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ABSTRACT

Poroelastic analysis usually progresses from assumed knowledge of dry or drained
porous media to the predicted behavior of fluid-saturated and undrained porous
media. Unfortunately, the experimental situation is often incompatible with these
assumptions, especially when field data (from hydrological or oil/gas reservoirs)
are involved. The present work considers several different experimental scenarios
typified by one in which a set of undrained poroelastic (stiffness) constants has
been measured using either ultrasound or seismic wave analysis, while some or
all of the dry or drained constants are normally unknown. Drained constants for
such a poroelastic system can be deduced for isotropic systems from available
data if a complete set of undrained compliance data for the principal stresses
is available, together with a few other commonly measured quantities such as
porosity, fluid bulk modulus, and grain bulk modulus. Similar results are also
developed here for anisotropic systems having up to orthotropic symmetry if the
system is granular (i.e., composed of solid grains assembled into a solid matrix,
either by a cementation process or by applied stress) and the grains are known
to be elastically homogeneous. Finally, the analysis is also fully developed for
anisotropic systems with nonhomogeneous (more than one mineral type), but
still isotropic, grains — as well as for uniform collections of anisotropic grains as
long as their axes of symmetry are either perfectly aligned or perfectly random.

INTRODUCTION

Poroelastic analysis (Gassmann, 1951; Biot and Willis, 1957; Brown and Korringa,
1975; Rice and Cleary, 1976; Thigpen and Berryman, 1985; Cheng, 1997; Wang, 2000)
usually progresses from assumed knowledge of dry or drained porous media to the
predicted behavior of fluid-saturated and undrained porous media. When field data
(say from oil, gas, or hydrological reservoirs) are involved, the experimental situation
is generally and unfortunately incompatible with these assumptions.

For this reason, I want to consider several different experimental scenarios typ-
ified by one in which a set of undrained constants has been measured using either
ultrasound (in the laboratory) or seismic wave analysis (for field data), while some or
all of the dry or drained constants are usually unmeasured and therefore unknown.
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Berryman 2 Complete poroelastic data sets

Drained constants for such a poroelastic system can be deduced from available data
if a complete set of undrained compliance data (as could be calculated by inverting
the stiffness data, which are almost directly obtained, within a factor of the density,
from wave speed measurements) is available, together with a few other commonly
measured quantities such as porosity, fluid bulk modulus, and grain bulk modulus for
isotropic systems. Similar results are developed here for anisotropic systems having
up to orthotropic symmetry if the system is granular (i.e., composed of solid grains
assembled into solid either by a cementation process or by applied stress) and the
grains are known to be elastically homogeneous.

In the later sections, the analysis is also fully developed for anisotropic sys-
tems with inhomogeneous (meaning more than one mineral type is present), but
still isotropic, grains. Also studied is the case for uniform collections of the same
types of anisotropic grains, as long as the grain symmetry axes are either perfectly
aligned or perfectly random. I show how many poroelastic data are needed in order
to consider the data sets complete, and which types of data are in some sense re-
dundant. Some combinations can be used to replace other data types that remain
missing when lab experimental and/or field limitations prevent direct measurements
of all the poroelastic coefficients.

ISOTROPIC POROELASTICITY

Homogeneous grains

The famous equation for undrained bulk modulus named for Gassmann (1951) can
be written in the form

Ku = Kd + α2/[(α− φ)/Kg + φ/Kf ] (1)

for isotropic systems, where α ≡ 1−Kd/Kg is the Biot-Willis coefficient or effective
stress (Biot and Willis, 1957) coefficient, Kg is the solid modulus of the grains (as-
sumed homogeneous), Kd is the drained modulus of the porous medium, Kf is the
pore fluid modulus, and φ is the porosity. The formula becomes more complicated
if the solids constituting the porous medium are heterogeneous. But we will delay
discussion of this point to the next subsection and for now assume that the solids
are truly homogeneous. For notational convenience, I next introduce a modulus for
a fluid suspension having the same solid and fluid components as well as the same
porosity, but having drained modulus Kd ≡ 0. Then I find that the effective modulus
is given by

Ksusp =

[
1− φ

Kg
+

φ

Kf

]−1

. (2)

In fact this result follows directly from Gassmann’s formula (1) by setting Kd = 0
everywhere, since then Ku = Ksusp. But of course this result is also well-known in
mechanics and acoustics (Wood, 1955) for these types of fluid-solid suspensions.
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Deducing drained moduli from undrained: Isotropic system
with homogeneous grains

Rewriting Gassmann’s formula in these terms, I first find that

Ku = Kd +
(1−Kd/Kg)2

1/Ksusp −Kd/(Kg)2
. (3)

Note that all explicit porosity (φ) dependence is now imbedded in the modulus Ksusp.
Now if I simply multiply through by the denominator on the right hand side, then I
find

Ku

(
1

Ksusp

− Kd

(Kg)2

)
= 1− 2

Kd

Kg
+

Kd

Ksusp

. (4)

Also notice that two terms of the form (Kd/Kg)2 have cancelled from this expression.
Once these convenient cancellations have occurred, Kd appears only linearly in the
resulting expression. The equation can therefore be solved immediately for drained
modulus Kd in terms of the undrained modulus Ku and the other factors that are also
assumed to be known (and in fact these other factors are usually easier to measure
than either Ku or Kd). Finally, I obtain:

Kd =

(
Ku

Ksusp

− 1

)[
1/Ksusp − 2/Kg + Ku/(Kg)2

]−1
. (5)

This result shows that the drained modulus can be deduced from measurements of
the undrained modulus, together with knowledge of φ, Kf , and Kg. Note that this
result was first derived by Zhu and McMechan (1990), but apparently published only
in an SEG conference proceedings.

Heterogeneous grains

When the grains in a granular packing are no longer composed of elastically homo-
geneous and isotropic materials, or if they are homogeneous but anisotropic while
nevertheless being distributed in a randomly oriented way in space, then — as has
been pointed out previously in Brown and Korringa (1975), Rice and Cleary (1976),
and the work of others [e.g., Wang (2000)] — I need to introduce a more general
notation to deal with these circumstances.

Recall that the Reuss (1929) average of the grain bulk moduli for a heterogeneous
medium with a distribution of grain types is given by:

1

Kg
R

≡
∑

m=1,...,n

vm

Km

, (6)

where vm is the volume fraction (out of all the solid material present, so that
∑

m vm =
1) of the m-th isotropic grain having bulk modulus Km. This average should be
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distinguished from that of the Voigt (1928) average

Kg
V ≡

∑
m=1,...,n

vmKm, (7)

which is known (Hill, 1952) to satisfy Kg
V ≥ Kg

R. Furthermore, these two measures are
also known (Reuss, 1929; Voigt, 1928; Hill, 1952) to satisfy Kg

V ≥ K∗
g ≥ Kg

R, where
K∗

g is the effective bulk modulus of an isotropic elastic composite consisting only of
the minerals m = 1, . . . , n in the same volume proportions given by the vm values.
However, this fact actually is not pertinent here, as the only averages of this type that
play a direct role in the poroelastic equations are always those of the Reuss-type, as
will be shown in the further developments.

To clarify later usage of the same notation Kg
R, I emphasize here that when (or

if) the grains in our assemblage are all anisotropic — but nevertheless of the same
type and oriented randomly in space — then the pertinent average is again the Reuss
average. But in this case the average is determined by the equation

1

Kg
R

=
∑

i,j=1,2,3

sg
ij, (8)

where the sg
ij for i, j = 1, 2, 3 are the principal components of the compliance matrix

for the anisotropic grain material itself. It is easy to see that this must be the case by
referring back to the equations above, specifically those requiring the suspension result
Ksusp. The formula as quoted in (2) was only written for the case of homogeneous
grains. But if we generalize this formula slightly as:

Ksusp ≡
[
1− φ

Kg
R

+
φ

Kf

]−1

, (9)

then we see that it holds equally true: (a) for homogeneous isotropic grains (when
Kg

R ≡ Kg), (b) for heterogeneous volumes of isotropic grains [when Kg
R is given by

(6)], or (c) for anisotropic grains when they are randomly oriented in the fluid [and
then Kg

R is given by (8)]. In all these cases, I do assume that this mixture of grains
and fluid is close to being a true suspension, by which we mean that individual grains
are acted on similarly by changes in fluid pressure.

If the clumpings are loose enough, then the fluid can act equally on all the individ-
ual grains, and the result in (9) holds true regardless of the heterogeneity. However, if
this is not the case, then there must be elastically distinct clumpings of grains forming
solid composites locally – so the individual grains are no longer uniformly surrounded
by the pore fluid. Then, each grain’s fluid environment is different, due to welded
contacts with other contiguous grains. I am assuming for the present purposes that
such effects are negligible in the types of comparatively homogeneous porous media
(on the meso- and macroscales, but not necessarily on the microscale) being studied
here. In fact, some types of more heterogeneous systems can be treated, and some of
these have already been studied (Berryman and Milton, 1991; Berryman and Pride,
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2002) when the porous system is composed of just two distinct types of grain clump-
ings; however, I will not be discussing such double-porosity and/or multi-porosity
effects in the present paper.

Heterogeneous pores

Another important type of heterogeneity that can occur in practice involves hetero-
geneity of the pore space. One obvious issue is whether the pores are all connected
to each other, or whether there may be two (or more) distinct, but intertwining, pore
systems. One well-known example of this situation is the double-porosity concept
(Berryman and Pride, 2002; Gurevich et al., 2009; Barenblatt and Zheltov, 1960), in
which one type of pore has high volume but low permeability, while the other has low
volume (imagine a system of very flat cracks or fractures) and high permeability. I
can also consider that some pores might be interior to some grains and not connected
to any other pores (and might therefore also be empty of pore fluid), while other
subsets of the grains have no inherent porosity of this type, and so are truly solid
grains.

I will not try to deal with all these cases simultaneously, as even enumerating all
the possibilities quickly becomes burdensome. I will limit myself instead to one of the
more typical scenarios, considered for example by Brown and Korringa (1975) and
by Rice and Cleary (1976) — and also see the recent related work of Gurevich et al.
(2009).

Heterogeneity of the pore space is most important when considering flow of fluid
into and out of the boundaries of a porous sample. Then, the concept of increment
of fluid content ζ comes into play, and special care is required. A straightforward
definition of this dimensionless parameter (just as the strains e11, e22, . . ., e13 are all
dimensionless) is given by:

ζ ≡ δ(φV )− δVf

V
' φ

(
δVφ

Vφ

− δVf

Vf

)
, (10)

where V is the overall volume of the initially fully fluid-saturated porous material
at the first instant of consideration, Vφ = φV is the pore volume, with φ being the
fluid-saturated porosity of the volume, and Vf is the volume occupied by the pore-
fluid, making Vf = φV at the start. The δ’s indicate small changes in the quantities
following. For “drained” systems, there must be a reservoir of the same fluid just
outside the volume V that can either supply more fluid or absorb any excreted fluid
as needed during the nonstationary phase of the poroelastic process; the amount of
pore fluid can therefore either increase or decrease from the initial amount of pore
fluid, and at the same time the pore volume can also be changing, but not necessarily
at exactly the same rate as the pore fluid itself. The one exception to these statements
is when the surface pores of the total volume V are sealed, in which case the system
is “undrained” and ζ ≡ 0, identically. In these circumstances, it is still possible that
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Vf and Vφ = φV are both changing, but because of the imposed undrained boundary
conditions, they are necessarily changing at the same rate. The result is that, for an
isotropic system, I have:

ζ = φ

[
δσc

Kp

+ δpf

(
1

Kp

− 1

Kφ
R

+
1

Kf

)]
, (11)

and where the various moduli in (11) are defined by the following relations [see Brown
and Korringa (1975)]:

−δVf

Vf

=
δpf

Kf

, (12)

−δV

V
=

δpd

Kd
R

+
δpf

Kg
R

, (13)

and

−δVφ

Vφ

=
δpd

Kp

+
δpf

Kφ
R

. (14)

The changes in fluid pressure and differential pressure are respectively δpf and δpd ≡
δpc−δpf , where δpc = −δσc is the uniform confining pressure, if the external confining
pressure is uniform. If not, then this quantity is replaced in the definition of δpc by
−δσm, which is the change in the mean confining pressure and where σm ≡ (σ11+σ22+
σ33)/3 is the definition of the mean principal stress. Clearly, if the confining principal
stress is uniform (σ11 = σ22 = σ33), then the mean stress equals this uniform confining
stress. If not, then there can be additional shearing effects that need to taken into
account, but these do not play any role in the changes of fluid content since this
quantity is effectively a measure only of the total number of fluid particles contained
in the pertinent pore volume.

It can also be shown using poroelastic reciprocity (and I will show this later as it
very clearly develops in the following anisotropic analysis) that

φ

Kp

=
αR

Kd
R

=
1

Kd
R

− 1

Kg
R

. (15)

So generalizing Gassmann’s formula for undrained modulus gives:

1

Ku
R

=
1− αRB

Kd
R

, (16)

where αR = 1−Kd
R/Kg

R and

B =

(
1

Kd
R

− 1

Kg
R

)[(
1

Kd
R

− 1

Kg
R

)
+ φ

(
1

Kf

− 1

Kφ
R

)]−1

(17)

is the second coefficient of Skempton (1954). Combining these terms, I find that the
most general form of the equation for the undrained bulk modulus in the isotropic
case is:

1

Ku
R

=
1

Kd
R

−
(

1

Kd
R

− 1

Kg
R

)2
[(

1

Kd
R

− 1

Kg
R

)
+ φ

(
1

Kf

− 1

Kφ
R

)]−1

, (18)
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or, alternatively,
1

Ku
R

=
1

Kd
R

− (αR/Kd
R)2

αR/Kd
R + φ

(
1

Kf
− 1

Kφ
R

) , (19)

which is the isotropic result of Brown and Korringa (1975), and should also be com-
pared directly to (1). So, if the pore modulus and grain modulus are equal with
Kφ

R = Kg
R, then (19) reduces exactly to (1). Although this result is the same as

that of Brown and Korringa (1975), I nevertheless write it differently to emphasize
different features.

Deducing drained constants from undrained: Heterogeneous
grains and pores

I was able to deduce Kd
R from our knowledge of Ku

R, Kg
R, Kf , and φ in subsection

2.2. But even though I am still assuming the system is isotropic, I have now intro-
duced some additional degrees of freedom by permitting the grains and pores to be
heterogeneous. It is clear that I cannot deduce Kd

R if I just have the same amount of
information as before. In particular, it does seem fairly straightforward to measure
Kg

R, as I have already described its meaning in the earlier discussion and even given
formulas for it — if I have information about the constituents and their volume frac-
tions, or alternatively about the principal components of elastic compliance and/or
stiffness matrices. But I have another variable now, which is the pore modulus Kφ

R,
and this bulk modulus is not so easy either to model or to measure directly (Lockner
and Stanchits, 2002). However, by adding one more piece of information — namely
the second Skempton coefficient B = pf/pc, which is a fact that should typically be
known in poroelastic systems — then it turns out that I can solve for both Kd

R and
Kφ

R. Again, I assume that Kg
R and Ku

R are known. But now I also assume that B is
also known experimentally. Working through the algebra, I find that

Kd
R =

1−B

1/Ku
R −B/Kg

R

(20)

[which is a rearrangement of Ku
R = Kd

R/(1− αRB)], and similarly that

1

Kφ
R

=
1

Kf

−
(

1−B

φB

)(
1

Kd
R

− 1

Kg
R

)
=

1

Kf

−
(

1

φB

)(
1

Ku
R

− 1

Kg
R

)
. (21)

In (21), I used the previous result (20) for Kd
R to simplify the final formula.

These forms are very useful for many applications in poroelasticity, but so far
they apply only to the fully isotropic case. I show next that a very similar set of
formulas applies to the anisotropic cases under consideration. I am able to attain
greater clarity at this point by switching to the more general anisotropic problem,
where it can seen more easily how poroelastic reciprocity comes directly into play.
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ANISOTROPIC POROELASTICITY

If the overall porous medium is anisotropic due either to some preferential alignment
of the constituent particles or to externally imposed stress (such as a gravity field and
weight of overburden, for example), I consider the orthorhombic anisotropic version
of the poroelastic equations:

e11

e22

e33

−ζ

 =


s11 s12 s13 −β1

s12 s22 s23 −β2

s13 s23 s33 −β3

−β1 −β2 −β3 γ




σ11

σ22

σ33

−pf

 . (22)

From here on throughout the paper, I will drop the δ’s from the stresses and strains,
as this extra notation is truly redundant when they are all being treated as small
(and therefore resulting in linear effects), as I do here.

The eii are strains in the i = 1, 2, 3 directions. The σii are the corresponding
stresses. The fluid pressure is pf . The increment of fluid content is ζ. The drained
compliances are sij = sd

ij. Undrained compliances (not yet shown) are symbolized by
su

ij. Coefficients βi = si1 + si2 + si3 − 1/3Kg
R, where Kg

R is again the Reuss average
modulus of the grains. The drained Reuss average bulk modulus is defined by

1

Kd
R

=
∑

ij=1,2,3

sd
ij. (23)

For the Reuss average undrained bulk modulus Ku
R, I have drained compliances re-

placed by undrained compliances. A similar definition of Kg
R, with drained com-

pliances replaced by grain compliances has already been introduced earlier in the
discussion. The alternative Voigt (1928) average [also see Hill (1952)] of the stiff-
nesses will play no role in the present work. And, finally, γ =

∑
i=1−3 βi/BKd

R, where
B is the second Skempton (1954) coefficient, which will be defined carefully again
later in our discussion.

The shear terms due to twisting motions (i.e., strains e23, e31, e12 and stresses σ23,
σ31, σ12) are excluded from this discussion since they typically do not couple to the
modes of interest for anisotropic systems having orthotropic symmetry, or any more
symmetric system such as transversely isotropic or isotropic. I have also assumed that
the true axes of symmetry are known, and make use of them in my formulation of the
problem. Note that the sij’s are the elements of the compliance matrix S and are all
independent of the fluid, and therefore would be the same if the medium were treated
as elastic (i.e., by ignoring the fluid pressure, or assuming that the fluid saturant is
air). In keeping with the earlier discussions, I typically call these compliances the
drained compliances and the corresponding matrix the drained compliance matrix
Sd, since the fluids do not contribute to the stored mechanical energy if they are free
to drain into a surrounding reservoir containing the same type of fluid. In contrast,
the undrained compliance matrix Su presupposes that the fluid is trapped (unable
to drain from the system into an adjacent reservoir) and therefore contributes in a
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significant and measureable way to the compliance and stiffness (Cu = [Su]−1), and
also therefore to the stored mechanical energy of the undrained system.

Although the significance of the formula is somewhat different now, I find again
that

β1 + β2 + β3 =
1

Kd
R

− 1

Kg
R

=
αR

Kd
R

, (24)

if I also define (as I did for the isotropic case) a Reuss effective stress coefficient:

αR ≡ 1−Kd
R/Kg

R. (25)

Furthermore, I have

γ =
β1 + β2 + β3

B
=

αR

Kd
R

+ φ

(
1

Kf

− 1

Kφ
R

)
, (26)

since I have the rigorous result in this notation (Berryman, 1997) that Skempton’s B
coefficient is given by

B ≡ 1−Kd
R/Ku

R

1−Kd
R/Kg

R

=
αR/Kd

R

αR/Kd
R + φ(1/Kf − 1/Kφ

R)
. (27)

Note that both (26) and (27) contain dependence on the pore bulk modulus Kφ
R that

comes into play when the pores are heterogeneous, regardless of whether the system
is isotropic or anisotropic. I want to emphasize that all these formulas are rigorous
statements based on the earlier anisotropic analysis. The appearance of Kd

R and αR

is not an approximation, but merely a useful choice of notation made here because
it will make clear the similarity between the rigorous anisotropic formulas and the
isotropic ones.

The βi coefficients

I will now provide several results for the βi coefficients, and then follow the results
with a general proof of their correctness.

In many important and useful cases, the coefficients βi are determined by

βi = sd
i1 + sd

i2 + sd
i3 −

1

3Kg
R

. (28)

Again, Kg
R is the Reuss average of the grain modulus, since the local grain modulus is

not necessarily assumed uniform here as mentioned previously. Equation (28) holds
true for homogeneous grains, such that Kg

R = Kg. It also holds true for the case
when Kg

R is determined instead by (6). However, when the grains themselves are
anisotropic, I need to allow again for this possibility, and this can be accomplished
by defining three directional grain bulk moduli determined by:

1

3K
g

i

≡ sg
i1 + sg

i2 + sg
i3 = sg

1i + sg
2i + sg

3i, (29)
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for i = 1, 2, 3. The second equality follows because the compliance matrix is always
symmetric. I call these quantities in (29) the partial grain-compliance sums, and the
K

g

i are the directional grain bulk moduli. Then, the formula for (28) is replaced by

βi = sd
i1 + sd

i2 + sd
i3 −

1

3K
g

i

. (30)

Note that the factors of three have been correctly accounted for because∑
i=1,2,3

1

3K
g

i

=
1

Kg
R

, (31)

in agreement with (8). If the three contributions represented by (29) for i = 1, 2, 3
happen to be equal, then each equals one-third of the sum (31).

The preceding results are for perfectly aligned grains. If the grains are instead
perfectly randomly oriented, then it is clear that the formulas in (28) hold as before,
but now Kg

R is determined instead by (8).

All of these statements about the βi are easily proven by considering the case
when σ11 = σ22 = σ33 = −pc = −pf . In this situation, from (22), I have:

−eii =
(
sd

i1 + sd
i2 + sd

i3

)
pc + βi(−pf ) = (sg

i1 + sg
i2 + sg

i3) pf ≡
pf

3K
g

i

, (32)

in the most general of the three cases discussed, and holding true for each value of
i = 1, 2, 3. This is a statement about the strain eii that would be observed in this
situation, as it must be the same if these anisotropic (or inhomogeneous) grains were
immersed in the fluid, while measurements were taken of the strains observed in each
of the three directions i = 1, 2, 3, during variations of the fluid pressure pf . Consider
this proof to be a thought experiment for determining the coefficients, in the same
spirit as those proposed originally by Biot and Willis [see Biot and Willis (1957); Stoll
(1974)] for the isotropic and homogeneous case.

Coefficient γ

The relationship of coefficient γ to the other coefficients is easily established because
I have already discussed the main issue, which involves determining the role of the
various other constants contained in the Skempton (1954) coefficient B. I have quoted
this result in (17).

Again, from (22), I find that

−ζ = 0 = − (β1 + β2 + β3) σc − γpf , (33)

for undrained boundary conditions. Thus, I again have

pf

pc

≡ B =
β1 + β2 + β3

γ
, (34)
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where pc = −σc is the confining pressure. Thus, the scalar coefficient γ is determined
immediately and given by

γ =
β1 + β2 + β3

B
=

αR/Kd
R

B
= αR/Kd

R + φ

(
1

Kf

− 1

Kφ
R

)
. (35)

Alternatively, I could say that

B =
αR

γKd
R

. (36)

I have now determined the physical/mechanical significance of all the coefficients
in the poroelastic matrix (22). These results are as general as possible without con-
sidering poroelastic symmetries that have less than orthotropic symmetry, while also
taking advantage of my assumption that I do typically know (or can often determine)
the three directions of the principal axes of symmetry.

Inverting poroelastic compliance

The matrix in (22) is in compliance form and has extremely simple poroelastic be-
havior in the sense that all the fluid mechanical effects appear only in the single
coefficient γ. I can simplify the notation a little more by lumping some coefficients
together, combining the 3×3 submatrix in the upper left corner of the matrix in (22)
as S, and defining the column vector b by

bT ≡ (β1, β2, β3). (37)

The resulting 4× 4 matrix and its inverse are now related by:(
S −b
−bT γ

)
=

(
A q
qT z

)−1

, (38)

where the elements of the inverse matrix can be shown to be written in terms of
drained stiffness matrix Cd = C = S−1 by introducing three components: (a) scalar

z =
[
γ − bTCb

]−1
, (b) column vector q = zCb, and (c) undrained 3 × 3 stiffness

matrix (i.e., the pertinent one connecting the principal strains to principal stresses)
A = C + zCbbTC = Cd + z−1qqT ≡ Cu, since Cd is drained stiffness and A = Cu

is clearly undrained stiffness by construction. This result is the same as that of
Gassmann (1951) for anisotropic porous media, although his results were presented
in a form somewhat harder to scan than the form shown here.

Also, note the important fact that the observed decoupling of the fluid effects
occurs only in the compliance form (22) of the equations, and never in the stiffness
(inverse) form for the poroelasticity equations.

From these results, it is not hard to show that

Sd = Su + γ−1bbT . (39)
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This result emphasizes the remarkably simple fact that the drained compliance matrix
can be found directly from knowledge of the inverse of undrained compliance, and the
still unknown, but sometimes relatively easy to estimate, values of γ, together with
the three distinct orthotropic βi coefficients, for i = 1, 2, 3.

Table 1. Reuss (R), Voigt (V), and self-consistent effective (∗) bulk moduli of
various common anisotropic materials (Berryman, 2005): Water ice, cadmium, zinc,
graphite, α-quartz, corundum, barium titanate, rutile, aluminum, copper, magnesia,

spinel. Full references for the data used in both Tables 1 and 2 are provided in
Berryman (2005). Units of bulk modulus K are GPa.

Material Symmetry KR K∗ KV KV /KR

H2O Hexagonal 8.89 8.89 8.89 1.00

Cd Hexagonal 48.8 54.7 58.1 1.19

Zn Hexagonal 61.6 70.9 75.1 1.22

Graphite Hexagonal 35.8 88.0 286.3 8.00

Al2O3 Trigonal 253.5 253.7 253.9 1.002

α-SiO2 Trigonal 37.6 37.8 38.1 1.01

TiO2 Tetragonal 209 213 218 1.04

BaTiO2 Tetragonal 163.1 179.3 186.8 1.15

Al Cubic 76.3 76.3 76.3 1.00

MgO Cubic 162.4 162.4 162.4 1.00

MgAl2O4 Cubic 196.7 196.7 196.7 1.00

Cu Cubic 138.0 138.0 138.0 1.00

Deducing coefficients from measurements: Anisotropic exam-
ple with homogeneous grains

Now, further progress is made by considering the Reuss average again for both of the
orthotropic drained and undrained compliances:

1

Kd
R

≡
∑

i,j=1,2,3

sd
ij, (40)

and
1

Ku
R

≡
∑

i,j=1,2,3

su
ij. (41)

These effective moduli are the Reuss averages of the nine compliances in the upper
left 3 × 3 of the full (including the uncoupled shear components) 6 × 6 compliance
matrix for the two cases, respectively, when the pore fluid is allowed to drain from
the porous system, and when the pore fluid is trapped by a jacketing material and
therefore undrained.
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Table 2. Reuss (R), Voigt (V), and self-consistent effective (∗) shear moduli of
various common materials [see Berryman (2005)]: Water ice, cadmium, zinc,

graphite, α-quartz, corundum, barium titanate, rutile, aluminum, copper, magnesia,
and spinel. Units of shear modulus G are GPa. The anisotropy parameter A
≡ 5GV

GR
+ KV

KR
− 6 [from Ranganathan and Ostoja-Starzewski (2008a,b)].

Material Symmetry GR G∗ GV GV /GR A
H2O Hexagonal 3.48 3.52 3.55 1.02 0.10

Cd Hexagonal 22.1 24.3 26.4 1.19 1.14

Zn Hexagonal 34.1 40.6 44.8 1.31 1.77

Graphite Hexagonal 9.2 52.6 219.4 23.8 121.0

Al2O3 Trigonal 160.7 163.1 165.5 1.03 0.15

α-SiO2 Trigonal 41.0 44.0 47.6 1.16 0.81

TiO2 Tetragonal 99.5 114.5 124.9 1.26 1.34

BaTiO2 Tetragonal 47.4 53.6 59.8 1.26 1.46

Al Cubic 26.0 26.2 26.3 1.01 0.05

MgO Cubic 123.9 126.3 128.6 1.04 0.20

MgAl2O4 Cubic 98.6 109.0 118.0 1.20 1.00

Cu Cubic 40.0 46.3 51.3 1.28 1.41

Although the significance of the formula in the anisotropic case is somewhat dif-
ferent now, I find again that

β1 + β2 + β3 =
1

Kd
R

− 1

Kg
R

=
αR

Kd
R

, (42)

if I also define a Reuss effective stress coefficient:

αR ≡ 1−Kd
R/Kg

R, (43)

by analogy to the isotropic case. Furthermore, I have

γ =
β1 + β2 + β3

B
=

αR

Kd
R

+ φ

(
1

Kf

− 1

Kg
R

)
, (44)

since I have the rigorous result in this notation (Berryman, 1997) that Skempton’s B
coefficient (Skempton, 1954) is given by

B ≡ 1−Kd
R/Ku

R

1−Kd
R/Kg

R

=
αR/Kd

R

αR/Kd
R + φ(1/Kf − 1/Kg

R)
. (45)

I want to emphasize that all these formulas are rigorous statements based on the
earlier anisotropic analysis. The appearance of Kd

R and αR is not an approximation.
In fact it is important now in the anisotropic case (but not in the isotropic cases
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considered earlier as long as the grains were also homogeneous) to make this dis-
tinction between the Reuss and Voigt averages. Making this choice of notation will
help demonstrate useful analogies between the rigorous anisotropic formulas and the
isotropic ones. I have prepared the way for these analogies by using the Reuss aver-
ages in earlier notation, even though they were mostly redundant in those isotropic
examples.

First note that, from (42) and (44), it follows that γ−1 =
BKd

R

αR
— also see (36).

So I can now rearrange (39) to give the formal relationship

sd
ij = su

ij +
BKd

R

αR

βiβj, for i, j = 1, 2, 3. (46)

At this point in the analysis, I know everything needed except for the three coefficients
βi, for i = 1, 2, 3. But, by taking appropriate sums of (46), I find that

βi = sd
i1 + sd

i2 + sd
i3 −

1

3Kg
R

= su
i1 + su

i2 + su
i3 −

1

3Kg
R

+ Bβi. (47)

Rearranging, I find that

βi(1−B) = su
i1 + su

i2 + su
i3 −

1

3Kg
R

. (48)

Formula (45) for the Skempton (1954) coefficient determines B exactly in terms of
presumed known quantities. In the present case, the Skempton coefficient B, how-
ever, was not assumed to be known, since for homogeneous grains I can compute Kd

R

relatively easily, and then B follows since I also know Kg
R. [For the case of heteroge-

neous or anisotropic grains, the necessary introduction of the additional variable Kφ
R

requires still more measured data, and it turns out that the next easiest quantity to
measure is B itself — as was already shown in the isotropic case.] So, all three βi’s
(which are themselves drained constants) and γ are now precisely determined. All
the remaining drained compliances sd

ij can then be found directly from (46). Note
that all the steps in this inversion procedure are linear; there was no need to solve any
quadratic equation in this formulation of the undrained-to-drained inversion problem.
There is also no iteration, and no fitting steps are required in this procedure.

Deducing anisotropic drained constants from undrained: Ho-
mogeneous grains and pores

I am now in position to develop the analogy between the isotropic and anisotropic
Gassmann (1951) equations for the case of homogeneous grains. In particular, the
equation for the suspension modulus in (2) does not change at all. In contrast, the
equation for the effective undrained bulk modulus Ku, as shown in both (1) and (3),
changes only in that the relationship is now between the Reuss averages Ku

R and Kd
R
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of these quantities. This result is completely analogous to (3), and so will not be
shown here.

Since the remainder of the argument is virtually identical to the isotropic case, I
therefore obtain:

Kd
R =

(
Ku

R

Ksusp

− 1

)[
1/Ksusp − 2/Kg

R + Ku
R/(Kg

R)2
]−1

. (49)

This formula shows how to invert for drained Reuss bulk modulus Kd
R from knowledge

of Ku
R, φ, Kf and Kg

R in an anisotropic (up to orthotropic) poroelastic system.

Table 3. Data for the principal stiffness coefficients cij of orthorhombic sulfur (S),
Rochelle salt, Benzophenone, and α-Uranium (α-U). All data from Musgrave

(2003), but re-expressed in units of GPa.

Stiffness Sulfur (S) Rochelle Salt Benzophenone α-Uranium

c11 24.0 25.5 107.0 215.0

c22 20.5 38.1 100.0 199.0

c33 48.3 37.1 71.0 267.0

c12 13.3 14.1 55.0 46.0

c13 17.1 11.6 16.9 22.0

c23 15.9 14.6 32.1 107.0

Table 4. Data for various measures of bulk modulus K (Voigt, Reuss, and three
partial sum moduli) for orthorhombic sulfur (S), Rochelle salt, Benzophenone, and
α-Uranium (α-U). All data from Musgrave (2003) [see Table 3 here], while the

expressions in the main text were used for the computations. All moduli in units of
GPa.

Bulk Modulus Sulfur (S) Rochelle Salt Benzophenone α-Uranium

KV 20.6 20.1 54.0 114.6

KR 17.6 19.3 49.2 111.3

K1 15.2 12.5 55.8 87.9

K2 10.1 30.6 107.5 113.6

K3 15.8 23.3 29.6 147.7

Clearly this formula does not yet provide the individual compliance matrix ele-
ments sd

ij directly. Nevertheless, Equation (49) was the hardest step in the overall
procedure. The rest of the steps follow easily once I have this rigorous result available
to use.
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To finish the analysis, I make use of the newly computed value of Kd
R, and sub-

stitute this number into the formula for B, which in this case is:

B =
1−Kd

R/Ku
R

1−Kd
R/Kg

R

. (50)

Once I know Skempton coefficient B, this value can be substituted into (48) in order to
determine the βi coefficients for i = 1, 2, 3. The remaining coefficient is γ = αR/BKd

R.
So I have shown that the critical step in this process was determining the value of
the drained Reuss bulk modulus Kd

R.

Deducing anisotropic drained constants from undrained: Het-
erogeneous grains and pores

One difficulty for heterogeneous grains comes from the additional constant Kφ
R that

I do not know how to determine independently from the other poroelastic measure-
ments. But this fundamental problem is actually no different for the anisotropic case
than it was for the isotropic one, and the solution is also the same. In both cases, I
need more information, and in both cases the necessary information will most likely
come from our knowledge of the Skempton (1954) coefficient B. If I assume that
B can be directly measured (which is plausible, since B = pf/pc in the undrained
case when a uniform confining pressure is applied to the system), then the problem is
completely solved, because B is the key to solving for the coefficients βi in (48). The
only new difficulty is that the terms of the form 1/3Kg

R must also be replaced by the
partial grain compliance sums 1

3K
g
i
, as shown in (30). So I now have

βi = sd
i1 + sd

i2 + sd
i3 −

1

3K
g

i

= su
i1 + su

i2 + su
i3 −

1

3K
g

i

+ Bβi. (51)

Rearranging, I find that, for heterogeneous grains, the result is:

βi(1−B) = su
i1 + su

i2 + su
i3 −

1

3K
g

i

. (52)

So, I am almost done now, but I still need either to determine the values of the
anisotropic grain correction terms 1

3K
g
i
, or to find some way of avoiding the necessity

of doing so.

In principle, this can be done experimentally by actually performing a test on
the porous sample that applies the same pressure inside and outside. Then, mea-
surements of the change in strain in the three orthogonal directions i = 1, 2, 3 would
provide direct measures of the quantities K

g

i needed. So this approach is one that is
experimentally feasible.

An alternative that I have not considered so far would be to perform shear tests by
applying nonzero deviatoric stress changes (Skempton, 1954; Lockner and Stanchits,
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2002). The undrained fluid pressure is given by pf = Bpc = B(−σm), where the mean
stress is σm = (σ11 + σ22 + σ33)/3. But, if the σii’s are not uniform, then there are
also deviatoric stresses present, due to the nonuniformity of the principal stresses.

Triaxial testing geometry

One common example of this type of measurement uses triaxial testing [see Lockner
and Stanchits (2002)], where a two-sided confining stress is defined as σ22 = σ33, and
then the deviatoric stress is determined by

σdev ≡ (σ11 − σ33) /2. (53)

In this situation, the general equation relating undrained pressure to the confining
stresses is given by:

−pf = Bσm + 2

(
A− 1

3

)
Bσdev, (54)

where the only new symbol is the first coefficient A of Skempton (1954).

Table 5. Data for the principal stiffness coefficients cij for i, j = 1, 2, 3, as well as
c44, of hexagonal minerals: cadmium (Cd), H2O ice, β-quartz (SiO2), titanium (Ti),

and zirconium (Zr). All data from Simmons and Wang (1971) [entry numbers:
52473, 52563, 52643, 52726, and 52798, respectively], but re-expressed in units of

GPa.

Stiffness Cadmium (Cd) H2O Ice β-Quartz Titanium (Ti) Zirconium (Zr)

c11 115.30 13.85 116.6 163.9 137.0

c33 51.20 14.99 110.4 181.6 160.7

c12 39.24 7.07 16.7 91.3 75.6

c13 40.22 5.81 32.8 68.9 65.4

c44 20.40 3.19 36.1 47.2 30.1

Table 6. Data for various measures of bulk modulus K (Voigt, Reuss, and three
partial-sum moduli) for hexagonal minerals: cadmium (Cd), H2O ice, β-quartz

(SiO2), titanium (Ti), and zirconium (Zr). All data from Simmons and Wang (1971)
[see Table 5], while the expressions in the main text were used for all the

computations. All moduli in units of GPa.

Modulus Cadmium (Cd) H2O Ice β-Quartz Titanium (Ti) Zirconium (Zr)

KV 57.89 8.90 56.47 107.51 94.17

KR 48.61 8.90 56.37 107.50 94.02

K1 = K2 143.07 8.94 53.97 109.00 89.58

K3 20.95 8.82 61.86 104.63 104.36
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It is not difficult to show that, in terms of our previous definitions for the triaxial
testing geometry, the coefficient A is given precisely by the ratio

A ≡ β1

β1 + β2 + β3

. (55)

For an isotropic system, A = 1/3, so this contribution always vanishes in (54). This
fact explains why I did not encounter this coefficient before in the analysis. Note
that there is no assumption here that the poroelastic system itself is necessarily
transversely isotropic. Only the prescribed equality of the two applied transverse
stresses, σ22 and σ33, is assumed. Then, the formula (54) follows directly from the
equations already presented.

Non-triaxial testing geometries

Clearly, it would also be natural to introduce other measures of the βi coefficients as
well, especially if the measurements are not being constrained to the triaxial testing
configuration. So I might imagine that three such coefficients could be measured
according to:

−pf = B

[
σm +

∑
i

Ai(σii − σm)

]
, (56)

where

Ai =
βi

β1 + β2 + β3

, (57)

for i = 1, 2, 3. In general, no more than two of these Ai coefficients can be independent
since

∑
i=1,2,3 Ai ≡ 1. But, for general testing configurations, there could be two useful

and distinct measurements to be gathered from deviatoric response testing, although
only one was available in the triaxial testing configuration.

In order to be able to deduce the values of the βi’s from the Ai’s, I need to know
the value of the sum β1 + β2 + β3 = γB. I also needed to know the value of B to
determine any of the Ai’s, but the value of γ is harder to determine independently.
The values of Ku

R and the total Kg
R are both usually easier to determine, so it is likely

enough information is available to compute the βi sum this way:

β1 + β2 + β3 =

1
Ku

R
− 1

Kg
R

1−B
= γB. (58)

If the βi sum has been computed using (58), then clearly I also have

βi = Ai

(
1

Ku
R
− 1

Kg
R

1−B

)
. (59)

Once I have computed the βi’s, I also find (if I want to, although it is not usually
critical information) the values of the partial sums of the grain Reuss modulus:

1

3K
g

i

≡ su
i1 + su

i2 + su
i3 − βi(1−B). (60)
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This additional information is therefore available if needed for some other reason such
as determining how well-stirred the particles composing a given granular medium
might be.

Deducing anisotropic drained constants from undrained for
very heterogeneous porous media

At this point I have determined a data processing scheme that would provide all the
drained constants for a poroelasticity system from measurements of the undrained
constants. In the example of the preceding subsection, I needed to broaden the
meaning of the undrained set of constants to include the Skempton Ai coefficients,
which were not needed in earlier parts of the paper. But they could nevertheless be
computed from the information found earlier, since I did show how to compute all
the βi’s directly, and these coefficients provide just the information that I would need
for determining these values from (57).

In realistic data collection situations, especially those involving field data, my pre-
vious assumptions concerning the nature and orientations of the constituent grains
of the granular porous medium may sometimes – perhaps most times – be too ide-
alized. Nevertheless, it is the case that the equations of poroelasticity never become
any more complex than those shown here. What does change is the interpretation of
the directional grain moduli. In the worst case scenario, equation (60) needs to be
replaced by an equation of the same form, namely:

1

3K∗
i

= su
i1 + su

i2 + su
i3 − βi(1−B). (61)

Measurements are exactly as before, but the interpretation of the resulting constant
estimator K∗

i becomes that of an effective medium bulk modulus, i.e., one that is (or
at least could be) dependent on the directions i = 1, 2, 3 of measurement. Effective
medium theories for random polycrystals generally assume [see Berryman (2005)] that
the anisotropic grains are perfectly randomly oriented. Of course, this may not be
true in practice. But to do a better job of predicting the outcome of experiments in
situations where grain orientations are not perfectly random, I need information about
these deviations from perfect randomness. In the present context, the information
would come in the form of these measured constants K∗

i . Some effort could then be
expended in showing how such moduli might arise if the constituents’ nature and
volume fractions are known. But in the absence of such knowledge, these constants
are sufficient to analyze other results of most experiments of interest in poroelasicity.

To provide different ideas about how important the anisotropy, and the random
orientation of the constituents might be in a few cases, Tables 1 and 2 show some
quantitative examples based on results of Berryman (2005) and Ranganathan and
Ostoja-Starzewski (2008a,b). Tables 3 and 4, respectively, provide input data for
the types of orthorhombic solids (Musgrave, 2003), and the results for the Voigt,
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Reuss, and directional measures of bulk moduli for these particular materials. Note
the significant finding that the directional moduli do not have to stay within the
values set by the Voigt and Reuss estimators.

Tables 5–9 show similar results for selected data taken from the compendium
assembled by Simmons and Wang (1971).

Table 7. Data for the principal stiffness coefficients cij for i, j = 1, 2, 3 and c44 of
cubic symmetry minerals: aluminum (Al), copper (Cu), magnesia (MgO), and spinel

(MgAl2O4). All data from Simmons and Wang (1971) [entry numbers: 10089,
10385, 10902, and 11877, respectively], but re-expressed in units of GPa.

Stiffness Aluminum (Al) Copper (Cu) Magnesia (MgO) Spinel (MgAl2O4)

c11 107.30 170.98 297.08 298.57

c12 60.80 123.99 95.36 153.72

c44 28.30 75.45 156.13 157.58

Table 8. Data for various measures of bulk modulus K (Voigt, Reuss, and three
partial-sum moduli) for cubic symmetry minerals: aluminum (Al), copper (Cu),

magnesia (MgO), and spinel (MgAl2O4). All data from Simmons and Wang (1971)
[see Table 7], while the expressions in the main text were used for all the

computations. All moduli in units of GPa. Clearly, all the pertinent bulk moduli for
each material are the same (i.e., KV = KR = K1 = K2 = K3, even though these

cubic symmetry minerals are not isotropic.

Bulk Modulus Al Cu MgO MgAl2O4

KV = KR = . . . 76.3 139.65 162.6 202.00

SUMMARY AND CONCLUSIONS

There have been a great many experiments done on poroelastic systems through the
years, and many attempts to measure complete poroelastic data sets. The work sum-
marized here is designed to make this process easier by removing the need (whenever
possible) for tedious fitting routines that have traditionally been used to find the per-
tinent drained constants for the measured fluid-saturated and undrained systems. It
is of some real scientific importance to have methods like those treated here, because
it is a well-known fact that the presence of the pore-fluid can alter the nature of the
points of contact between neighboring grains, and therefore alter the values of the
“drained” constants that were sought here and found via the methods developed for
this purpose. Different values of the “drained” constants might be obtained if all the
fluid is physically drained out of the system, so it is effectively “dry” rather than
merely “drained” (i.e., in the sense of pore-fluid having the capability of moving in
and out of the boundaries as would happen in the absence of jacketing material). In
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the case of a fully dry system, the grain-to-grain contacts may act very differently
than they do when saturated with certain fluids. At the very least, it could be impor-
tant to check experimentally whether these constants are different or not in a variety
of systems, and the present analysis will permit such studies to move forward.

One especially interesting aspect of the analysis presented is that in no case did
the solution of any of the problems treated involve any analysis more complicated
than solving a linear equation. There are no quadratic equations solved in this paper,
and none that needed to be solved. The hardest calculation in the paper is the
implicit inversion of a 3 × 3 matrix when the real data are poroelastic stiffnesses,
rather than compliances. [Note: Matrix inversion requires only the calculation of
various determinants, but not the solution of any quadratic or cubic equations. These
additional difficulties can be avoided unless I also want or need to find the eigenvalues
of the matrix. But this step is unnecessary in the work described here.] This situation
does occur in practice whenever the elastic/poroelastic data are obtained using wave
propagation methods. Then, the actual data have the form v =

√
c/ρ, where v is a

wave speed, c is a stiffness or combination of stiffnesses, and ρ is the inertial density.
A complete set of the stiffnesses for the principal stresses and strains is needed for the
analysis because I require compliance data, and to obtain a complete set of compliance
data from stiffness data, I also need a complete set of the corresponding stiffness data.
All the elements of the undrained 3× 3 compliance matrix for the principal stresses
and strains must be known in order to proceed with the described analysis.

Table 9. Reuss (R) and Voigt (V) shear moduli of various common hexagonal and
cubic materials (Simmons and Wang, 1971): cadmium, β-quartz, titanium,

zirconium, aluminum, copper, magnesia, and spinel. Units of shear modulus G are
GPa. All the formulas needed to compute the various effective moduli from the
stiffness coefficients are given in Berryman (2005). The anisotropy parameter A

≡ 5GV

GR
+ KV

KR
− 6 [from Ranganathan and Ostoja-Starzewski (2008a,b)].

Material Symmetry GR GV GV /GR A
Cd Hexagonal 22.1 26.4 1.197 1.174

SiO2 Hexagonal 3.48 3.55 1.025 0.125

Ti Hexagonal 34.1 44.8 1.31 0.154

Zr Hexagonal 32.54 33.40 1.03 0.132

Al Cubic 26.04 26.28 1.009 0.045

Cu Cubic 40.04 54.67 1.365 1.825

MgO Cubic 128.06 134.02 1.047 0.235

MgAl2O4 Cubic 107.17 123.52 1.152 0.76

The analysis has been restricted to systems having orthotropic poroelastic sym-
metry or higher. Lower symmetry systems might also be studied, but I purposely
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avoided them here because for such systems it is harder to know for sure from ex-
perimental data when you have determined the true axes of symmetry. Also, in such
cases of orthotropic symmetry or higher, the system of equations to be studied is
substantially reduced because there is no coupling of the fluid effects to the shear
components associated with the strains e23, e31, e11, or the the stresses σ23, σ31, σ12.
Shear effects are not ignored altogether however, as there are well-known shearing
mechanisms in poroelastic media associated with the Skempton (1954) coefficient A
[also see Lockner and Stanchits (2002)]. These effects were studied here in some de-
tail, and were found to be very useful in accomplishing our main goals, since they
provided a necessary mechanism for measuring some otherwise difficult to measure
off-diagonal terms in the poroelastic equations.

I conclude that this analysis has been successful in solving the problem of obtaining
drained constants from undrained constants in all the cases considered. The chosen
set of cases (orthotropic or higher symmetry) is not very restrictive from a practical
point of view, as the great majority of poroelastic systems studied in practice usually
have hexagonal (transversely isotropic) symmetry or higher, and therefore are all
explicitly included within the range of the present analyses.
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