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ABSTRACT

To accurately invert for velocity in a model with a blocky interval velocity inver-
sion using Dix inversion, we set up our optimization objective function using L1
criterion. In this study, we analyze and test an improved version of the Iterative
Reweighted Least Squares (IRLS) solver, a hybrid L1/L2 solver and a conjugate
direction L1 solver. We use a 1-D synthetic velocity data set and a 1-D field
RMS velocity data set as test cases. The results of the inversion are promising
for applications on realistic geophysical problems.

INTRODUCTION

Dix formula (Dix, 1952) estimates interval velocities from picked stacking velocities.
The conventional result of constrained least-squares Dix inversion (Koren and Ravve,
2006; Harlan, 1999; Clapp, 2001) is always a smooth velocity model, because the regu-
larization is imposed in the L2 sense. However, to represent a geological environment
with sharp velocity contrasts, e.g., carbonate layers, salt bodies and strong faulting,
we may need a blocky velocity model rather than a smooth velocity model. Valen-
ciano et al. (2003) proposed to use edge-preserving regularization with Dix inversion
in order to get sharp edges in interval velocity. However, one of the solvers they used,
IRLS (Iterative Re-weighted Least Squares) is cumbersome to use because users must
specify numerical parameters with unclear physical meaning.

L1-norm optimization is known to be a robust estimator to yield sparse models.
Many works (Claerbout and Muir, 1973; Darche, 1989; Nichols, 1994; Guitton, 2005)
has shown that Ll-norm is not sensitive to outliers, while it penalizes the small
residuals down to zero. In theory, when the model space is sparse and the data are
noisy, regressions produced by L1 optimization always outperform those produced by
L2 norms.

In this study, we analyze, improve and test different methods on a simple synthetic
problem as well as a field-data problem. We aim to develop robust and efficient solvers
to perform regressions of an L1 nature. We initially improve the traditional TRLS
method, explore the conjugate direction L1 method, and finally test an L1/L2 hybrid
method. The inversion results of a 1-D, synthetic, 2-step, interval-velocity model and
a 1-D field data example are given at the end of the paper.
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DIX INVERSION AS AN L1-OPTIMIZATION PROBLEM

The linear relationship between the RMS velocity and the square of the interval
velocity is given by Dix Equation:

v = KV — (k= DViy, (1)

where v is the interval velocity, V' is the stacking velocity or RMS velocity, and & is
the sample number. Both velocities run down the traveltime depth axis. If we define
ur = v and dy = kV;2, we can set up the Dix inversion problem in an L1 sense as
follows:

[Wa(Cu —d)|; =0, (2)

where u is the unknown model we are inverting for, d is the known data from velocity
scan, C is the causal integration operator, Wy is a data residual weighting function,
which is proportional to our confidence in the RMS velocity.

Fitting goal (2) itself cannot fully constrain the inversion problem, because the
integration operator has a large null space at high frequencies. Therefore, Clapp et
al. (1998) supplement this system with a regularization term to take the advantage of
the prior geological information, of which smoothness and blockiness are two typical
examples. For the case we are interested in, we use blockiness as regularization. In a
mathematical form, it can be written as follows:

|leDzull, ~ 0, (3)

where D, is the vertical derivative of the velocity model and € is the weight controlling
the strength of the regularization.

DIX INVERSION BY IRLS METHOD

Bube and Langan (1997) and Tang (2006) show that the nonlinear objective functions,
such as the regression equation (3), can be solved by the IRLS algorithm. Many
authors have demonstrated successful applications of IRLS as a robust estimator to
yield sparse models. To take advantage of the well-established L2 norm regression, we
can transform the problem by introducing a diagonal weighting function W,. Then
the fitting goal 2 and the regularization 3 become:

[Wa(Cu = d)[|; = 0, (4)
||eWp D ulf, = 0, ()

where W), is a diagonal weighting function on the model residual. To use the gradient-
based method, we have to recompute the weight W), at each iteration, and the algo-
rithm can be summarized as follows:

1. Set the initial weighting matrix Wzgo) to equal the identity matrix:
0) _
WO =1 (6)
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2. At the k —th iteration, the i —th element of the weighting matrix is recomputed
as

WS = (|pkt)) 2 (7)

pi

where p = D,u is the model residual. However, applying equation (7) to compute
the weighting matrix is dangerous when p; is zero or too small. One way to avoid this
issue is to bound the weights at a certain cutoff o:

Wk :{ (it~ it pi > o )
pi o~Y2  otherwise.

One of the most important disadvantages of IRLS algorithm arises in equation
8: how should we choose the cutoff number o7 We would like to derive this number
automatically according to its physical meaning, instead of cumbersome numerical
experiments.

Further examining the weighting function, we notice that when applying the trun-
cated weights, we end up treating small residuals in the L2 norm, and at the turning
point (p = o) we have a sharp transition to the L1 norm. Thus, o is the cut-
off between the L1 region and the L2 region, determining the tolerance to the large
residuals. Therefore, we can choose o according to the desired blockiness of the model
space. For the synthetic example, which is a 40-point-long interval velocity model
with three layers, we expect only two spikes out of those 40 points in the derivative.
Therefore we would like o to be around the 95 percentile of the derivative, allowing
5% of the spikes to be of unlimited size, while the others are small.

DIX INVERSION BY AN L1/L2 HYBRID METHOD

Extending the discussion in last section, many authors (Bube and Langan, 1997;
Claerbout, 2009) generalize the optimization problem of Dix inversion. Claerbout
(2009) points out that any arbitrary norm P can be used as a penalty function. Then
the optimization problem can be written as:

0~ Z P(Z Cijuj —d;), (9)

where P() is a convex function of a scalar, C; ;, u;, and d; are elements in the causal
integration operator C', the model u and the known data d.

We have special interests in an L1/L2 hybrid norm, because instead of a sharp
transition, this norm provides a smooth transition between L1 and L2. This can be
shown in the formulation of the hybrid norm:

P = o*(y/1+712/02—1) (10)
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where r is the data residual and o is the same threshold as in last section, and thus can
be chosen according to the same physical explanation. The hybrid norm approaches
the least squares limit as ¢ — oo and approaches the L1 limit as 0 — 0.

The first and the second derivative of this hybrid norm with respect to the residuals
are given in equation 11 and equation 12. We can see the penalty function transits
from L2 to L1 smoothly at » = ¢ since the first derivative is continuous.

e =
pro 1 (12)

(14 r2/g2)3/2

Claerbout (2009) also proposed a new method based on Taylor’s series to search
the plane spanned by the gradient and the previous step. He embedded the new
iterative bivariate solver in a conjugate direction solver, hoping for significant savings
by expending more effort to find a better next step. In this experiment, we use the
solver coded by Maysami and Mussa (2009), who adapt Claerbout’s theory. For more
information, refer to these two papers.

DIX INVERSION BY CONJUGATE DIRECTION L1
METHOD

Choosing proper parameters for hybrid 11/12 method and IRLS is still quite empirical,
even when we understand their physical meanings. Instead, conjugate direction meth-
ods do not need setting parameters. Thus, we develop a similar conjugate direction
method in L1 sense. The pseudo code of this method is given in Table 1.

The structure of the conjugate-direction L1 method is similar to the L2 conjugate-
direction solver given by Claerbout (2008). The main difference arises in the part of
plane search.

Given the gradient g(?, previous step s, and the current residual r'?, we con-
struct the 2 x N matrix B = [g¥ s(¥] and the column vector [a 5]'. We seek to
find [« B]' that minimizes 0 ~ r¥ 4+ B[a ]’ in the L1-norm sense. This bivariate
regression embedded in the plane search is solved in an iterate manner.

At the ultimate solution of the bivariate regression there will be two basis equa-
tions that are exactly satisfied. The first one is found by steepest descent. After
the first iteration, we do plane searches using the weighted median solver to choose
the best equation to be exactly satisfied. “Best equation” is the one that decreases
the residual the most, while satisfying the equation chosen by the previous iteration
exactly as well.
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Table 1: Pseudo Code - Conjugate direction L1 solver using Weighted Median

Initialization :
m = My
r @ = Fm — d
s =0
s =0

[teration i :
r® = sgn(r®)
g = F'r®

(o, B) = ar(grg)innr(t) +ag® 4 Bs@]|,
S(d) = ag(d) ’_’_ ﬁs(d)
I'(d) = r(d) + S(d)

s = ag+fs
m = m-+s

To do this, suppose the previous equation is g,(cd)a + s,(Cd) 8+ r,(cd) = 0. We seek

a (Aa, AB) that still satisfies the equation k. This requirement gives a solution
to (Aa, AB) as 'y(s;d), —g,(cd)), where 7y is a scalar. Then the plane search becomes
0 ~ fyB[s,(cd), —g,gd)]’ + 7@ which is a weighted median problem. Thus, using the
weighted median solver, we can solve for v and get a new equation, e.g., equation j.
Then we can update (o, 3) and s(¥ accordingly, drop the old equation k, and keep
the new equation j. We iterate on this process until the inner loop keeps tracking
the same equation. The final results of the inner loop are passed out to update the
model, residual and the gradient.

The value of expending more effort to find the best step direction will be supported
by the real geophysical applications, because the most computationally expensive part
of these iterative methods is applying the forward and adjoint operators (steps starred
in Table 1). By doing the sophisticate plane search, we hope to decrease the number
of outer-loop iterations required for convergence.

However, conjugate direction L1 regression theory is not perfect for a practical
problem. The problem of a flat bottom in L1 minimization will cause trouble in
geophysical practice. Sometimes even where the bottom is not exactly as flat as the
median of an even number of points, the slope of the gradient can be so small that
we can never reach convergence in a finite number of iterations.
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SYNTHETIC AND FIELD DATA EXAMPLE

Figure 1 shows the input synthetic RMS velocities with and without random noise,
and the true blocky interval velocity we try to invert for. For the synthetic problem,
we experimented on solvers with and without regularization to learn the nature of
the solver itself and the nature of its regularization.

Figure 2 shows the inversion results when clean data (free of noise) are fed into
different simple solvers without any regularization. The result of L2 regression is
comparable to the IRLS and hybrid norm. However, the simple conjugate direction
L1 solver failed to give a satisfactory result (Figure 2(c)). As we have discussed
in the previous section, this might be due to the flat bottom caused by the data
configuration.

Figure 3 shows the inversion results when clean data are fed into different regular-
ized solvers. As expected, the smoothing effect of L2 regularization on the derivative
of model produces the round corners at the turning point. In contrast, IRLS and
hybrid solvers give perfect exact solutions, which benefit from their L1 nature in reg-
ularization. We do not fully understand the behavior of conjugate-direction L1 solver,
but the change in the result can be explained by the change of the data configuration
when the regularization term is added.

Figure 4 shows the inversion results when noisy data are fed into different simple
solvers without any regularization. When creating the synthetic noisy RMS veloc-
ity data, uniform distributed random noise is added. However, L2 norm assumes
Gaussian noise, and L1 minimization is derived under the assumption of exponential
distribution. Therefore, the simple L2 solver, the IRLS solver or hybrid solver all fail
to recognize the noise and attenuate it. Surprisingly, conjugate-direction L1 solver
successfully eliminates the high-frequency noise and keeps the low-frequency trend of
the interval velocity function. It shows great potential for finding the exact solution
when the problem is slightly more complicated.

Figure 5 shows the inversion results when noisy data are fed into different regu-
larized solvers. By adding this regularization term to further constrain the problem,
we expect better results out of each solver. Comparing the results in Figure 5, IRLS
result has the most blocky transition between layers and is almost flat within the
layers. However, the big jump at shallower depths is apparently due to its tolerance
of the large residuals. The hybrid solver gives result comparable to the IRLS, but it
oscillates at deeper depths. The results from L2 and conjugate direction L1 solver
are similar, but the smaller steps in the result of conjugate direction L1 (Figure 5(c))
are promising.

Figure 6 shows the 1-D field RMS velocity from the velocity scan. This field data
has 1,000 sample points, and the number of blocks in the model space is unknown.
In real life, we can never fully constrain a inversion problem without regularization:
that is when Dix inversion becomes unstable. Therefore, only regularized solvers are
tested.
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Figure 7 shows the inversion results when field data in Figure 6 are fed into
different regularized solvers. The results from the IRLS and the conjugate direction
L1 solver have more blocky nature than the other two. The result from IRLS is
more flat within layers, which is a nice property in well-log matching and many other
geophysical applications. The hybrid and L2 solvers give comparable results, although
we have chosen a very small ¢ for hybrid norm to force it towards the L1 norm.
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Figure 1: Input synthetic RMS velocity and true interval velocity. The two plots on
the top row are the input RMS velocities (a) without noise and (b) with random
noise, respectively. The plot on the bottom is (c) the true interval velocity which is
true model in the estimation problem. [ER]
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Figure 2: Inversion results of simple (a) L2 solver; (b) IRLS solver; (c) conjugate di-
rection L1 solver and (d) Hybrid solver when clean data are fed in. All the regressions

are without regularization. [ER]
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Figure 3: Inversion results of (a) L2 solver; (b) IRLS solver; (c) conjugate direction
L1 solver and (d) Hybrid solver when clean data are fed in. All the regressions are

regularized. [ ER]
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Figure 4: Inversion results of simple (a) L2 solver; (b) IRLS solver; (c) conjugate di-
rection L1 solver and (d) Hybrid solver when noisy data are fed in. All the regressions

are without regularization.[ER]
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Figure 5: Inversion results of (a) L2 solver; (b) IRLS solver; (c) conjugate direction
L1 solver and (d) Hybrid solver when noisy data are fed in. All the regressions are

regularized. [ER]
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CONCLUSIONS AND DISCUSSIONS

We explore three methods to constrain Dix inversion in an L1 nature: an improved
IRLS method, a hybrid L1/L2 method and conjugate direction L1 method. The
IRLS and hybrid methods are implemented in a non-linear least-squares scheme by
adding a diagonal weighting function. Conjugate direction L1 method is realized by
a weighted median solver.

The IRLS method is improved by the physical explanation of the cutoff number
o, allowing this numerical parameter to be determined automatically. The hybrid
method has a novel plane search scheme based on Taylor’s series at each residual.
Conjugate direction L1 method has an iterative plane search scheme using a weighted
median solver. Both of hybrid and the conjugate direction L1 are designed to reduce
major computational cost by expending more effort in finding a better next step.

In the numerical experiment, we find that the conjugate direction L1 method
decreases the iteration number for the outer loop significantly. Hence, the value of
spending more to find a better next step is proved. The same concept can be applied
to the hybrid method as well. We can expect better inversion results and faster
convergence by adding iterations to plane search, which has not been demonstrated
before.

In the current study of the conjugate direction L1 method, we keep only two
equations exactly satisfied in the whole system when searching the plane. In fu-
ture research, we can add as many equations as needed by Gram Schmidt process.
Hopefully, this process can lead us to an even better next step.
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Figure 7: Inversion results of (a) L2 solver; (b) IRLS solver; (c) conjugate direction
L1 solver and (d) Hybrid solver when 1-D field RMS velocity data are fed in. All the

regressions are regularized. [ER]
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