
IMAGE-SPACE WAVE-EQUATION TOMOGRAPHY IN
THE SHOT-PROFILE DOMAIN ACCORDING TO THE

ADJOINT-STATE METHOD

Image-space wave-equation tomography

Image-space wave-equation tomography aims to solve for the slowness model, s =
s(x), that minimizes the linearized objective function

J(s) =
1

2
||∆r||2 , (1)

where ∆r = ∆r(x,h) is the image perturbation which measures the goodness of the
slowness model. ∆r is computed either by applying wave-equation migration-velocity
analysis (WEMVA) (Sava and Biondi, 2004a,b) or differential-semblance optimization
(DSO) (Shen and Symes, 2008) operators to the image r = r(x,h). Here, these
operators are called indistinctively M. Therefore, the objective function reads

J(s) =
1

2
||Mr||2 . (2)

If M is independent on the slowness, the gradient of this objective function, evaluated
at the current slowness, ŝ = ŝ(x), is

∇J(s) =

(
∂r̂

∂s

)′∣∣∣∣
s=bs M′Mr̂. (3)

where ‘′’ denotes the adjoint and r̂ = r̂(x,h) is the image obtained with the current
slowness model. The linear operator ∂br

∂s
defines a mapping between the slowness

perturbation ∆s to the image perturbation ∆r, and it is called image-space wave-
equation tomographic operator.

The image-space wave-equation tomographic operator is composed of different
operators. However, this is not clear from the representation of equation 3. Therefore,
for a clear explanation of the operators involved, I use the adjoint-state method to
derive the gradient of the objective function in equation 2.

In shot profile migration, the source and receiver wavefields are propagated inde-
pendently and the image, rz = rz(x,h), at a depth level z, considering just one shot,
is computed by the crosscorrelation

rz(x,h) =
∑

ω

p∗z(x− h, ω)uz(x + h, ω), (4)

where pz(x, ω) is the source wavefield for a single frequency ω at horizontal coordinates
x = (x, y) ; uz(x, ω) is the receiver wavefield and h = (hx, hy) is the subsurface half-
offset, and ‘∗’ stands for the complex-conjugate. In a more compact notation, not
explicitly writing the dependencies on x and h, equation 4 can be written as:

rz = SP′
z(ω)uz(ω) = SUz(ω)p∗z(ω), (5)
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where P and U are convolutional matrices composed of (hx, hy)-shifted versions of
pz(x, ω) and uz(x, ω), respectively. Operator S corresponds to the summation over
frequency.

For subsequent depth levels, p(x, ω) is computed by means of the recursive down-
ward propagation {

pz+1(ω) = T ↓
z (ω, s)pz(ω)

p1(ω) = fs(ω)δ(x− xs),
(6)

where T ↓
z is the downward continuation operator, which is function of the slowness,

s, and fs(ω) is the source signature located at xs = (xs, ys, 0).

The downward continuation of the receiver wavefield is performed by{
uz+1(ω) = T ↓

z (ω, s)uz(ω)
u1(ω) = d(ω),

(7)

where d(ω) is the data at the surface. In equations 6 and 7, I omitted the dependencies
of the wavefield with respect to x.

In the image-space wave-equation tomography problem, the perturbed source and
receiver wavefields and image perturbations are used to compute the slowness pertur-
bation to update the current slowness model. From the perturbation theory, we have
that p + ∆p, u + ∆u and, consequently, r + ∆r are physical realizations with s + ∆s.
To the first order, these perturbed fields are given by

∆pz+1(ω) = T ↓
z (ω, s)∆pz(ω) + ∆T ↓

z (ω, s)pz(ω), (8)

∆uz+1(ω) = T ↓
z (ω, s)∆uz(ω) + ∆T ↓

z (ω, s)uz(ω), (9)

In equations 8 and 9, ∆T ↓
z is the scattering operator

∆T ↓
z (ω, s) = i

ω2s√
ω2s2 − |k|2

dz∆s. (10)

Its derivation is provided in the Apendix A.

The perturbed image is

∆rz = S (∆P′
z(ω)uz(ω) + P′

z(ω)∆uz(ω)) = S (Uz(ω)∆p∗z(ω) + P′
z(ω)∆Uz(ω)) . (11)

Notice that the perturbations are evaluated around the current slowness, ŝ. Therefore,
equations 8, 9 and 11 read

∆pz+1(ω) = T ↓
z (ω, ŝ)∆pz(ω) + p̃z(ω)∆sz, (12)

∆uz+1(ω) = T ↓
z (ω, ŝ)∆uz(ω) + ũz(ω)∆sz, (13)
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∆rz = S
(
Ûz(ω)∆p∗z(ω) + P̂′

z(ω)∆uz(ω)
)

. (14)

The scattered wavefields p̃z and ũz are given by

p̃z(ω) = i
ω2ŝ√

ω2ŝ2 − |k|2
dz p̂z(ω), (15)

and

ũz(ω) = −i
ω2ŝ√

ω2ŝ2 − |k|2
dz ûz(ω). (16)

The matrix representation for equations 12, 13, 14 is

∆p = T↓∆p + P̃S′∆s, (17)

∆u = T↓∆u + ŨS′∆s, (18)

∆r = S
(
Û∆p∗ + P̂′∆u

)
. (19)

where P̃ and Ũ are diagonal operators containing the scattered source and receiver
wavefields, respectively.

Equations 17, 18 and 19 are the forward equations of the image-space wave-
equation tomography problem using a shot profile scheme. They depend on the
state variables ∆p, ∆u and ∆r. The augmented functional reads

L(∆p, ∆u, ∆r, λp, λu, λr; ∆s) = R
[

1
2
||∆r||2−〈

λp,
(
I−T↓) ∆p− P̃S′∆s

〉
−〈

λu,
(
I−T↓) ∆u− ŨS′∆s

〉
−〈

λr, ∆r− S
(
Û∆p∗ + P̂′∆u

)〉
The adjoint state variables are computed by taking the derivative of L with respect
to the state variables and equal to zero, which gives(

I−T↓)′ λp = Ûλr, (20a)(
I−T↓)′ λu = P̂λr, (20b)

λr = ∆r. (20c)

Notice that (
I−T↓)′ =

(
I−T↓′

)
=

(
I−T↑) (21)
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corresponds to the upward propagation operator. Therefore, equations 20a and 20b,
can be written as

λp = T↑λp + Ûλr, (22a)

λu = T↑λu + P̂λr, (22b)

which correspond to the recursive upward propagation of the perturbed wavefields
resulting from the convolution of the wavefields computed with the current slowness
and the perturbed image.

The gradient of J is

∇sJ(s) = S
(
P̃′λp + Ũ′λu

)
. (23)

To compute the gradient, the upward propagated perturbed wavefields, λp and λu,
are crosscorrelated in time with the scattered wavefields.
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APPENDIX A

The perturbed wavefields satisfy the one-way wave equation linearized with respect to
the slowness. Take, for instance, the recursive solution of the one-way wave equation
for the source wavefield

dz+∆z = eikz∆zdz (A-1)

to be linearized with respect to the slowness evaluated around the background slow-
ness. The vertical wavenumber, kz, can be defined as the sum of the background
wavenumber, k̂z, and the wavenumber perturbation, ∆kz. By substituting this defi-
nition for kz into equation A-1 we get

dz+∆z = eibkz∆zei∆kz∆zdz

= ei∆kz∆zd̂z+∆z, (A-2)
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where

∆kz =
dkz

ds

∣∣∣∣
s=bs ∆s, (A-3)

and

dkz

ds

∣∣∣∣
s=bs =

ω2ŝ√
ω2ŝ2 − |k|2

,

where k = (kx, ky) is the spatial wavenumber vector.

The exponential in equation A-2 can be linearized using eiθ ≈ 1 + θ. With this
linearization and equation A-3, the linearized version of equation A-2 reads

dz+∆z = (1 + i
dkz

ds
∆s∆z)d̂z+∆z. (A-4)

By rearranging the terms we finally get

∆dz+∆z = i
dkz

ds
∆s∆zd̂z+∆z = eibkz∆z{idkz

ds
∆s∆zd̂z}. (A-5)

The perturbed source wavefield, ∆dz+∆z, in equation A-5 is computed by applying the
scattering operator, idkz

ds
∆s∆z, to the background source wavefield at the previous

depth level generating the scattered source wavefield. Then, the scattered source
wavefield is propagated to the next depth level using the background slowness. The
same reasoning can be applied to compute the perturbed receiver wavefield, which
gives

∆uz+∆z = e−ibkz∆z{−i
dkz

ds
∆s∆zûz}. (A-6)

APPENDIX B

In matrix form, for every depth level, the terms in the equations 12, 13, 14, 15 and
16 can be written as

∆p(ω) =


0

∆p2(ω)
...

∆pnz−1(ω)
∆pnz(ω)

 ; ∆u(ω) =


0

∆u2(ω)
...

∆unz−1(ω)
∆unz(ω)

 ; ∆r =


0

∆r2
...

∆rnz−1

∆rnz

 ;

p̃(ω) =


0

p̃2(ω)
...

p̃nz−1(ω)
p̃nz(ω)

 ; ũ(ω) =


0

ũ2(ω)
...

ũnz−1(ω)
ũnz(ω)

 ;
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P̂(ω) =


P̂1(ω) 0 . . . 0 0

0 P̂2(ω) . . . 0 0
...

...
. . .

...
...

0 0 . . . P̂nz−1(ω) 0

0 0 . . . 0 P̂nz(ω)

 ;

∆P(ω) =


0 ∆P2(ω) . . . 0 0
...

...
. . .

...
...

0 0 . . . ∆Pnz−1(ω) 0
0 0 . . . 0 ∆Pnz(ω)
0 0 . . . 0 0

 ;

∆U(ω) =


0 ∆U2(ω) . . . 0 0
...

...
. . .

...
...

0 0 . . . ∆Unz−1(ω) 0
0 0 . . . 0 ∆Unz(ω)
0 0 . . . 0 0

 ;

T↓(ω) =


0 T ↓

2 (ω) . . . 0 0
...

...
. . .

...
...

0 0 . . . T ↓
nz−1(ω) 0

0 0 . . . 0 T ↓
nz

(ω)
0 0 . . . 0 0

 ;

∆T↓(ω) =


0 ∆T ↓

2 (ω) . . . 0 0
...

...
. . .

...
...

0 0 . . . ∆T ↓
nz−1(ω) 0

0 0 . . . 0 ∆T ↓
nz

(ω)
0 0 . . . 0 0

 ;

In a furthermore compact notation, now for every frequency, we can write

∆p =


∆p(ω1)
∆p(ω2)

...
∆p(ωnω−1)
∆p(ωnω))

 ; ∆u =


∆u(ω1)
∆u(ω2)

...
∆u(ωnω−1)
∆u(ωnω))

 ;

p̃ =


p̃(ω1)
p̃(ω2)

...
p̃(ωnω−1)
p̃(ωnω)

 ; ũ =


ũ(ω1)
ũ(ω2)

...
ũ(ωnω−1)
ũ(ωnω)

 ;
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P̂ =


P̂(ω1) 0 . . . 0 0

0 P̂(ω2) . . . 0 0
...

...
. . .

...
...

0 0 . . . P̂(ωnω−1) 0

0 0 . . . 0 P̂(ωnω)

 ;

∆P =


∆P(ω1) 0 . . . 0 0

0 ∆P(ω2) . . . 0 0
...

...
. . .

...
...

0 0 . . . ∆P(ωnω−1) 0
0 0 . . . 0 ∆P(ωnω)

 ;

∆U =


∆U(ω1) 0 . . . 0 0

0 ∆U(ω2) . . . 0 0
...

...
. . .

...
...

0 0 . . . ∆U(ωnω−1) 0
0 0 . . . 0 ∆U(ωnω)

 ;

T↓ =


T↓(ω1) 0 . . . 0 0

0 T↓(ω2) . . . 0 0
...

...
. . .

...
...

0 0 . . . T↓(ωnω−1) 0
0 0 . . . 0 T↓(ωnω)

 ;

∆T↓ =


∆T↓(ω1) 0 . . . 0 0

0 ∆T↓(ω2) . . . 0 0
...

...
. . .

...
...

0 0 . . . ∆T↓(ωnω−1) 0
0 0 . . . 0 ∆T↓(ωnω)

 ;

The contribution of every frequency to the image perturbation is achieved by the
summation matrix, S,

S =
[

I(nxnz) I(nxnz) . . . I(nxnz) I(nxnz)
]
, (B-1)

composed of nω block-identity matrices of nxnz-dimension.
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