steep and narrow if Ar; is large,
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and low and flat where Ar; is small. The positive sum of convex functions is convex.
There are no local minima. We can get to the bottom by following the gradient.
Next we consider some choices for convex functions. We’ll need them, their first and
second derivatives.

Some convex functions and their derivatives

LEAST SQUARES:

C = r?)2 (8
' = r (9
=1 >0 (10
L1 NORM:
C = r (11
C'" = sgn(r) (12
C" = 0oroo > 0 (13
HYBRID:
C = R*(\/1+7r2/R2-1) (14)
(o — (15)
N
1
1/ — > 1
¢ Gemype = 1o
HUBER:
B r|—R/2 if |r]| >R
¢ = {r2/2R otherwise (17)
;o sgn(r) if [r] > R
¢ = {T‘/R otherwise (18)
no 0 or oo if |r| > R
o = {1/R otherwise =0 (19)

I have scaled Hybrid so it naturally approaches the least squares limit as R — oo.
As R — 0, it tends to C' = R|r|, scaled L1.

Because of the erratic behavior of C” for L1 and Huber, and our planned use of
second order Taylor series, we will not be using L1 and Huber norms here. Also, we
should prepare ourselves for danger as HYBRID approaches the L1 limit. (I thank
Mandy for reminding me of the infinite second derivative and I thank Mohammad
and Nader for demonstrating numerical erratic behavior.)
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PLANE SEARCH

The most universally used method of solving immense linear regressions such as imag-
ing problems is the Conjugate Gradient (CG) method. It has the remarkable property
that in the presence of exact arithmetic, the exact solution is found in a finite number
of iterations. A simpler method with the same property is the Conjugate Direction
method. It is debatable which has the better numerical roundoff properties, so we
generally use the Conjugate Direction method as it is simpler to comprehend. It
says not to move along the gradient direction line, but somewhere in the plane of the
gradient and the previous step. The best move in that plane requires us to find two
scalars, one « to scale the gradient, the other  to scale the previous step. That is all
for L2 optimization. We proceed here in the same way with other norms and hope
for the best.

So here we are, embedded in a giant multivariate regression where we have a
bivariate regression (two unknowns). From the multivarate regression we are given
three vectors in data space. 7;, g; and s;. You will recognize these as the current
residual, the gradient (Ar;), and the previous step. (The gradient and previous step
appearing here have previously been transformed to data space (the conjugate space)
by the operator F.) Our next residual will be a perturbation of the old one.

ri = T+ ag + Bs; (20)

We seek to minimize by variation of («, ()

= Z C(r; + ag; + Bs;) (21)
Let the coefficients (C;, C!, CY) refer to a Taylor expansion of C(r) about r;.
N(a, B) = Z Ci + (agi+ Bs:)Cl + (agi + Bs:)°C{ /2 (22)

We have two unknowns, (a, 3) in a quadratic form. We set to zero the « derivative
of the quadratic form, likewise the 3 derivative getting

{8} N zz: OZ/{:ZZ} + C;’{[ % ] (agi + 53@‘)}(04% + Bsi)  (23)

resulting in a 2 x 2 set of equations to solve for o and (.

(zel(z)e l)3] - -wals]

The solution of any 2 x 2 set of simultaneous equations is generally trivial. The
only difficulties arise when the determinant vanishes which here is easy (luckily) to
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understand. Generally the gradient should not point in the direction of the previous
step if the previous move went the proper distance. Hence the determinant should
not vanish. Practice shows that the determinant will vanish when all the inputs are
zero, and it may vanish if you do so many iterations that you should have stopped
already, in other words when the gradient and previous step are both tending to zero.

Using the newly found («, 3), update the residual 7; at each location (and update
the model). Then go back to re-evaluate C] and C/ at the new r; locations. Iterate.

In what way do we hope/expect this new bivariate solver embedded in a conjugate
direction solver to perform better than old IRLS solvers? After paying the inevitable
price, a substantial price, of computing F'r and F Am the iteration above does some
serious thinking, not a simple linearization, before paying the price again.

If the convex function C(r) were least squares, subsequent iterations would do
nothing. Although the Taylor series of the second iteration would expand about
different residuals r; than the first iteration, the new second order Taylor series are
the exact representation of the least squares penalty function, i.e. the same as the
first — so the next iteration goes nowhere.

Will this computational method work (converge fast enough) in the L1 limit? I
don’t know. Perhaps we’ll do better to approach that limit (if we actually want that
limit) via gradually decreasing the threshold R.

BLOCKY LOGS: BOTH FITTING AND
REGULARIZATION

Here we set out to find blocky functions, such as well logs. We will do data fitting
with a somewhat L2-like convex penalty function while doing model styling with a
more L1-like function. We might define the composite norm threshold residual R,
for the data fitting at the 60th percentile, and that for regularization seeking spiky
models (with blocky integrals) as R,, at the 5th percentile.

The data fitting goal and the model regularization goal at each z is independent
from that at all other z values. The fitting goal says the reflectivity m(z) should be
equal to its measurement d(z) (the seismogram). The model styling goal says the
reflectivity m(z) should vanish.

0 = ra(z) = m(z)—d(2) (25)
0 =~ rp(z) = em(2) (26)

These two goals are in direct contradiction to each other. With the L2 norm the
answer would be simply m = d/(1 + €?). With the L1 norm, the answer would be
either m = d or m = 0 depending on the numerical choice of €. Let us denote the
convex function and its derivatives for data space at the residual as (B, B, B”) and
for model space as (C,C’,C"). Remember, m and d, while normally vectors, are here
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scalars (independently for each z).

loop over all time points {

m=d/(1+ €?) # These are scalars!

loop over non-linear iterations {
rg=m—d
T'm =m
Get derivatives of hybrid norm B’(r4) and B”(ry) for data goal.
Get derivatives of hybrid norm C’(r,,) and C"(r,,) for model goal.
# Plan to find a to update m = m + «
# Taylor series for data penalty N(rq) = B + B'a+ B"a?/2
# Taylor series for model penalty N(r,,) = C + C'a + C"a?/2
B0 = Z(N(ry) +eN(rn))
a=—(B"+eC")/(B"+eC")
m=m+«
} end of loop over non-linear iterations

} end of loop over all time points

To help us understand the choice of parameters Ry, R,,, and ¢, We examine the
theoretical relation between m and d implied by the above code as a function of €
and R,, at Ry — oo, in other words, when the data has normal behavior and we are
mostly interested in the role of the regularization drawing weak signals down towards
zero. The data fitting penalty is B = (m — d)?/2 and its derivative B’ = m — d.
The derivative of the model penalty (from equation (15)) is C" = m/\/1 +m?/R2,.
Setting the sum of the derivatives to zero we have

0 = B+e = m—d+—20 (27)

Vv 1+m?2/R2,

This says m is mostly a little smaller than d, but it gets more interesting near (m, d) ~
0. There the slope m/d = 1/(1 + €) which says an € = 4 will damp the signal (where
small) by a factor of 5. Moving away from m = 0 we see the damping power of ¢
diminishes uniformly as m exceeds R,,.

UNKNOWN SHOT WAVEFORM

A one-dimensional seismogram d(t) is unknown reflectivity ¢(¢) convolved with un-
known source waveform s(t). The number of data points ND~NC is less than the
number of unknowns NC+NS. Clearly we need a "smart” regularization. Let us see
how this problem can be set up so reflectivity ¢(t) comes out with sparse spikes so
the integral of ¢(t) is blocky.

This is a nonlinear problem because the convolution of the unknowns is made
of their product. Nonlinear problems elicit well-warranted fear of multiple solutions
leading to us getting stuck in the wrong one. The key to avoiding this pitfall is
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starting “close enough” to the correct solution. The way to get close enough (besides
luck and a good starting guess) is to define a linear problem that takes us to the
neighborhood where a nonlinear solver can be trusted. We will do that first.

Block cyclic solver

In the Block Cyclic solver (I hope this is the correct term.), we have two half cycles.
In the first half we take one of the variables known and the other unknown. We
solve for the unknown. In the next half we switch the known for the unknown. The
beauty of this approach is that each half cycle is a linear problem so its solution
is independent of the starting location. Hooray! Even better, repeating the cycles
enough times should converge to the correct solution. Hooray again! The convergence
may be slow, however, so at some stage (maybe just one or two cycles) you can safely
switch over to the nonlinear method which converges faster because it deals directly
with the interactions of the two variables.

We could begin from the assumption that the shot waveform is an impulse and
the reflectivity is the data. Then either half cycle can be the starting point. Suppose
we assume we know the reflectivity, say c, and solve for the shot waveform s. We use
the reflectivity ¢ to make a convolution matrix C. The regression pair for finding s is

0 ~ Cs —d (28)
0 ~ els (29)

These would be solved for s by familiar least squares methods. It’s a very easy problem
because s has many fewer components than c. Now with our source estimate s we
can define the operator S that convolves it on reflectivity c.

The second half of the cycle is to solve for the reflectivity c. This is a little trickier.
The data fitting may still be done by an L2 type method, but we need something like
an L1 method for the regularization to pull the small values closer to zero to yield a
more spiky c¢(t).

0 =55 ry = Sc — d (30)
0 ~r1 I'm = Ic (3]-)

Normally we expect an €. in equation (31) but now it comes in later. (It might seem
that the regularization (29) is not necessary, but without it, ¢ might get smaller and
smaller while s gets larger and larger. We should be able to neglect regression (29)
if we simply rescale appropriately at each iteration.) We can take the usual L2 norm
to define a gradient vector for model perturbation Ac = S'ry. From it we get the
residual perturbation Ary; = SAc. We need to find an unknown distance a to move
in those directions. We take the norm of the data fitting residual, add to it a bit € of
the model styling residual, and set the derivative to zero.

0 = 5% [Ng(rg + o Ar) + eNy(c+ aAc)] (32)
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We need derivatives of each norm at each residual. We base these on the convex
function C(r) of the Hybrid norm. Let us call these A; for the data fitting, and B;
for the model styling.

A; = C(Rg,mi) (33)

(Actually, we don’t need A; (because for Least Squares, A, = r; and A7 = 1), but
[ include it here in case we wish to deal with noise bursts in the data.) As earlier,
expanding the norms in Taylor series, equation (32) becomes

0 = ZA; Ar; + ozZAQ’ Ar} + e (ZB@/ Ac; + O{ZBz{/ AC?) (35)

which gives the o we need to update the model ¢ and the residual ry.

Zi A; Ar; + Ezi Bz{ Ac;
YA ArE 4 €. B Ac?

(36)

This is the steepest descent method. For the conjugate directions method there is a
2 x 2 equation like equation (24).

Non-linear solver

The non-linear approach is a little more complicated but it explicitly deals with the
interaction between s and c¢ so it converges faster. We represent everything as a
“known” part plus a perturbation part which we will find and add into the known
part. This is most easily expressed in the Fourier domain.

0 ~ (S+AS)C+AC) — D (37)

Linearize by dropping ASAC.

Q

0 SAC + CAS + (CS— D) (38)

Let us change to the time domain with a matrix notation. Put the unknowns AC and
AS in vectors ¢ and s. Put the knowns C' and S in convolution matrices C and S.
Express C'S — D as a column vector d. Its time domain coefficients are dy = cyso — dy
and dy = cgs1 + ¢159 — dy, etc. The data fitting regression is now

0 ~ S¢+Cs+d (39)

This regression is expressed more explicitly below.
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_ - Co - -
So . . . . . . Co . . 61 do
S1  So . . . . . C1 Cp . 62 d1
S22 S1 So . . . . Cy C1 (g : dg
3
S22 S1 So . . . C3 Cy (1 64 dg
0 =~ . . So9 S1 So . . C4 C3 Co : + d4 (40)
5
S92 S1 So . Cy C4 C3 66 d5
S92 S1 Sog Cg Cy Cyg = dﬁ
So d
S92 S1 . Cg Cx 3 7
1
So . . Cg ~ dg
B -1 5 | L _

The model styling regression is simply 0 ~ C' + AC', which in familiar matrix form

is
0 ~ Ic+c (41)
It is this regression, along with a composite norm and its associated threshold that

makes ¢(t) come out sparse. Now we have the danger that ¢ — 0 while s — 0o so we

need one more regression
0 ~ Is+s (42)

We can use ordinary least squares on the data fitting regression and the shot
waveform regression. Thus

o= [ e
0 ~ r = Fm +d (44)
The model styling regression is where we seek spiky behavior.

0 ~ r.=1Ic+¢C (45)

The big picture is that we minimize the sum
Irélién Ny(r) 4+ eNp(re) (46)

Inside the big picture we have updating steps
Am = F'r (47)
ga=Ar = FAm (48)
We also have a gradient for changing ¢, namely g. = —¢C. (I need to be sure gq and

g. are commensurate. Maybe need an € here.) One update step is to choose a line
search for «
min  Ny(r +aga) + eNm(C+ age) (49)
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That was steepest descent. The extension to conjugate direction is straightforward.

As with all nonlinear problems there is the danger of bizarre behavior and multiple
minima. To avoid frustration, while learning you should spend about half of your
effort directed toward finding a good starting solution. This normally amounts to
defining and solving one or two linear problems. In this application we might get
our starting solution for s(¢) and ¢(t) from conventional deconvolution analysis, or we
might get it from the block cyclic solver.
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