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ABSTRACT

For vertical-fracture sets at arbitrary orientation angles to each other — but not
perfectly randomly oriented, I present a detailed model in which the result-
ing anisotropic fractured medium generally has orthorhombic symmetry overall.
Analysis methods of Schoenberg are emphasized, together with their connections
to other similarly motivated and conceptually related methods by Sayers and
Kachanov, among others. Examples show how parallel vertical fracture sets hav-
ing HTT symmetry turn into orthotropic fractured media if some subsets of the
vertical fractures are misaligned with the others, and then the fractured system
can have VTI symmetry if all the fractures are aligned either randomly, or half
parallel and half perpendicular to a given vertical plane. Another orthotropic
case of vertical fractures in an otherwise VTI earth system treated previously
by Schoenberg and Helbig is compared to, and contrasted with, other examples
treated here.

INTRODUCTION

The present work covers various issues related to fractures and anisotropy, especially
in relation to some of the published work of Michael Schoenberg (Schoenberg, 1980;
Schoenberg and Muir, 1989; Schoenberg and Sayers, 1995; Schoenberg and Helbig,
1997). Details of methods presented here will also make use of an approach outlined
by Sayers and Kachanov (1991), and used previously by Berryman (2006, 2008, 2009)
in a recent series of published papers. [However, it is important to recognize that
in earlier work it has also been shown (Berryman, 2006) that the general results of
Bakulin et al. (2000) (for example) for the Thomsen (1986, 2002) weak anisotropy
seismic parameters and contained in their Figure 6, are both qualitatively and even
(reasonably) quantitatively consistent with each other, as well as being consistent
with results from the method of Sayers and Kachanov (1991) treated explicitly here.]
Thus, a high degree of consistency has been established among fracture-influence
results that are based in part on the linear-slip model of fractures by Schoenberg
(1980) and in part on penny-shaped (or approximately penny-shaped) cracks. [Also
see Grechka et al. (2006).] This fact is important to the theme of the paper, because it
shows that the details are often less important than the grand scheme of how fractures
affect both the elastic system response and the wave propagation results.
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FRACTURE ANALYSIS
For waves propagating in the [z1-x3]-plane with wavenumbers k; = ksin6 and k3 =

k cos § where k? = k?+k32, Tsvankin (1997) shows that we have the following equations
[patterned here after the notation of Berryman (1979)]:
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and where p (with no subscript) is the inertial density. Equation (1) determines the

two wave speeds
2

w
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The quantities wy have dimensions of angular frequency, but they are introduced
mostly to simplify the form of the equations. The pertinent phase speeds V. for quasi-
P-waves and V_ for quasi-SV-waves are given respectively by values corresponding
to the + and — subscripts in the velocity equation (3). Group velocities [Brillouin
(1946); Riiger (2002); Tsvankin (2005)] can be computed relatively easily as well when

using the methods outlined earlier by Berryman (1979).

Sayers and Kachanov (1991) consider a model with two sets of possibly nonorthog-
onal fractures, also possibly having two different fracture density values p, and py.
Total fracture density is therefore py = p, + pp. These authors found that the perti-
nent fracture influence parameters were multiplied in this situation, when the angle
between the fracture sets is ¢, either solely by py itself or by one of the two factors:

) 1/2
A=pr+ o3 = 4paprsin?o] ",

1/2 (4)
B = py — [0} — 4papysin® ¢| .

Table 1 shows the Sayers and Kachanov (1991) results for corrections to the
isotropic background values of compliance (in Voigt 6 x 6 matrix notation — the
original paper had results expressed in terms of tensor notation). Those background
values are specfically for one model considered having Poisson’s ratio v = 0.4375
(dimensionless), effective bulk modulus K = 16.87, shear modulus p = 2.20, and
Young’s modulus £ = 6.325, with all moduli measured in units of GPa. For the
assumed inertial density p = 2200.0 kg/m3, the resulting isotropic background com-
pressional wave speed is V, = 3.0 km/s and shear wave speed is V; = 1.0 km/s. For
our computations, we also need the isotropic background compliance values, which are
511 = 522 = 533 = 6325, 512 = 513 = 823 = —2767, and S44 = 555 = 566 = 0.4545.
The fracture influence factors 7, and 7, found for this specific model by Berryman
and Grechka (2006), are displayed in Table 2. Some higher order fracture-influence
factors were also obtained in the earlier work, but I will not be considering such
factors in this short paper.
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ASy = (m+m)A
ASy = (m+mn)B
AS3;3 = 0

ASp = mpy

ASi3 = mA/2
ASQ?) = 7713/2
ASy = mB

ASss = mA

ASes = 2mpy

Table 1: Compliance matrix correction values for the vertical fracture model consid-
ered in Eq. 4, which are also true for the specific limit of Eq. 5, as a special case of
the general result.

In the examples that follow, I will consider only the case of equal fracture densities
Pa = pp = ps/2. For this somewhat simpler situation, I also have

A = pr(l+cosg), (5)
B = ps(1 —cos¢).

Fracture parameter | GPa™!
M —0.0192
2 0.3944

Table 2: Fracture-influence parameters (see Table 1 for usage) in a model reservoir
having isotropic background with Poisson’s ratio v = 0.4375, V,, = 3.0 km/s, and
Vs = 1.0 km/s.

There may also be some uncertainty about exactly which of these factors is which
in this degenerate case, because of the sign ambiguity in taking the square root of
cos? ¢. But I will not concern myself with this detail here.

VANISHING OF THE ANELLIPTICITY PARAMETERS

One observation made immediately upon computing sample results for the model
specified here is that the quasi-SV-wave propagating in the [z1-x3]-plane apparently
has constant (or very nearly constant to numerical accuracy) wave speed at all angles
in this plane (see Table 3). This result is startling when first seen, but it has been
remarked upon previously in the literature by Gassmann (1964) and Schoenberg and
Sayers (1995). One useful interpretation of this fact is obtained by noting that for
quasi-SV-waves to have constant velocity in the plane, it is necessary for the pertinent
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effective anellipticity parameter to vanish for this plane of propagation. If it does not
vanish identically, then it must at least vanish to first order in the fracture dependent
correction factors (shown here in Table 1) in order to explain the numerical results
for the relatively small fracture densities considered here. The condition required for
exact vanishing of the pertinent anellipticity parameter in terms of stiffness coefficients
turns out to be:

Cr1C33 — Cs = Cs5 (€11 + ¢33 + 2c13) (6)

as was already known to Gassmann (1964). But going farther in the analysis, it takes
a fair amount of algebra to show that — to first order in the correction factors — the
result (6) amounts to a condition relating compliance correction factors:

AS55 - ASM + AS{B - 2A313. (7)

This condition holds when we can ignore the higher order terms O(A?), as well as
all still higher orders (think of the proportionality A oc pf). Then, we find that (7)
is in fact satisfied identically when the expressions in Table 1 are substituted. It
is important to notice as well that exact satisfaction of the condition in (7) is true
for the general form of the definitions in Table 1, and not just for the restricted
definitions used in the examples we computed, where the simplified definitions of (5)
were employed to reduce our bookkeeping load. So the result in (7) is more general
than just the specific examples I have computed. But the result is certainly not
expected to be true for arbitrary compliance matrices. Nevertheless, it does seem
to be true for a wide range of compliance matrices having vertical fractures in an
otherwise isotropic earth.

¢ | Vi (km/s)

0° 0.8602
30° 0.8678
45° 0.8771
60° 0.8896
90° | 0.9222

Table 3: Constant V;, wave speeds in the [x;-z3)-plane found for various values of the
angle ¢ between fracture planes, and for the fixed value of fracture density py = 0.20.

This result surely seems quite interesting all by itself, but the curiously symmet-
ric nature of the full fracture model can be highlighted further by noting that the
following two expressions analogous to (7):

ASy = ASy + ASss — 2ASs3, (8)

and

ASgs = AS11 + ASy — 2A8),, (9)

which are also both satisfied identically by the same set of expressions found in Table
1. These facts indicate that the model also has vanishing anellipticity factors (at
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least to the precision at which we are working) in the other orthogonal planes of
propagation [re-x3] and [z1-5], as well.

As is well-known [see Gassmann (1964)], vanishing of the anellipticity factors
means that there will be no triplications of wave arrivals for these models from prop-
agation in any of these planes we have considered. Triplications arise because of
complications from taking the derivatives required to compute group velocity from
the phase velocities quoted here [also see Berryman (1979) for examples|. Group
velocity determines the wave speed of signals and/or pulses of seismic energy [see
Brillouin (1946) for a discussion].

VERTICAL FRACTURES IN VTI EARTH

Another model in a very similar context that has been discussed frequently by Schoen-
berg and Helbig (1997), Bakulin et al. (2000), and others is the model of a VTT earth
system (where the background elastic medium is transversely isotropic with vertical
axis of system, as it would be in a layered earth model having isotropic layers [Backus
(1962)]) with superposed vertical fractures. A result that is often quoted in this con-
text concerns a condition that is necessarily satisfied by the elastic stiffness matrix
elements for such a system:

c13(caa + c12) = ca3(cnn + c1a). (10)

Using the same ideas applied here already, we can reduce this equation to a simple
statement about the system compliances. The resulting statement is the formula:

S13 = 523, (11)

by which we mean to say that the only requirement imposed on the compliances after
the introduction of the vertical fractures to the VTT earth background is that the new
overall system compliance must satisfy the conditions in (11) after the changes due
to the fractures are included in the values of these two compliance components. No
other special constraints appear.

To see that (11) is the correct condition, note that

S13 = (c12C23 — c13C22)/ det (C)
Sz = (c12¢13 — ca3¢11)/ det (C),

where det (C) is the determinant of the upper left 3 x 3 sub-matrix of the orthotropic
stiffness matrix C'. Equating these two expressions from (12) and rearranging the final
result gives a formula that is precisely the same condition (10) given by Schoenberg
and Helbig (1997). What this condition implies for the physical system — since the
background earth medium is assumed to be VTT with vertical axis of symmetry and
also since Sy3 = Sag for the background medium itself (before the fractures are added
to it) — is that our final result must be the condition:

AS;3 = ASys. (13)

(12)
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This very simple equality means the changes (i.e., increases) in these off-diagonal
compliances — when due to the addition of the vertical fractures to this model —
have just one constraint, and that single constraint is that changes in these two off-
diagonal compliances S13 and Ss3 must occur in unison. This result is also seen as a
limiting case found in Table 1, when A = B, which occurs only when ¢ = 0°. Since
¢ = 0° means that all the vertical fractures are parallel, and therefore being all aligned
fractures, I therefore then have exactly the case studied explicitly by Schoenberg and
Helbig (1997).

DISCUSSION OF VARIOUS FRACTURE MODELS

Among others, there are two main methods that are typically used in the seismic ex-
ploration literature for modeling the effects of fractures on seismic wave propagation:
One is the method introduced originally by Schoenberg (1980) and the other was in-
troduced at about the same time by Kachanov (1980). These two methods have both
been used extensively in the exporation community, especially since the work of Say-
ers and Kachanov (1991) and Schoenberg and Sayers (1995). Connections, including
many similarities and a few differences, are discussed in an overview by Schoenberg
and Sayers (1995). I have some personal preference for the analytical version of Sayers
and Kachanov (1991), because it is so explicit and also permits deep connections to
be made to effective medium theory, especially through the work of Eshelby (1957).
In particular, some recent and related work on fractures in outcrops using an effec-
tive medium theory approach by Berryman and Aydin (2009) has made use of the
approach put forward by Sayers and Kachanov (1991) for modeling higher fracture
density media. This study might have been more difficult to carry through using the
original Schoenberg (1980) approach. But, once these higher fracture density results
were known, it became straightforward to incorporate them into the layer-averaging
approach emphasized by Backus (1962) and Schoenberg and Muir (1989). Thus, the
effective medium theory for layering was found to be most useful for providing a
means of determining fracture-fracture interactions when the fracture sets are close,
but not actually intersecting.

Effects of fluids on the fracture behavior have not been emphasized here, but this
issue is obviously a very important one for our applications, and it has been treated
in other recent work by Daley et al. (2006) and Berryman (2006). Effects that liquids
have on elastic moduli may be incorporated fairly easily using results of Gassmann
(1951) and Skempton (1954), as shown by Berryman (2006).

CONCLUSIONS

In this paper I have treated various methods for quantifying the geomechanical effects
of fracture sets on reservoirs. Special emphasis has been given to recent work, and
also to the influence that the work of Michael Schoenberg has had on this subject. I
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conclude that the methods currently in use provide a consistent and presumably quite
accurate picture of the influence of fractures on wave propagation in many cases, and
that the various methods in use, although sometimes presented quite differently, are
actually very closely related both conceptually and also in the quantitative details of
their predictions.

Of course, elastic orthotropy is not universal in the earth [see Sayers et al. (2009)],
so we should not and I do not assume that all the problems in exploration seismology
will be solved by such relatively simple models. One final conclusion is that, although
good progress has been made, there is also clearly more work to be done relative to
the influence of fractures and anisotropy on seismic waves.
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