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ABSTRACT

Optimization with gradient-descent techniques requires computing the gradient
of the objective function. The gradient can be determined by using the Frechét
derivatives, but, for practical problems, this can be very expensive. The gradient
can be more efficiently computed by the adjoint-state method, which does not
require the use of the Frechét derivatives. Here, I derive the gradient of the
image-space wave-equation tomography using the adjoint-state method. I also
show its application with a numerical example using image-space phase-encoded
gathers.

INTRODUCTION

Wave-equation tomography aims to solve for earth models that explain observed seis-
mograms under some norm. There are two main categories, depending on the domain
in which the objective function is computed. In one category, known as waveform
inversion (Lines and Treitel, 1984; Tarantola, 1987; Woodward, 1992), the objective
function is defined in the data space, where the modeled data are compared with the
recorded seismograms. In the other category, here called image-space wave-equation
tomography (ISWET), the objective function is minimized in the image space. Two
variants of ISWET are wave-equation migration velocity analysis (WEMVA) (Sava
and Biondi, 2004a,b) and differential semblance velocity analysis (DSVA) (Shen, 2004;
Shen and Symes, 2008).

Like waveform inversion, ISWET is a computationally demanding process. This
computational cost is commonly decreased by using generalized sources (Shen and
Symes, 2008; Tang et al., 2008). Because wavefield propagation is a linear process,
generalized sources are computed by linearly combining source wavefields and receiver
wavefields, using phase-encoding techniques (Whitmore, 1995; Romero et al., 2000).
In particular, Guerra et al. (2009) used phase-encoding modeling in the image space
to synthesize generalized source functions that drastically decrease the cost of DSVA.

WEMVA and DVSA seek the optimal slowness by driving an image perturbation
to a minimum. However, they differ in the way the image perturbation is computed
and, consequently, in the numerical optimization scheme applied. As Biondi (2008)
points out, WEMVA is not easily automated. The image perturbation is computed
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by the linearized residual prestack-depth migration (Sava and Biondi, 2004a), which
uses a manually picked residual-moveout parameter. Because the perturbed image
computed with the linearized residual prestack-depth migration is consistent with
the application of the forward wave-equation tomographic operator, the forward and
adjoint ISWET operators can be used in conjugate-gradient methods to invert for
the slowness perturbation. In DSVA, the perturbed image is computed by applying
the fully automated differential-semblance operator (DSO) to the subsurface-offset
gathers (ODCIGs) or angle gathers (ADCIGs). When applied to ODCIGs, DSVA
minimizes the energy not focused at zero-offset. When applied to ADCIGs, DSVA
minimizes energy departing from flatness of the reflectors. Although DSVA eas-
ily automates ISWET, it produces perturbed images that do not present the depth
phase-shift introduced by the forward one-way ISWET operator, neither the DVSA
amplitude behavior can be modeled by this operator. Therefore, the objective func-
tion computed with DSO is tipically minimized by quasi-Newton algorithms, which
require computation of the gradient of the objective function.

The gradient of the objective function can be computed with the Frechét deriva-
tives. However, even for 2D applications of ISWET this computation can be very
expensive. An efficient way to compute the gradient without using Frechét deriva-
tives is the adjoint-state method (Chavent and Jacewitz, 1995; Plessix, 2006). Plessix
(2006) describes two methodologies for computing the gradient of the objective func-
tion using the adjoint-state method. One methodology uses the perturbation theory,
which states that, at first order, a perturbation of the model parameters causes a per-
turbation of the objective function. The other uses the augmented Lagrangian. The
augmented Lagrangian is formed by the objective function and the scalar product of
the adjoint-state variables with general solutions of the forward modeling equations.
The adjoint-state variables are, in turn, solutions of the adjoint-state equations. The
adjoint-state equations are defined by equating to zero the derivatives of the aug-
mented Lagrangian with respect to the state variables. For the linear case, the adjoint
of the modeling operator applied to the adjoint-state variables gives the gradient of
the objective function.

Although previous studies have computed the gradient of the ISWET objective
function by the adjoint-state method (for example, Shen et al. (2003)), they have
not provided a detailed derivation. Here, I show a detailed derivation the gradient of
the ISWET objective function using the augmented Lagrangian methodology. The
derivation is valid whether ISWET uses areal-shot migration or shot-profile migration.
A complete description of the forward and adjoint of ISWET operators is given in
Tang et al. (2008). A numerical example of slowness optimization on the Marmousi
model illustrates the use of the gradient by a quasi-Newton algorithm.

Because I use image-space phase-encoded gathers in the numerical example, for
completeness, I first briefly describe how to compute these phase-encoded gathers. A
detailed treatment of the image-space phase-encoded gathers can be found in Biondi
(2006, 2007) and Guerra and Biondi (2008a). Then I derive the ISWET gradient
using the adjoint-state method, and show the numerical example .
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IMAGE-SPACE PHASE-ENCODED GATHERS

Biondi (2006, 2007) introduced the concept of the prestack exploding-reflector as
a generalization of the exploding-reflector method (Loewenthal et al., 1976). The
prestack exploding-reflector modeling synthesizes areal data and the corresponding
areal source function, having as an initial condition a prestack image computed with
wave-equation migration. If the slowness is accurate and the energy is focused at zero-
subsurface offset, the prestack exploding-reflector modeling reduces to the conven-
tional exploding-reflector method. Basically, the prestack exploding-reflector method
models one single reflection event from one single ODCIG by recursive upward con-
tinuation with the following one-way wave equations:{ (

∂
∂z
− i

√
ω2ŝ2(x)− |k|2

)
d(x, ω; xm, ym) = rD(x,h; xm, ym)

d(x, y, z = zmax, ω; xm, ym) = 0
, (1)

and { (
∂
∂z

+ i
√

ω2ŝ2(x)− |k|2
)

u(x, ω; xm, ym) = rU(x,h; xm, ym)

u(x, y, z = zmax, ω; xm, ym) = 0
, (2)

where rD(x,h; xm, ym) and rU(x,h; xm, ym) are a single ODCIG at the horizontal lo-
cation (xm, ym) with a single reflector, and are suitable initial conditions for modeling
the source and receiver wavefields, respectively. They are obtained by rotating the
original unfocused ODCIGs according to the apparent geological dip of the reflector.
This operation maintains the velocity information needed for migration velocity analy-
sis, especially for dipping reflectors (Biondi, 2007). Note that d(x, y, z = zc, ω; xm, ym)
is the areal source data and u(x, y, z = zc, ω; xm, ym) is the areal receiver data for a
single reflector and a single ODCIG located at (xm, ym); z = zc denotes that the
wavefields can be collected at any depth level, zc. This characteristic is important for
accelerating ISWET, especially if zc separates regions of sufficiently accurate slowness
above and inaccurate slowness below. Therefore, the synthesized gathers are natu-
rally datumized, and the wavefield propagations during ISWET can be restricted
to the region where the slowness model must be updated. This feature allows the
application of ISWET to be target-oriented.

As initially formulated, if one models a single reflection from one ODCIG at a
time, the prestack exploding-reflector method generates a dataset that can be orders
of magnitude bigger than the original dataset. As discussed by Biondi (2006) and
Guerra and Biondi (2008b,a), modeling several reflectors and several ODCIGs simul-
taneously and using random phase encoding generates a much smaller dataset that,
when migrated, do not produce crosstalk. The randomly encoded areal source and
areal receiver wavefields can be computed as follows:{ (

∂
∂z
− i

√
ω2ŝ2(x)− |k|2

)
d̃(x,pm, ω) = r̃D(x,h,pm, ω)

d̃(x, y, z = zmax,pm, ω) = 0
, (3)
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and { (
∂
∂z

+ i
√

ω2ŝ2(x)− |k|2
)

ũ(x,pm, ω) = r̃U(x,h,pm, ω)

ũ(x, y, z = zmax,pm, ω) = 0
, (4)

where r̃D(x,h,pm, ω) and r̃U(x,h,pm, ω) are the encoded ODCIGs after rotations.
They are defined as follows:

r̃D(x,h,pm, ω) =
∑
xm

∑
ym

rD(x,h, xm, ym)β(x, xm, ym,pm, ω), (5)

r̃U(x,h,pm, ω) =
∑
xm

∑
ym

rU(x,h, xm, ym)β(x, xm, ym,pm, ω), (6)

where β(x, xm, ym,pm, ω) = eiγ(x,xm,ym,pm,ω) is a pseudo-random phase-encoding func-
tion, with γ(x, xm, ym,pm, ω) being a uniformly distributed random sequence in x,
xm, ym and ω; the variable pm is the index of different realizations of the random
sequence. The recursive solution of equations 3 and 4 gives the encoded areal source
data d̃(x, y, z = zc,pm, ω) and areal receiver data ũ(x, y, z = zc,pm, ω), at the depth
level, zc.

GRADIENT OF ISWET BY THE ADJOINT-STATE
METHOD

Image-space wave-equation tomography aims to iteratively solve for the slowness
model, s = s(x), that minimizes the nonlinear objective function:

J(s) =
1

2
||∆r(s)||2 =

1

2
||r(s)−Mr(s)||2 , (7)

where ∆r = ∆r(x,h) is the image perturbation that measures the accuracy of the
slowness model. To compute ∆r, a differential residual-focusing operator M is ap-
plied to the image r = r(x,h) obtained with the current slowness (Biondi, 2008),
using either differential residual prestack migration (Sava and Biondi, 2004a,b) or
differential-semblance optimization (DSO) operators (Shen and Symes, 2008). In this
paper, operators are represented by bold capital letters.

If the differential residual-focusing operator M is independent of the slowness, the
gradient of this objective function evaluated at the current slowness ŝ = ŝ(x) is

∇J(s) =

(
∂r

∂s

)′∣∣∣∣
s=bs (I−M′) ∆r̂, (8)

where the prime denotes the adjoint, I is the identity operator, and ∆r̂ = ∆r̂(x,h) is
the perturbed image obtained with the current slowness model. The linear operator ∂r

∂s

defines the mapping ∂r
∂s

∆s = ∆r between the slowness perturbation ∆s and the image
perturbation ∆r; it is called the image-space wave-equation tomographic operator.
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Because the image-space wave-equation tomographic operator is composed of dif-
ferent operators, it is difficult to envision from equation 8 which operations are per-
formed to compute the gradient. Therefore, for a clear explanation of the operators
involved, I use the adjoint-state method to derive the gradient of the objective func-
tion (equation 7).

In migration with generalized sources or shot-profile migration, the source and
receiver wavefields are propagated independently, and the image rz = rz(x,h) at a
depth level z, is computed by the crosscorrelation

rz(x,h) =
∑

ω

d∗
z(x− h, ω)uz(x + h, ω), (9)

where dz(x, ω) is the source wavefield for a single frequency ω at horizontal coordinates
x = (x, y) ; uz(x, ω) is the receiver wavefield, h = (hx, hy) is the subsurface half-offset,
and “∗” stands for the complex-conjugate. An additional summation over shots is
required when migrating more than one shot. Hereafter, letters d and u stand for
source and receiver wavefields, respectively, irrespective of the migration scheme.

In a more compact notation, not explicitly writing the dependencies on x and h,
equation 9 can be re-written as follows:

rz = SD′
z(ω)uz(ω) = SUz(ω)d∗

z(ω), (10)

where D and U are convolutional operators composed of (hx, hy)-shifted versions of
dz(x, ω) and uz(x, ω), respectively. Operator S corresponds to the summation over
frequency.

For subsequent depth levels, d(x, ω) is computed by means of the recursive down-
ward propagation {

dz+1(ω) = T↓
z(ω, s)dz(ω)

d1(ω) = q(ω),
(11)

where T↓
z is the downward continuation operator, which is a function of the slowness

s, and q(ω) is the source wavefield used as a boundary condition. In the case of
conventional shot-profile migration, q(ω) = fs(ω)δ(x− xs) is the source signature
located at xs = (xs, ys, 0). If using the generalized sources in the image space, q(ω)
represents the image-space phase-encoded source wavefield of equation 3.

The downward continuation of the receiver wavefield is performed by{
uz+1(ω) = T↓

z(ω, s)uz(ω)
u1(ω) = w(ω),

(12)

where w(ω) is the recorded data at the surface for shot-profile migration. If using gen-
eralized sources in the image space, w(ω) is the phase-encoded areal receiver wavefield
of equation 4. In equations 11 and 12, I omitted the dependencies of the wavefield
with respect to x. The subscript 1 in equations 11 and 12 represents the surface for
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the shot-profile migration and the “collection” depth level, zc, for the image-space
phase-encoded wavefields.

In the image-space wave-equation tomography problem, the perturbed source and
receiver wavefields, and the image perturbation are used to compute the slowness
perturbation that updates the current slowness model. From the perturbation theory,
we have d = d̂+∆d, u = û+∆u, and, consequently, r = r̂+∆r are physical realizations
with s = ŝ+∆s, where the hat refers to fields obtained with the background slowness.
To the first order (Born approximation), these perturbed fields are given by

∆dz+1(ω) = T↓
z(ω, ŝ)∆dz(ω) +

˜̃
Dz(ω)∆sz (13)

and

∆uz+1(ω) = T↓
z(ω, ŝ)∆uz(ω) +

˜̃
Uz(ω)∆sz. (14)

The diagonal operators
˜̃
Dz and

˜̃
Uz have in the diagonal entries the scattered source

and receiver wavefields, respectively. These wavefields are given by the action of the
scattering operator ∆T↓

z on the background wavefields:

˜̃
Dz(ω) = ∆T↓

z(ω, ŝ)d̂z(ω) = i
ω2ŝ√

ω2ŝ2 − |k|2
dz d̂z(ω) (15)

and

˜̃
Uz(ω) = ∆T↓

z(ω, ŝ)ûz(ω) = −i
ω2ŝ√

ω2ŝ2 − |k|2
dz ûz(ω). (16)

The perturbed image is given by

∆rz = S
(
Ûz(ω)∆d∗

z(ω) + D̂′
z(ω)∆uz(ω)

)
. (17)

The matrix representations of equations 13, 14, 17 are

∆d = T↓∆d +
˜̃
PS′∆s, (18)

∆u = T↓∆u +
˜̃
US′∆s, (19)

and

∆r = S
(
Û∆d∗ + D̂′∆u

)
, (20)

where S′ is a spreading operator that replicates the slowness perturbation for every
frequency.
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Equations 18, 19, and 20 are the forward modeling equations of the image-
space wave-equation tomography problem using the generalized sources or shot-profile
schemes. They depend on the state variables ∆d, ∆u, and ∆r. Plessix (2006) de-
scribes how to compute the adjoint states using the augmented functional method-
ology. By introducing the adjoint-state variables λd, λu, and λr, the augmented
Lagrangian reads

L(∆d, ∆u, ∆r, λd, λu, λr; ∆s) = R
[

1
2
||∆r||2−〈

λd,
(
I−T↓) ∆d− ˜̃

DS′∆s

〉
−〈

λu,
(
I−T↓) ∆u− ˜̃

US′∆s

〉
−〈

λr, ∆r− S
(
Û∆d∗ + D̂′∆u

)〉
.

The adjoint-state variables are computed by taking the derivative of L with respect
to the state variables and equating to zero, which gives(

I−T↓)′ λd = Ûλr, (21a)(
I−T↓)′ λu = D̂λr, (21b)

λr = ∆r. (21c)

Notice that (
I−T↓)′ =

(
I−T↓′

)
=

(
I−T↑) (22)

corresponds to the recursive upward propagation operator. Therefore, equations 21a
and 21b can be written as

λp = T↑λd + Ûλr, (23a)

λu = T↑λu + D̂λr, (23b)

which correspond to the recursive upward propagation of the perturbed wavefields
resulting from the convolution of the wavefields computed with the current slowness
and the perturbed image.

Finally, the gradient of J is

∇sJ(s) = S

( ˜̃
D

′
λd +

˜̃
U

′
λu

)
. (24)

To compute the gradient, the adjoint-state wavefields, λd and λu, are upward propa-
gated and cross-correlated in time with the scattered wavefields.

NUMERICAL EXAMPLE

The gradient of the ISWET objective function computed in the previous section
can be used in a quasi-Newton optimization scheme. I use the L-BFGS-B bound
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constrained optimization algorithm (Nocedal and Wright, 2000) to invert for slowness
using the Marmousi model. A B-spline smoothing, with nodes spaced at 240 m in
x and 16 m in z, is applied to the gradient to prevent problems caused by poor
illumination and noise. I model 375 two-way shots with 24 m spacing using the
original Marmousi model of Figure 1a. The maximum offset is 6600 m.

The one-way shot profile image with the correct slowness model can be seen in
Figure 1b. The modeled data were also migrated using the background slowness of
Figure 2a to compute the background image of Figure 2b. The background slowness
differs from the true slowness in a limited region, as can be seen in Figure 3, which
shows the ratio between true and background slowness. When comparing the two
images, there is a clear pull-up effect at the center-bottom of the background image
caused by migrating with a velocity which is too slow.

Following Guerra et al. (2009), representative reflectors were selected from the
background image (Figure 4) to synthesize eleven image-space phase-encoded source
and receiver wavefields using the background slowness. Prior to modeling, the se-
lected reflectors were subjected to rotation according to the apparent geological dip
as previously mentioned. I estimate that, by using only eleven areal shots, the com-
putational cost decreased in 95% considering if the slowness optimization was carried
out with the original 376 shot-profiles.

The optimization stopped after 4 iterations comprising 41 function and gradient
evaluations. The optimized slowness model can be seen in Figure 5a. The optimized
slowness decreased as expected, but did not recover the details of the true slowness.
The smoothness of the optimized slowness is partially because of the B-spline filtering
of the gradient but also because image-space wave-equation tomography cannot solve
for the short wavelengths of the slowness model, as pointed out by Symes (2008).

The accuracy of the optimized slowness model can be evaluated by comparing
the computed images with true, background, and optimized slowness. The shot-
profile migration of the original shots using the optimized slowness is shown in Figure
5b. Notice that the pull-up effect, which occurs in the background image, is greatly
mitigated. In addition, reflectors are more focused in the image computed with
the optimized slowness than in the image computed with the background slowness.
Another slowness accuracy indicator is flatness of the reflectors in the ADCIGs. The
ADCIGs resulting from shot-profile migration of the original shots using, from top to
bottom, the true slowness, the background slowness and the optimized slowness are
shown in Figure 6. The reflectors computed with the optimized slowness are flatter
than those with the background slowness, demonstrating the greater accuracy of the
optimized slowness.

CONCLUSION

I showed a detailed derivation of the gradient of the objective function for the
image-space wave-equation tomography by means of the adjoint-state method. I
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Figure 1: (a) True slowness of the Marmousi model. (b) Zero-subsurface-offset section
of the one-way shot-profile migration with the true slowness model.[CR]
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Figure 2: (a) Background slowness. (b) Zero-subsurface-offset section of the one-way
shot-profile migration with the background slowness model.[CR]
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Figure 3: Ratio between the true and the background slowness.[ER]

Figure 4: Zero-subsurface-offset section showing the reflectors selected on the one-way
shot-profile migration with the background slowness model.[CR]
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Figure 5: (a) Optimized slowness after 4 iterations with 41 function and gradient
evaluations. (b) Zero-subsurface offset section of the one-way shot-profile migration
with the optimized slowness model.[CR]
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Figure 6: ADCIGs obtained with true slowness (top), background slowness (center),
and optimized slowness (bottom).[CR]
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used the augmented Lagrangian methodology, which clarifies the action of the dif-
ferent operators that compose the image-space wave-equation tomography operator.
The derivation is valid whether one considers migration of shot-profiles or general-
ized sources. Image-space phase-encoded gathers significantly accelerate image-space
wave-equation tomography. In addition to decreasing the computational cost, the
numerical example shows that image-space phase-encoded gathers can be used to
generate sufficiently accurate optimized slowness.
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