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Preface

The electronic version of this report! makes the included programs and applications available
to the reader. The markings [ER], [CR], and [NR] are promises by the author about the
reproducibility of each figure result. Reproducibility is a way of organizing computational
research that allows both the author and the reader of a publication to verify the reported
results. Reproducibility facilitates the transfer of knowledge within SEP and between SEP
and its sponsors.

ER denotes Easily Reproducible and are the results of processing described in the pa-
per. The author claims that you can reproduce such a figure from the programs,
parameters, and makefiles included in the electronic document. The data must either
be included in the electronic distribution, be easily available to all researchers (e.g.,
SEG-EAGE data sets), or be available in the SEP data library?. We assume you have
a UNIX workstation with Fortran, Fortran90, C, X-Windows system and the software
downloadable from our website (SEP makerules, SEPlib, and the SEP latex package),
or other free software such as SU. Before the publication of the electronic document,
someone other than the author tests the author’s claim by destroying and rebuilding
all ER figures. Some ER figures may not be reproducible by outsiders because they
depend on data sets that are too large to distribute, or data that we do not have
permission to redistribute but are in the SEP data library.

CR denotes Conditional Reproducibility. The author certifies that the commands are in
place to reproduce the figure if certain resources are available. The primary reasons for
the CR designation is that the processing requires 20 minutes or more, or commercial
packages such as Matlab or Mathematica.

NR denotes Non-Reproducible figures. SEP discourages authors from flagging their fig-
ures as NR except for figures that are used solely for motivation, comparison, or
illustration of the theory, such as: artist drawings, scannings, or figures taken from
SEP reports not by the authors or from non-SEP publications.

Our testing is currently limited to LINUX 2.6 (using the Intel Fortran90 compiler), but the
code should be portable to other architectures. Reader’s suggestions are welcome. More
information on reproducing SEP’s electronic documents is available online?.

"http:/ /sepwww.stanford.edu/private/docs/sep139
2http:/ /sepwww.stanford.edu/public/docs/sepdatalib/toc_html
3http://sepwww.stanford.edu/research/redoc/
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Blocky models via the L1/L2 hybrid norm

Jon Claerbout

ABSTRACT

This paper seeks to define robust, efficient solvers of regressions of L1 nature with two
goals: (1) straightforward parameterization, and (2) “blocky” solutions. It uses an
L1/L2 hybrid norm characterized by a residual R, of transition between L1 and L2 for
data fitting and another R, for model styling. Both the steepest descent and conjugate
direction methods are included. The 1-D blind deconvolution problem is formulated in
a manner intended to lead to both a blocky impedance function and a source waveform.
No results are given.

INTRODUCTION

I’ve seen many applications improved when least-squares (L2) model fitting was changed
to least absolute values (L1). I've never seen the reverse. Never-the-less we always return
to L2 because the solving method is easier and faster. It does not require us to specify
parameters of numerical analysis that are unclear how to specify.

Another reason to re-investigate L1 is its natural ability to estimate blocky models.
Sedimentary sections tend to fluctuate randomly, but sometimes there is a homogeneous
material continuing for some distance. A function with such homogeneous regions is called
“blocky”. The derivative of such a function is called “sparse”. L2 gives huge penalties to
large values and minuscule penalties to small ones, hence it never really produces sparse
functions and their integrals are never really blocky. If we had an easy, reliable L1 solver,
we could expect to see many more realistic solutions.

There are reasons to abandon strict L1 and revert to an L1/L2 hybrid solver. A hybrid
solver has a parameter, a threshold, at which L2 behavior transits to L1. We have good
reasons to use two different hybrid solvers, one for the data fitting, the other for the model
styling (prior knowledge or regularization). Each requires a threshold of residual, let us call
it Ry for the data fitting, and R,,, for the model styling. Processes that require parameters
are detestible when we have a poor idea of the meaning of the parameters (especially if they
relate to numerical analysis), however the meaning of the thresholds R; and R, is quite
clear. When we look at a shot gather and see about 30% of the area is covered with ground
roll, it is clear we would like to choose R4 to be at about the 70th percentile of the fitting
residual. As for the model styling, if we’d like to see blocks about 20 points long, we’d like
our spikes to average about 20 points apart, so we would like R,,, about the 95th percentile
allowing 5% of the spikes to be of unlimited size, while the others small.

I was first attracted to strict L1 by its potential for blocky models. But then I realized
for each nonspike (zero) on the time axis, theory says I would need a “basis equation”. That
implies an immense number of iterations, so it is unacceptable in imaging applications. With
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the hybrid solvers, instead of exact zeros we have a large region driven down by the L2 norm
and a small L1 region where large spikes are welcomed.

MODEL DERIVATIVES

Here is the usual definition of residual r; of theoretical data > y F; jm; from observed data
d;

T = (Z F; jm;) — d; or r=Fm—d. (1)
J

Let C() be a convex function (C” > 0) of a scalar. The penalty function (or norm of
residuals is expressed by

N(m) = ZC(W) (2)

We denote a column vector g with components g; by g = vec(gi). We soon require the
derivative of C'(r) at each residual r;:

3)

We often update models in the direction of the gradient of the norm of the residual.

o ON . 80(7"1) 87"1' . ) ‘ _ ’

Define a model update direction by Am = F'g. Since r = Fm — d, we see the residual
update direction will be Ar = FAm. To find the distance « to move in those directions

m — m+oaAm (5)
r «— r+oaAr (6)

we choose the scalar o to minimize
N(a) = Z C(ri + alAry;) (7)
i

The sum in equation (7) is a sum of “dishes”, shapes between L2 parabolas and L1 V’s.
The i-th dish is centered on o« = —r;/Ar;. It is steep and narrow if Ar; is large, and low
and flat where Ar; is small. The positive sum of convex functions is convex. There are no
local minima. We can get to the bottom by following the gradient. Next we consider some
choices for convex functions. We’ll need them, their first and second derivatives.
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Some convex functions and their derivatives

LEAST SQUARES:

C = r*)2
' = r
" =1 > 0
L1 NORM:
¢ = I
C'" = sgn(r)
C" = 0oroo >0
HYBRID:
C = R*\/1+7r2/R2-1)
=
V1+7r2/R?
1
C// — - > 0
(1+7r2/R2)3/2 -
HUBER:

o — {T’—R/Q ifr]ZR}

r?/2R otherwise

o sgn(r) if |r| > R
N r/R  otherwise

o {OOI‘OO if]r|2R} > 0

1/R otherwise

(17)
(18)

(19)

I have scaled Hybrid so it naturally approaches the least squares limit as R — oo. As

R — 0, it tends to C' = R|r|, scaled L1.

Because of the erratic behavior of C” for L1 and Huber, and our planned use of second
order Taylor series, we will not be using L1 and Huber norms here. Also, we should prepare
ourselves for danger as HYBRID approaches the L1 limit. (I thank Mandy for reminding
me of the infinite second derivative and I thank Mohammad and Nader for demonstrating

numerical erratic behavior.)

PLANE SEARCH

The most universally used method of solving immense linear regressions such as imaging
problems is the Conjugate Gradient (CG) method. It has the remarkable property that in
the presence of exact arithmetic, the exact solution is found in a finite number of iterations.
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A simpler method with the same property is the Conjugate Direction method. It is debatable
which has the better numerical roundoff properties, so we generally use the Conjugate
Direction method as it is simpler to comprehend. It says not to move along the gradient
direction line, but somewhere in the plane of the gradient and the previous step. The best
move in that plane requires us to find two scalars, one « to scale the gradient, the other 3
to scale the previous step. That is all for L2 optimization. We proceed here in the same
way with other norms and hope for the best.

So here we are, embedded in a giant multivariate regression where we have a bivariate
regression (two unknowns). From the multivarate regression we are given three vectors in
data space. 7, g; and s;. You will recognize these as the current residual, the gradient (Ar;),
and the previous step. (The gradient and previous step appearing here have previously been
transformed to data space (the conjugate space) by the operator F.) Our next residual will
be a perturbation of the old one.

ri = T+ ag + Bsi (20)

We seek to minimize by variation of («, 3)

N(a,8) =Y C(Fi+ agi+ Bs:) (21)
Let the coefficients (C;, C!, C') refer to a Taylor expansion of C(r) about 7;.

N(a, B) ZZ Ci + (agi+ Bs:)C] + (agi+ Bs:)*Cy /2 (22)

7

We have two unknowns, («, 3) in a quadratic form. We set to zero the « derivative of the
quadratic form, likewise the § derivative getting

[8] = > C’[g] + cé’{[ Z%](agi + ﬁsi)}(agi + Bs;) (23)

7

resulting in a 2 x 2 set of equations to solve for a and (.

mel(B)e s }[5] - -zalz] e

)

The solution of any 2 x 2 set of simultaneous equations is generally trivial. The only
difficulties arise when the determinant vanishes which here is easy (luckily) to understand.
Generally the gradient should not point in the direction of the previous step if the previous
move went the proper distance. Hence the determinant should not vanish. Practice shows
that the determinant will vanish when all the inputs are zero, and it may vanish if you do
so many iterations that you should have stopped already, in other words when the gradient
and previous step are both tending to zero.

Using the newly found («, 3), update the residual 7; at each location (and update the
model). Then go back to re-evaluate C; and C/ at the new r; locations. Iterate.



SEP-139 Blocky models: L1/L2 hybrid norm 5

In what way do we hope/expect this new bivariate solver embedded in a conjugate
direction solver to perform better than old IRLS solvers? After paying the inevitable price,
a substantial price, of computing F'r and F Am the iteration above does some serious
thinking, not a simple linearization, before paying the price again.

If the convex function C(r) were least squares, subsequent iterations would do nothing.
Although the Taylor series of the second iteration would expand about different residuals
r; than the first iteration, the new second order Taylor series are the exact representation
of the least squares penalty function, i.e. the same as the first — so the next iteration goes
nowhere.

Will this computational method work (converge fast enough) in the L1 limit? T don’t
know. Perhaps we’ll do better to approach that limit (if we actually want that limit) via
gradually decreasing the threshold R.

BLOCKY LOGS: BOTH FITTING AND REGULARIZATION

Here we set out to find blocky functions, such as well logs. We will do data fitting with a
somewhat L2-like convex penalty function while doing model styling with a more L1-like
function. We might define the composite norm threshold residual R4 for the data fitting at
the 60th percentile, and that for regularization seeking spiky models (with blocky integrals)
as R, at the 5th percentile.

The data fitting goal and the model regularization goal at each z is independent from
that at all other z values. The fitting goal says the reflectivity m(z) should be equal to
its measurement d(z) (the seismogram). The model styling goal says the reflectivity m(z)
should vanish.

~ ri(z) = m(z) —d(z) (25)
~ rm(z) = em(2) (26)

These two goals are in direct contradiction to each other. With the L2 norm the answer
would be simply m = d/(1 + €2). With the L1 norm, the answer would be either m = d or
m = 0 depending on the numerical choice of €. Let us denote the convex function and its
derivatives for data space at the residual as (B, B', B”) and for model space as (C,C’,C").
Remember, m and d, while normally vectors, are here scalars (independently for each z).

loop over all time points {

m=d/(1+ €?) # These are scalars!

loop over non-linear iterations {
rg=m—d
Tm =m
Get derivatives of hybrid norm B’'(ry) and B”(r;) for data goal.
Get derivatives of hybrid norm C’(r,,) and C”(ry,) for model goal.
# Plan to find o to update m =m + «
# Taylor series for data penalty N(ry) = B + B'a + B"a?/2
# Taylor series for model penalty N(r,,) = C + C'a + C"a?/2
#0=2(N(rq) +eN(ry))
a=—(B' +eC")/(B"+eC")
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m=m+«
} end of loop over non-linear iterations
} end of loop over all time points

To help us understand the choice of parameters Ry, R,,, and ¢, We examine the theo-
retical relation between m and d implied by the above code as a function of € and R,, at
R; — 00, in other words, when the data has normal behavior and we are mostly interested
in the role of the regularization drawing weak signals down towards zero. The data fitting
penalty is B = (m — d)?/2 and its derivative B’ = m — d. The derivative of the model
penalty (from equation (15)) is C" = m/\/1+ m?/R2,. Setting the sum of the derivatives

to zero we have

0 = B+eC = m—d+—— (27)

V1+m2/R2
This says m is mostly a little smaller than d, but it gets more interesting near (m,d) =~ 0.
There the slope m/d = 1/(1 + €) which says an € = 4 will damp the signal (where small) by
a factor of 5. Moving away from m = 0 we see the damping power of ¢ diminishes uniformly
as m exceeds R,,.

UNKNOWN SHOT WAVEFORM

A one-dimensional seismogram d(t) is unknown reflectivity c(¢) convolved with unknown
source waveform s(t). The number of data points ND=NC is less than the number of
unknowns NC+NS. Clearly we need a ”smart” regularization. Let us see how this problem
can be set up so reflectivity c(t) comes out with sparse spikes so the integral of ¢(t) is blocky.

This is a nonlinear problem because the convolution of the unknowns is made of their
product. Nonlinear problems elicit well-warranted fear of multiple solutions leading to us
getting stuck in the wrong one. The key to avoiding this pitfall is starting “close enough” to
the correct solution. The way to get close enough (besides luck and a good starting guess)
is to define a linear problem that takes us to the neighborhood where a nonlinear solver can
be trusted. We will do that first.

Block cyclic solver

In the Block Cyclic solver (I hope this is the correct term.), we have two half cycles. In
the first half we take one of the variables known and the other unknown. We solve for
the unknown. In the next half we switch the known for the unknown. The beauty of this
approach is that each half cycle is a linear problem so its solution is independent of the
starting location. Hooray! Even better, repeating the cycles enough times should converge
to the correct solution. Hooray again! The convergence may be slow, however, so at some
stage (maybe just one or two cycles) you can safely switch over to the nonlinear method
which converges faster because it deals directly with the interactions of the two variables.

We could begin from the assumption that the shot waveform is an impulse and the
reflectivity is the data. Then either half cycle can be the starting point. Suppose we
assume we know the reflectivity, say c, and solve for the shot waveform s. We use the
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reflectivity ¢ to make a convolution matrix C. The regression pair for finding s is

0 ~ Cs — d (28)
0 ~ ¢€lIs (29)

These would be solved for s by familiar least squares methods. It’s a very easy problem
because s has many fewer components than ¢. Now with our source estimate s we can
define the operator S that convolves it on reflectivity c.

The second half of the cycle is to solve for the reflectivity c. This is a little trickier. The
data fitting may still be done by an L2 type method, but we need something like an L1
method for the regularization to pull the small values closer to zero to yield a more spiky

c(t).

0 12 Iqg = Sc — d (30)
0 X1 I'm = Ic (31)

Normally we expect an €. in equation (31) but now it comes in later. (It might seem that the
regularization (29) is not necessary, but without it, ¢ might get smaller and smaller while
s gets larger and larger. We should be able to neglect regression (29) if we simply rescale
appropriately at each iteration.) We can take the usual L2 norm to define a gradient vector
for model perturbation Ac = S’ry. From it we get the residual perturbation Ary; = SAc.
We need to find an unknown distance a to move in those directions. We take the norm of
the data fitting residual, add to it a bit € of the model styling residual, and set the derivative
to zero.

0 = (?aa [Na(rg +a Ar) + eNp(c+ aAc)] (32)

We need derivatives of each norm at each residual. We base these on the convex function
C(r) of the Hybrid norm. Let us call these A; for the data fitting, and B; for the model
styling.

Ai = C(Rd, TZ‘) (33)
Bi = C(Rm, Ci> (34)
(Actually, we don’t need A; (because for Least Squares, A, = r; and A} = 1), but I include

it here in case we wish to deal with noise bursts in the data.) As earlier, expanding the
norms in Taylor series, equation (32) becomes

0 = Y A Ar + a) Al A} + 6(231/' Aci + a) B AC?) (35)

which gives the o we need to update the model ¢ and the residual ry.

S AL AT + ey Bl Ag
> AT AT? + ey B AC?

(0% =

(36)

This is the steepest descent method. For the conjugate directions method there is a 2 x 2
equation like equation (24).
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Non-linear solver

The non-linear approach is a little more complicated but it explicitly deals with the inter-
action between s and c so it converges faster. We represent everything as a “known” part
plus a perturbation part which we will find and add into the known part. This is most
easily expressed in the Fourier domain.

0 ~ (S+AS)(C+AC) — D (37)
Linearize by dropping ASAC.
0 ~ SAC 4+ CAS + (CS-D) (38)

Let us change to the time domain with a matrix notation. Put the unknowns AC and AS in
vectors € and S. Put the knowns C and S in convolution matrices C and S. Express C'S—D
as a column vector d. Its time domain coefficients are dy = coso—dp and di = cos1+c150—di,
etc. The data fitting regression is now

0 ~ Sc+Cs+d (39)

This regression is expressed more explicitly below.

so - . . . . . co . . - [ do 7
C1
s1 s . . . . . a c . & dq
S2 S1 SO . . . . Cyr C1 (O 53 d2
S2 S1 SO . . . c3 C2 (1 : d3
4
0 =~ . . 89 S8 8 . . ci1 €3 C : + da (40)
5
S2 S1 SO . Cy C4 C3 c d5
6
S92 81 SS9 Cg Cy5 C4 = dﬁ
S0
S92 51 . Cg Ch ~ d7
S
L S92 . . Ce | ~1 L dg |
L S2

The model styling regression is simply 0 ~ C' + AC, which in familiar matrix form is
0 ~ Ic+c (41)

It is this regression, along with a composite norm and its associated threshold that makes
¢(t) come out sparse. Now we have the danger that ¢ — 0 while s — oo so we need one

more regression
0 ~ IsS+s (42)

We can use ordinary least squares on the data fitting regression and the shot waveform

o - [x]- 9]

0 ~ r = Fm + d (44)

regression. Thus

wm N
| S
+
| —

Qul
| S|
—
=
w
~—

The model styling regression is where we seek spiky behavior.

0 ~ ro =1&+¢ (45)
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The big picture is that we minimize the sum

IEligIl Ng(r) + eNm(re) (46)

Inside the big picture we have updating steps

Am = F'r (47)
gqg=Ar = FAm (48)
We also have a gradient for changing ¢, namely g. = —¢. (I need to be sure gq and g. are

commensurate. Maybe need an € here.) One update step is to choose a line search for «
ngn Ny(r + agq) + eNpm(C+ age) (49)

That was steepest descent. The extension to conjugate direction is straightforward.

As with all nonlinear problems there is the danger of bizarre behavior and multiple
minima. To avoid frustration, while learning you should spend about half of your effort
directed toward finding a good starting solution. This normally amounts to defining and
solving one or two linear problems. In this application we might get our starting solution
for s(t) and ¢(t) from conventional deconvolution analysis, or we might get it from the block
cyclic solver.
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Generalized-norm conjugate direction solver

Mohammad Maysami and Nader Moussa

ABSTRACT

In optimization problems, the L1 norm outperforms the Ly norm in presence of noise
and when a blocky or sparse solution is appropriate. These applications call for a solver
that can redefine the optimum criteria for a particular problem. We have implemented
a generalized norm solver that is useful for a wide range of problems. Our solver
modularizes the norm function so that it can easily be interchanged to experiment
with different schemes on any particular geophysical problem. We implement Li, Lo,
and two additional norms: Huber and Hybrid L;/Ls. These are useful for problems
that seek the benefits of both the L and Lo norms.

INTRODUCTION

Strict L norm optimization has numerous applications in geophysical inversion problems.
Examples include solving for sparse functions, such as those that describe blocky, layered
geology. However, we find that approximations to Lj, or modified L;/Ls systems, are
more computationally feasible than pure L; solutions. These non-strict Li/Ls norms —
the Huber (Huber, 1973; Guitton, 2000) and Hybrid norms — still satisfy our desire to find
sparse-functions, and are suitable for most of our geophysical needs.

For many years, SEP has relied on a single incarnation of the conjugate-direction descent
solver. This code is based on work by Claerbout (2008). For some time in the 1990s, SEP
also used a competing least squares approach, LSQR, developed by Paige and Saunders
(1982). Because numerical optimization is such an embedded part of many geophysical
algorithms, it is extremely desirable to have a backward-compatible program framework that
can continue to work within these decades-old codes. For this reason, we chose to implement
our solver with the same interface as the conjugate-direction Ly solver (Claerbout, 2008).
Our new solver implements a generalized definition of the norm used for minimization.

It should be noted that the term “norm” is used for convenience; whereas in fact,
some of the numeric measures under consideration do not strictly satisfy the necessary
mathematical criteria to be a proper norm. Notably, the Huber and Hybrid norms exhibit
non-linearity with regard to a scalar multiplication (Bube and Langan, 1997). We will use
this terminology for simplicity, but the cautious reader should note that these functions do
not satisfy all necessary properties of a norm.

We considered many solver options in our original quest for a numeric solution to the
strict L optimization problem. We investigated a weighted-median algorithm to descend to
the Li-sense minimum. Early development showed that, despite the theoretical promise of
the weighted-median methodology, it did not suitably achieve the desired solution on non-
trivial test problems. This work led to development of a new solver, discussed below, based

11
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on theory developed in Claerbout (2009). This solver is based on a generalized plane-search
using Taylor series expansion of the norm.

In this paper, we will describe our implementation of this solver framework. It is based
on SEP’s conjugate-direction Lgy solver, but it also allows us to substitute different norms,
including L; and our non-strict Ly /L9 norms. First we will review the available norms which
can be used as the optimization criteria. Then we will discuss the mechanics of our new
solver framework and describe a technique for iterative plane-search, potentially enabling
faster convergence for certain classes of problems. Finally, we will reference applications
which are described in other SEP reports (Li and Maysami, 2009; Wong et al., 2009).

NORM OPTIONS

Our solver framework allows easy interchangeability between several norms. Although the
code allows easy switching of the optimization measure, we recommend a thorough under-
standing of the theoretical and numerical caveats that result from the application of each
solver criterion.

Norm Description

L2 Conventional Lo norm, utilizing the new solver framework

L1 L1 norm with discontinuous 1% and 2"¢ order derivatives
Huber Huber L;/Ls norm with with 1t order derivative continuity
Hybrid L1/ Ls hybrid norm with 1% and 2"¢ order derivative continuity

The equations below summarize the analytical formulation for the listed norms above.
C, C',and C"” represent the norm function, its first-order derivative and its second-order
derivative, respectively. Figure 1 shows these norm functions along with their derivatives.
Note discontinuous derivatives and zero-valued curvatures in some cases. These analytical
forms are used in the Taylor series expansion for the adapted conjugate-direction plane-
search.

L2 (Least Squares):

C(r) = r?/2
c'(ry = r (1)
c"(r)y = 1
L1:
C(r) = |rl
C'(r) = sen(r) (2)

C"(r) = 0 or oo
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Huber:
- 2 >1
cir) = |7"2| |re]/ 7 /re| >
/21y Ir/r| < 1
Cl(’l") — sgn(r/rt) |T‘/Tt| Z 1 (3)
r/T Ir/r| < 1
>
C//(’I”) — O |7‘/7“t‘ - 1
1/ry |r/r| < 1
Hybrid:

C(r) = r? <m—1)

r

C'(r) = W (4)
C,/(T) — %
(L+7r2/rf)e

The choice of norm is specified as an input argument to our solver. A further benefit
of this implementation is that other norms can be added with minimal modification to the
overall solver framework. To add a new norm, all that is necessary is adding the appropriate
definition of the norm and its derivatives in the code.

SOLVER INTERNAL MECHANISMS

In any optimization scheme, we always attempt to minimize some measure of a data or
model residual, r. This measure, C(r), is usually a convex function (commonly the Lo
norm, for least-squares fitting). For our solver, C(r) can be any of the norms listed in
previous section. As proposed by Claerbout (2009), the numerical value of a norm at
an updated residual value, C'(rz) can be estimated based on a second-order Taylor series
decomposition at point ry:

(rg —11)

1) ey 4 20 ®)

C(rs) ~ C(r1) + 51

where 73 is the point in a close neighborhood of r1. With this generalization, we can conduct
an iterative plane-search at any point ro, without re-evaluating the forward operator. For
operators with a high-op count per sample this is a less costly by finding a more optimal
update to the solution.

Iterated Plane-Search

In the conjugate-direction descent (Claerbout, 2008), the update in the model and residual
is defined by a linear combination of the current gradient of the objective function and the
direction of the previous update step. However, this update can be iterated inside an inner
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Figure 1: Norm functions and their first and second derivatives plotted for r =
—250,250 interval, with 4 = 100 where applicable. Rows from top to bottom are
representing (a)Le, (b) Li, (c) Huber, and (d) Hybrid. Columns from left to right
are representing norm function, first-order derivative, second-order derivative. [ER]
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loop, assuming a linearization of the gradient around the current residual. Our algorithm
can perform an iterated search in the plane defined by the current gradient and the previous
update step. This search can locate the optimal update without a full re-evaluation of the
gradient operator. In practice, this is equivalent to finding the solution of a 2 x 2 system
of equations, where the unknowns are the step lengths in the direction of the gradient g(m)
and the previous step s(™.

Taylor series expansion of the objective function around the initial residual value, as-
sumes a small local neighborhood for the plane-search. We re-calculate this approximation
at every inner iteration; this is an essential element of the plane-search, to ensure a reason-
able degree of accuracy without a full re-computation of the forward operator in the main
body of solver.

Algorithm Pseudo-code

The steps of actual solver have a structure very similar steps as the Lo solver. The chief
difference lies in the generalization to allow for different norms in the gradient calculation.
The generalized form of the gradient for a given norm C(-) is given by

g™ = Am = F7T C'(r), (6)

where F' is the forward operator, m is the model value and g(m) is the gradient. In addition,
our code allows for an iterative plane-search to update r, the intermediate estimated resid-
ual. The pseudo-code in Algorithm 1 summarizes the implementation for a simple solver
(see Claerbout (2009) for more details). The benefit of our framework is that it can be easily
modified to allow regularization and preconditioning without extensively changing the main
solver algorithm. Such modifications primarily affect the stepper code. Fortran implemen-
tations of plane-search stepper function for both conjugate-direction and our generalized
norm stepper are given in the appendices. Note that we approximate the data-space value
of the gradient throughout the entire plane-search by a constant, to avoid re-evaluating the
forward operator every iteration.

Fg" ~ Faf" (7)

i
This assumption forces our plane-search to remain in a local neighborhood around ry, which
is the desired outcome for this local approximation anyway.

NEW EXTERNAL PARAMETERS

Setting threshold with percentile

The benefit of a mixed L; /Ly norm is that small residuals can be optimized in an Lo sense
while large residuals are treated by Lq. This requires a definition of “small residual”; how
small is “small”?

Our implementation addresses this issue with a numerical parameter, r;. This is the
threshold for transition between L; and Lo in Huber and Hybrid norms. According to
the analytic definition of each norm, r; adjusts the crossover point. Needless to say, pure
L1 and Lo have no such transition. To reduce the problem-specific dependency of 74, we
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Algorithm 1 Generalized Norm Solver Algorithm

m = 1my
S(m)7s(d) =0
Am=20
Ar =0
a=0,8=0

I Main iteration loop
for iter = 1,niter  do
r =Fm-d

gm =Am =F C'(r)
gld = Ar =F g™

! Plane-search loop
for i = 1,psiter do

I Solve for «, 3

@
> Cl() (jzd>> (o

II' Gradient in model space
I Gradient in data space

s§d>)] o -z (92?)

smM — Am =« g(m) + 3 s(m) !l update solution step
s — Ar =a g(d) + 0 s(@) I update residual step

m =m + s
r =r+s@

! update solution

I update residual

it S [|s"™ /m;| <1076 then

Quit plane-search iteration loop

end if
end for

end for
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have configured our solver to compute this threshold based on a user-defined percentile. By
switching to percentile, we retain a physical meaning for this user-specified parameter. It is
possible to use separate thresholds, and even different norms, for the model- and data-fitting
goals of a general regularized or preconditioned optimization problem.

Plane-search iteration count

Our iterative plane-search adds additional flexibility if the user so desires. The conventional
conjugate-direction descent stepper (Claerbout, 2008) lacks this feature since it only searches
the plane of the gradient and the previous step once. To utilize our plane-search the user may
specify another value for this parameter, allowing the solver to scan the local neighborhood
around the internally-computed residual values. When the plane-search iteration is greater
than one, the solver will estimate that many model updates between each full function
evaluation. This is particularly useful if the forward-operator is computationally expensive.

SUMMARY

We have provided this implementation of the generalized norm solver to SEP for bench-
marking and testing on a variety of sample problems. These experiments have been docu-
mented in separate SEP reports which focuses on the geophysical ramifications of the L
and modified L; optimization criteria. In conclusion, our solver has been designed to be
interchangeable with existing codes, requiring minimal code modification. We hope this
will encourage other researchers inside and outside SEP to experiment with these available
optimization objectives.

APPENDIX A: ANALYTICAL DERIVATION OF PLANE-SEARCH
STEP SIZES

This appendix shows the details on generalization of plane-search algorithm for a general
norm (or measure) C(-). As discussed previously and by Claerbout (2009), we use Taylor
series expansion to find analytical forms for the step sizes in the plane-search algorithm.
We form the updates in the residual value r by a linear combination of the gradient g(®
and the previous step update of the residual s(@, i.e. r = r + ag® + 8s(@. Then the misfit
objective function E(r) is given by

E(r) =Y C(r; + ag® + s\”)

(0?4349’ ®
21 C(ri)

(d) (d)
@) 1 g s
- E C(r) + @9 TS5 T b5 C'(ry) +

where r; is the residual from the current iteration. The Taylor series expansion in Equation
8 lets us find analytical derivatives of the misfit function E(r) with respect to both o and
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0 as follows:

OFE

0 = S gD ) + (0 gl + 8 5 )glVC" (1) = 0, (9)
OF (d) o (d) (d)y (@) ~n

35 = a0+ e + 550" =0 (10)

By setting these derivatives to zero and solving the 2 x 2 system of equations we find an
optimal step size in both directions g(d) and s . The equation below shows the solutions
a and [ for this system of equations in a simplified notation.

san|(@)6r @)f--san(f) o

APPENDIX B: FORTRAN CODES FOR CGSTEP AND
GENERALIZED CGNORM PLANE-SEARCH STEPPER

This appendix includes the fortran codes for cgstep.£90 and cgnorm.£90. Note that type
of norm and threshold are set inside an initialization subroutine which is called prior to
stepper call.

cgstep.f90

integer function cgstep(forget X, g, Irr, gg)
real, dimension (:) :: x, g, rr, gg
logical :: forget
double precision :: alfa, beta, determ
double precision :: sds, gdg, gds, gdr, sdr
if ( .not. allocated (s)) then

forget = .true.

allocate ( s (size ( x)))
allocate (ss (size (rr)))
end if
if ( forget) then
s = 0.
ss = 0.
beta = 0.d0 ! steepest descent
if ( dot_-product(gg, gg) .eq. 0 ) then
call erexit (’cgstep: grad vanishes identically 7)
end if
alfa = — sum( dprod( gg, rr)) / sum( dprod(gg, gg))
else
gdg = sum( dprod( gg, gg))
! search plane by solving 2-by-2
sds = sum( dprod( ss, ss))
! G . (R - Gxalfa - Sx*beta) = 0
gds = sum( dprod( gg, ss))
! 8 . (R - Gxalfa - Sx*beta) 0
if ( gdg.eq.0. .or. sds.eq.0.) then
cgstep =1
return
end if
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determ = gdgxsds * max(1.d0—(gds/gdg)*x(gds/sds) ,1.d—12)

gdr = — sum( dprod( gg, rr))

sdr = — sum( dprod( ss, rr))

alfa = ( sds % gdr — gds x sdr ) / determ

beta = (—gds x gdr + gdg * sdr ) / determ
end if
s = alfa x g 4+ beta x s ! update solution step
ss = alfa * gg + beta * ss ! update residual step
X = X+ s ! update solution
rr = rr + Ss ! update residual
forget = .false.
cgstep = 0

end function

19

cgnorm.f90

subroutine cgnorm_init (rthr ,norm, psiter)
! Initialize CGNORM Stepper with r_thr, norm type and psiter_in

Arguments IN:

]

!

! rthr : RBAR or R_THR for norm

! norm_in : Norm ype to be used (Hybrid or Huber)

! psiter_in : Number of Plane-search iterations on Alpha,Beta
]

real it rthr

integer 11 psiter

character (10) :: norm

optional :: psiter ,norm

ps_norm="huber”
if (present(norm)) then
pS_norm=norm

end if

ps-iter=1

if (present(psiter)) then
ps-iter=psiter

end if

rt = abs(rthr) ! Rt is positive
if (ps_norm (1:5)=—"huber” .or. ps_norm (1:6)=—"hybrid”) then
if (rt==0.0) call erexit(’r_thr = 0. is not a valid choice.’)
endif

end subroutine

integer function cgnorm( forget, x, g, rr, gg)
! Iterative Plane-Search Stepper function
! for different norms (Hybrid, Huber, etc.)

Arguments:

X, g . x, dx

rr,gg : R, dR

forget : set steepest-decsend if true and CG-direction if false
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Output Flag (cgnorm):

]
! 2 : Exit

! 1 : Exit with vanishing gradient status

! 0 : Done without any exit or error

]

double precision, dimension(:), allocatable :: sds, gdg, gds
double precision, dimension(:), allocatable :: ¢0,cl,c2
real , dimension(:), allocatable :: check

real , dimension (:) i1 X, g, rr, gg

logical :: forget

double precision :: alfa, beta, determ

double precision :: c2dgg,c2dss ,c2dgs,cldg,clds

integer :: i,ps,stat

cgnorm = 2

allocate (cO(size(rr)),cl(size(rr)),c2(size(rr)))
allocate (gdg(size(rr)),sds(size(rr)),gds(size(rr)))
allocate ( check(size( x)))

if( .not. allocated(s)) then
forget = .true.
allocate ( s(size( x)))
allocate (ss(size(rr)))
end if

! Loop over alpha , Beta
do ps=1,ps_iter

! === Compute Norm and its derivatives

if (ps-norm (1:2)="12"7) then
stat = 12 (rr, c0,cl,c2)

else if (ps.norm (1:2)="11") then
stat = 11 (rr, c0,cl,c2)

else if (ps.norm (1:6)=="hybrid”) then
stat = hybrid (rr, c0,cl,c2)

else
stat = huber (rr, c0,cl,c2)

end if

! === Pick Line Search or Plane Search

if ( forget) then

! Steepest Descent

S = 0.

SS = 0.

beta = 0.d0

gdg = dprod(gg,gg)

c2dgg = sum(dprod(c2,gdg))

!'!! Discard C" if C"= 0 (OPTIONAL)
! if (sum(abs(c2))==0.0) c2dgg=sum(gdg)

if ( c2dgg = 0.0 ) then

cgnorm = 1

call erexit ('NORM.CGSTEP: Gradient vanishes: C’xggxgg=0.")
end if

alfa = — sum( dprod(cl,gg)) / c2dgg
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else
! Plane Search for alpha & beta
cldg = — sum(dprod(cl,gg)) ! cldg = —-C’xG
clds = — sum(dprod(cl,ss)) ! clds = —C’*S
gdg = dprod(gg,gg) ! search plane by solving
sds = dprod(ss,ss) I C"xG. (Gxalfa + Sxbeta)
gds = dprod(gg, ss) ! C"*S. (G*alfa + S*beta)
c2dgg = sum(dprod(c2,gdg)) ! c2dgg = C"*G*G
c2dss = sum(dprod(c2,sds)) ! c2dss = C"*S*S
c2dgs = sum(dprod(c2,gds)) ! c2dgs = C"*GxS

1if (sum(abs(c2))==0.0) then

! 11! Discard C" if C"= 0 (OPTIONAL)

! c2dgg=sum(gdg)
! c2dss=sum(sds)
lend if

if ((c2dgg==0.d0) .OR. (c2dss==0.d0)) then

cgnorm = 1;

write (0,*) ’'Plane Search
C’"xgg*xgg=0 OR C”*xss*ss=0.’
return

end if

Gradient va

nishes:

2—by—-2
= —C'xG
= -C7*S
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determ = c2dgg * c2dss % max(1.d0 — (c2dgs/c2dgg)*(c2dgs/c2dss) ,1.

d—12)

alfa = ( c2dss % cldg — c2dgs * clds ) / determ
beta = (—c2dgs * cldg + c2dgg * clds ) / determ

end if

! Updates on model and residual
s = alfa x g + beta x s
ss = alfa * gg + beta * ss

check=0.

do i=1,size(x)
check=check+(s(i)/x(1))=*x2

end do

if (check< 1l.e—6) exit

X = X4+ s

rr = rr -+ Ss

forget = .false .;

'write (0,*) "Alpha, Beta::" ,alfa

lwrite (0,*) "Determ::" ,determ
end do

deallocate (c0,cl,c2)
deallocate (gdg,sds,gds)
cgnorm = 0

end function

! update
! update

! update
! update

,beta

solution
residual

solution
residual

step
step
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Dix inversion constrained by Ll-norm optimization

Yunyue (Elita) Li and Mohammad Maysami

ABSTRACT

To accurately invert for velocity in a model with a blocky interval velocity inversion
using Dix inversion, we set up our optimization objective function using L1 criterion. In
this study, we analyze and test an improved version of the Iterative Reweighted Least
Squares (IRLS) solver, a hybrid L1/L2 solver and a conjugate direction L1 solver.
We use a 1-D synthetic velocity data set and a 1-D field RMS velocity data set as test
cases. The results of the inversion are promising for applications on realistic geophysical
problems.

INTRODUCTION

Dix formula (Dix, 1952) estimates interval velocities from picked stacking velocities. The
conventional result of constrained least-squares Dix inversion (Koren and Ravve, 2006;
Harlan, 1999; Clapp, 2001) is always a smooth velocity model, because the regularization is
imposed in the L2 sense. However, to represent a geological environment with sharp velocity
contrasts, e.g., carbonate layers, salt bodies and strong faulting, we may need a blocky
velocity model rather than a smooth velocity model. Valenciano et al. (2003) proposed to
use edge-preserving regularization with Dix inversion in order to get sharp edges in interval
velocity. However, one of the solvers they used, IRLS (Iterative Re-weighted Least Squares)
is cumbersome to use because users must specify numerical parameters with unclear physical
meaning.

L1-norm optimization is known to be a robust estimator to yield sparse models. Many
works (Claerbout and Muir, 1973; Darche, 1989; Nichols, 1994; Guitton, 2005) has shown
that L1-norm is not sensitive to outliers, while it penalizes the small residuals down to zero.
In theory, when the model space is sparse and the data are noisy, regressions produced by
L1 optimization always outperform those produced by L2 norms.

In this study, we analyze, improve and test different methods on a simple synthetic
problem as well as a field-data problem. We aim to develop robust and efficient solvers to
perform regressions of an L1 nature. We initially improve the traditional IRLS method,
explore the conjugate direction L1 method, and finally test an L1/L2 hybrid method. The
inversion results of a 1-D, synthetic, 2-step, interval-velocity model and a 1-D field data
example are given at the end of the paper.

DIX INVERSION AS AN L1-OPTIMIZATION PROBLEM
The linear relationship between the RMS velocity and the square of the interval velocity is
given by Dix Equation:
v = KV (k= 1V, (1)

23
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where v is the interval velocity, V is the stacking velocity or RMS velocity, and k is the
sample number. Both velocities run down the traveltime depth axis. If we define u, = U]%

and dj = kaQ, we can set up the Dix inversion problem in an L1 sense as follows:
IWa(Cu —d)||1 =0, (2)

where u is the unknown model we are inverting for, d is the known data from velocity scan,
C is the causal integration operator, W, is a data residual weighting function, which is
proportional to our confidence in the RMS velocity.

Fitting goal (2) itself cannot fully constrain the inversion problem, because the integra-
tion operator has a large null space at high frequencies. Therefore, Clapp et al. (1998)
supplement this system with a regularization term to take the advantage of the prior geo-
logical information, of which smoothness and blockiness are two typical examples. For the
case we are interested in, we use blockiness as regularization. In a mathematical form, it
can be written as follows:

|leDzulfy = 0, 3)

where D, is the vertical derivative of the velocity model and € is the weight controlling the
strength of the regularization.

DIX INVERSION BY IRLS METHOD

Bube and Langan (1997) and Tang (2006) show that the nonlinear objective functions,
such as the regression equation (3), can be solved by the IRLS algorithm. Many authors
have demonstrated successful applications of IRLS as a robust estimator to yield sparse
models. To take advantage of the well-established L2 norm regression, we can transform
the problem by introducing a diagonal weighting function Wp,. Then the fitting goal 2 and
the regularization 3 become:

[Wa(Cu —d)l[2 ~ 0, (4)

||eWpDzulls ~ 0, ()

where W, is a diagonal weighting function on the model residual. To use the gradient-based
method, we have to recompute the weight W), at each iteration, and the algorithm can be
summarized as follows:

1. Set the initial weighting matrix WISO) to equal the identity matrix:
0 _
w7 =1 (6)
2. At the k — th iteration, the i — th element of the weighting matrix is recomputed as
k—1 1\ —
Wit = (T )

where p = D,u is the model residual. However, applying equation (7) to compute the
weighting matrix is dangerous when p; is zero or too small. One way to avoid this issue is
to bound the weights at a certain cutoff o:
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k=1\=1/2  jf |ph—1
w(’?—”—{ (Ipf~1) if [pE! > o .

pr o~ 1/2  otherwise.

One of the most important disadvantages of IRLS algorithm arises in equation 8: how
should we choose the cutoff number o7 We would like to derive this number automatically
according to its physical meaning, instead of cumbersome numerical experiments.

Further examining the weighting function, we notice that when applying the truncated
weights, we end up treating small residuals in the L2 norm, and at the turning point (p = o)
we have a sharp transition to the L1 norm. Thus, o is the cutoff between the L1 region and
the L2 region, determining the tolerance to the large residuals. Therefore, we can choose o
according to the desired blockiness of the model space. For the synthetic example, which is
a 40-point-long interval velocity model with three layers, we expect only two spikes out of
those 40 points in the derivative. Therefore we would like & to be around the 95" percentile
of the derivative, allowing 5% of the spikes to be of unlimited size, while the others are small.

DIX INVERSION BY AN L1/L2 HYBRID METHOD

Extending the discussion in last section, many authors (Bube and Langan, 1997; Claerbout,
2009) generalize the optimization problem of Dix inversion. Claerbout (2009) points out
that any arbitrary norm P can be used as a penalty function. Then the optimization
problem can be written as:

0=~ Z P(Z Ci ju; — d;), 9)
( J

where P() is a convex function of a scalar, C;;, u;, and d; are elements in the causal
integration operator C, the model v and the known data d.

We have special interests in an L1/L2 hybrid norm, because instead of a sharp transition,
this norm provides a smooth transition between L1 and L2. This can be shown in the
formulation of the hybrid norm:

P = o*(\/14+712/02 —1) (10)

where r is the data residual and o is the same threshold as in last section, and thus can be
chosen according to the same physical explanation. The hybrid norm approaches the least
squares limit as 0 — oo and approaches the L1 limit as ¢ — 0.

The first and the second derivative of this hybrid norm with respect to the residuals are
given in equation 11 and equation 12. We can see the penalty function transits from L2 to
L1 smoothly at r» = ¢ since the first derivative is continuous.

, r
V1+1r2/0?

/! 1
T W 1

(11)
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Claerbout (2009) also proposed a new method based on Taylor’s series to search the
plane spanned by the gradient and the previous step. He embedded the new iterative
bivariate solver in a conjugate direction solver, hoping for significant savings by expending
more effort to find a better next step. In this experiment, we use the solver coded by
Maysami and Mussa (2009), who adapt Claerbout’s theory. For more information, refer to
these two papers.

DIX INVERSION BY CONJUGATE DIRECTION L1 METHOD

Choosing proper parameters for hybrid [1/12 method and IRLS is still quite empirical, even
when we understand their physical meanings. Instead, conjugate direction methods do not
need setting parameters. Thus, we develop a similar conjugate direction method in L1
sense. The pseudo code of this method is given in Table 1.

Table 1: Pseudo Code - Conjugate direction L1 solver using Weighted Median

Initialization :
m = IMygpgt
rd = Fm — d
s =0
s =0

Iteration i :
g = Fr® *

(o, ) = argmin||r® + agl® 4 gs(@||;
(a,8)

S(d) = ag(d) +ﬁs(d)

rd = @ +S(d)

s = ag+ fs
m = m-+s

The structure of the conjugate-direction L1 method is similar to the L2 conjugate-
direction solver given by Claerbout (2008). The main difference arises in the part of plane
search.

Given the gradient g(®, previous step s(®, and the current residual r(®, we construct
the 2 x N matrix B = [g(® s(9)] and the column vector [o 8]'. We seek to find [o 8]’ that
minimizes 0 ~ r(® + Bla §]’ in the L1-norm sense. This bivariate regression embedded in
the plane search is solved in an iterate manner.

At the ultimate solution of the bivariate regression there will be two basis equations that
are exactly satisfied. The first one is found by steepest descent. After the first iteration,
we do plane searches using the weighted median solver to choose the best equation to be
exactly satisfied. “Best equation” is the one that decreases the residual the most, while
satisfying the equation chosen by the previous iteration exactly as well.
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To do this, suppose the previous equation is g,gd)oz + S](Cd)ﬁ + T/gd) = 0. We seek a

(A, Ap) that still satisfies the equation k. This requirement gives a solution to (A«, AJ) as
’y(s,(gd), — g,(gd)), where v is a scalar. Then the plane search becomes 0 ~ fyB[séd), — g,(cd)]’+r(d),
which is a weighted median problem. Thus, using the weighted median solver, we can
solve for v and get a new equation, e.g., equation j. Then we can update (o, 3) and s(d)
accordingly, drop the old equation k, and keep the new equation j. We iterate on this
process until the inner loop keeps tracking the same equation. The final results of the inner

loop are passed out to update the model, residual and the gradient.

The value of expending more effort to find the best step direction will be supported by
the real geophysical applications, because the most computationally expensive part of these
iterative methods is applying the forward and adjoint operators (steps starred in Table
1). By doing the sophisticate plane search, we hope to decrease the number of outer-loop
iterations required for convergence.

However, conjugate direction L1 regression theory is not perfect for a practical problem.
The problem of a flat bottom in L1 minimization will cause trouble in geophysical practice.
Sometimes even where the bottom is not exactly as flat as the median of an even number
of points, the slope of the gradient can be so small that we can never reach convergence in
a finite number of iterations.

SYNTHETIC AND FIELD DATA EXAMPLE

Figure 1 shows the input synthetic RMS velocities with and without random noise, and the
true blocky interval velocity we try to invert for. For the synthetic problem, we experimented
on solvers with and without regularization to learn the nature of the solver itself and the
nature of its regularization.

Figure 2 shows the inversion results when clean data (free of noise) are fed into different
simple solvers without any regularization. The result of L2 regression is comparable to the
IRLS and hybrid norm. However, the simple conjugate direction L1 solver failed to give a
satisfactory result (Figure 2(c)). As we have discussed in the previous section, this might
be due to the flat bottom caused by the data configuration.

Figure 3 shows the inversion results when clean data are fed into different regularized
solvers. As expected, the smoothing effect of L2 regularization on the derivative of model
produces the round corners at the turning point. In contrast, IRLS and hybrid solvers give
perfect exact solutions, which benefit from their L1 nature in regularization. We do not
fully understand the behavior of conjugate-direction L1 solver, but the change in the result
can be explained by the change of the data configuration when the regularization term is
added.

Figure 4 shows the inversion results when noisy data are fed into different simple solvers
without any regularization. When creating the synthetic noisy RMS velocity data, uniform
distributed random noise is added. However, L2 norm assumes Gaussian noise, and L1
minimization is derived under the assumption of exponential distribution. Therefore, the
simple L2 solver, the IRLS solver or hybrid solver all fail to recognize the noise and attenuate
it. Surprisingly, conjugate-direction L1 solver successfully eliminates the high-frequency
noise and keeps the low-frequency trend of the interval velocity function. It shows great
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potential for finding the exact solution when the problem is slightly more complicated.

Figure 5 shows the inversion results when noisy data are fed into different regularized
solvers. By adding this regularization term to further constrain the problem, we expect
better results out of each solver. Comparing the results in Figure 5, IRLS result has the
most blocky transition between layers and is almost flat within the layers. However, the
big jump at shallower depths is apparently due to its tolerance of the large residuals. The
hybrid solver gives result comparable to the IRLS, but it oscillates at deeper depths. The
results from L2 and conjugate direction L1 solver are similar, but the smaller steps in the
result of conjugate direction L1 (Figure 5(c)) are promising.

Figure 6 shows the 1-D field RMS velocity from the velocity scan. This field data has
1,000 sample points, and the number of blocks in the model space is unknown. In real life,
we can never fully constrain a inversion problem without regularization: that is when Dix
inversion becomes unstable. Therefore, only regularized solvers are tested.

Figure 7 shows the inversion results when field data in Figure 6 are fed into different
regularized solvers. The results from the IRLS and the conjugate direction L1 solver have
more blocky nature than the other two. The result from IRLS is more flat within layers,
which is a nice property in well-log matching and many other geophysical applications. The
hybrid and L2 solvers give comparable results, although we have chosen a very small o for
hybrid norm to force it towards the L1 norm.

CONCLUSIONS AND DISCUSSIONS

We explore three methods to constrain Dix inversion in an L1 nature: an improved IRLS
method, a hybrid L1/L2 method and conjugate direction L1 method. The IRLS and hy-
brid methods are implemented in a non-linear least-squares scheme by adding a diagonal
weighting function. Conjugate direction L1 method is realized by a weighted median solver.

The IRLS method is improved by the physical explanation of the cutoff number o,
allowing this numerical parameter to be determined automatically. The hybrid method has
a novel plane search scheme based on Taylor’s series at each residual. Conjugate direction
L1 method has an iterative plane search scheme using a weighted median solver. Both of
hybrid and the conjugate direction L1 are designed to reduce major computational cost by
expending more effort in finding a better next step.

In the numerical experiment, we find that the conjugate direction L1 method decreases
the iteration number for the outer loop significantly. Hence, the value of spending more to
find a better next step is proved. The same concept can be applied to the hybrid method
as well. We can expect better inversion results and faster convergence by adding iterations
to plane search, which has not been demonstrated before.

In the current study of the conjugate direction L1 method, we keep only two equations
exactly satisfied in the whole system when searching the plane. In future research, we can
add as many equations as needed by Gram Schmidt process. Hopefully, this process can
lead us to an even better next step.
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Applications of the generalized norm solver

Mandy Wong, Nader Moussa, and Mohammad Maysami

ABSTRACT

The application of a L1/L2 regression solver, termed the generalized norm solver, to
two test cases, shows that it is potentially an efficient method for L1 inversion and is
easy to parameterize. The generalized norm solver iterates with conjugate direction.
Our first test case, the line fitting problem, shows that the generalized solver is capable
of removing outliers in data. Our second test case, the 1D Galilee problem, shows
that the generalized solver can produce a satisfactory “blocky” solution. In terms of
parameters, a low threshold value, if giving convergent solution, gives the best result.
Experience shows the optimal number of inner loop iterations is one.

INTRODUCTION

Currently, many geophysics problems are solved with least-squares (L2) model fitting be-
cause of its fast convergence, simple parametrization, and easy to understand numerical
analysis. However, L2 minimization places disproportionate emphasis on large residual
values. Therefore, an L1-type norm inversion technique is more appropiate for solving
geophysical problems that have a “blocky” model space. One example is to do adaptive
subtraction of multiples Guitton (2005) using IRLS (iterative re-weighted least squares).
Other possible applications are tomography (Bube and Langan (1997)) and deconvolution
of noisy data (Chapman and Barrodale 1983).

In geophysics, a popular way to run L1-type inversions is with IRLS (Gersztenkorn et al.
(1986)) . Running with IRLS often improves the results. A drawback is that its computa-
tional time is considerably higher because of repeated application of the costly forward and
adjoint data-fitting operator within two iterative loops. To overcome this computational
deficiency while retaining the benefit of L1-type inversion, we came up with another solver
that does a better job than IRLS. Claerbout (2009) developed an algorithm of that we call
the generalized norm solver, which steps with conjugate-direction and using the Taylor
series expansion. Such a solver allows us to perform inversion using the L2 or the mixed
L1/L2 norm Maysami and Moussa (2009). For convenience, we will use the term 'norm’ to
refers to all kind of measures and norms. It is understood that a norm has a strict definition
in mathematics. For the theoretical description of the solver, please refer to the report by
Claerbout (2009).

Maysami and Moussa (2009) have implemented such a solver, which allows us to test its
robustness in this paper. Three norms will be used in our study: the least-squares (L2),
Hybrid, and Huber norms. It is worth mentioning that the theory for using the least-squares
norm with our solver is exactly the same as the theory for solving the least-squares problem
with conventional conjugate-direction algorithm. For the rest of this paper, we will refer the
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generalized norm solver with the Hybrid norm as the hybrid solver and the generalized
norm solver with the Huber norm as the Huber solver.

We have applied the generalized norm solver to two test cases. The first test case recovers
the equation of a straight line given data that are corrupted with Gaussian noise and spikes.
We find that the generalized norm solver recovers the equation of a straight line when using
either the hybrid solver or the Huber solver. The second test case is called the 1-D Galilee
problem. This problem is a simplified version of a real depth sounding experiment of the
Sea of Galilee and a standard test problem in SEP textbooks, (Claerbout (2008); Claerbout
and Fomel (2008)).The synthetic data for this case are measurements between the water
surface and the bottom of the lake. The first part of the test simply aims to recover the true
depth of a 1-D lake given that the data contain occasional large spikes. The second part
of the test has data corresponding to a water level that change in a step-like manner. We
will refer to these kind of jumps as “drift.” We aim to recover the true depth and sudden
drift in data. We find that the hybrid solver always gives the best result as compared to
the Huber solver and the least-squares solver.

FIRST TEST CASE: LINEAR FITTING PROBLEM

Basic formulation for the linear fitting problem

To verify the Li-norm solver and establish its utility across several geophysical optimization
problems, we tested on a series of one-dimensional fitting problems. We began with the
simplest fitting problem, a line-fit estimation that would be suitably solved by least-squares
line fitting in most cases.

To show the advantages of an Li-based methodology, we injected both Gaussian and non-
Gaussian noise. In general, while Lo fitters are well suited to wide-spectrum noise, they
are particularly prone to misleading or unphysical results if the noise has many spike- or
burst-like. We experimented with a linear fit of a set of data plus several spikes.

The problem setup of the line-fit is similar, but simpler, than the other examples. It serves
as a good explanatory case-study of the set-up of a solver. We begin with a data space, d,
representing the noisy sampling of a straight line. We intend to model this line with a very
simple, two-element line model — namely, slope and intercept according to the conventional
y = ax + (§ formula.

We construct a forward operator, L, which implements the mapping of this model space onto
our recorded data. I n the presence of interfering noise, there will be a deviation between
predicted data (Lm) and recorded data (d). We have tested our solver to minimize this
deviation according to Lo, Huber, and hybrid L;/Ls definitions. This simplified example
shows the important ability of the Li-style norms to reject large data outliers.

In this case, we formally define the model space,

o[

where « represents thes slope and [ represents the y-intercept of a line. And the line
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operator,
L=[z 1], (2)

We attempt to minimize the objective functions for each defined norm:

r, = |[|[Lm—d||g,,
L, = HLm_dHLN
= - )
T Huber HLm d| |Hube'r
Taybria = ||Lm — d||mybrid,

Because each norm represents a different method for computing the residual, the corre-
sponding minimization has different behaviors with regard to the optimal modeled data.
As we will show in the following sections, this impacts the ability of each optimization crite-
rion to produce geophysically useful results in the presence of different types of interference,
and for the different characteriestics of the desired function (e.g. sparseness or block-like
intervals).

Results of the line-fitting problem

The results of solving this problem with the least-squares, hybrid, and Huber norms are
shown in Figure 1. We can see that the fitted line in the L2 norm deviates from the true line
due to the presence of spiked data, whereas for the Huber solver and the hybrid solver, the
fitted line correctly overlaps the true line. We conclude that our trivial line-fitting example
functions properly when using the Li-type hybrid and Huber norms.

TEST CASE TWO: THE ONE DIMENSIONAL GALILEE PROBLEM

Formulation of the 1D Galilee Problem

Our next test case is the removal of spikes and drift from a 1-dimensional representation of
the Galilee depth data. We constructed this experiment to be more rigorous than the earlier
line-fitting and noise-removal problem. The 1D Galilee problem is a synthetic problem that
originates from a depth sounding experiment on the Sea of Galilee. Imagine performing a
depth-sounding experiment along a fixed track in the lake. The lake has a sinusoidal depth
with blocky drift and large spikes in time. As a boat goes back and forth across this 1D
lake, it is measuring the sum of the true lake depth plus the drift in time. Figure 2 shows
the true depth of our 1D Galilee lake and figure 3 shows the recorded data, which is the
sum of the drift function and the true depth. We have added 2 spikes as outliers in the
data. These 2 spikes can be viewed as equipment failure. Note that the data covers the
lake back and forth roughly 6.25 times.

To formulate the problem for inversion, we have set our unknown model space to be the
lake depth, m, and the drift function, u. Data space d is the recorded depth as shown in
Figure 3. Our data fitting goal can be defined as

0~Lm+u-—d, (3)
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where L is the binning operator that matches the data acqusition in time to its corresponding

location in space. For a lake with 4 grid points and 6 data points, equation 3 would look
like this:

1 000 ug dy
01 00 my U2 do
10010 Mo uz || d3
0~ 00 01 ms + Uy dy
0001 my us ds
_0010_ _u6_ _d6_

Equation 3 by itself is an under-determined problem, because there are more unknowns
than the recorded data points. If there are ng data points and the lake has n,, grid points,
then the model space has a dimension of n,, +ng4, because we are solving for both lake depth
and drift in time. The data space has a dimension of ng. To introduce more constraints,
we can add a regularization by requiring the drift function u to be smooth,

d
0~ —u. 4
U (4)

It is worth pointing we only expect good results when we run this regularization with L1 or
L1-type norms, as L2 smoothing will wipe out the “blockiness” in the drift function, which
is part of the model space. To illustrate the limitation of least-squares fitting, I will first
show the result of applying inversion to the 1D Galilee problem.

Result of least-squares inversion of the 1D Galilee Problem

Least-squares inversion looks a for solution in the model space that minimizes the square
of the residual. I first run un-regularized inversion on spike-free but drifted data. That
means using the data-fitting goal in equation 3 to fit the data shown from Figure 3 (b).
After L2 fitting, the estimated depth is shown in figure 4 (a), and the estimated drift is
shown in figure 4 (b). An interesting observation from the un-regularized L2 inversion of
the non-spike data is that it gives very good estimate of the lake depth and drift. Although
the problem is still under-determined, the amount of data collected is sufficient enough to
determine the relative jumps from each pass in the lake. As mentioned before, the data
cover the lake back and forth roughly 6.25 times.

At this point, further attempts to solve this problem seem redundant, as we are getting
a nearly perfect result. However, the result is different when I re-run the un-regularized
inversion (equation 3) on the spiked and drifted data (Figure 3 (c)). After L2 fitting, the
estimated depth is shown in figure 4 (c),and while the estimated drift is shown in Figure
4 (d). This time, the fitted depth deviates from the true depth, with segments that are
clearly affected by spikes. The fitted drift function shows erratic jumps. This is because
by minimizing the square of the residual, L2 inversion emphasizes large spikes in data.
In a situation like this, L1 or L1-type inversion like the hybrid and Huber solvers should
give better results. This is because minimizing the absolute value of the residual puts less
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emphasis on large spikes in data. This assertion will be verified when I apply the hybrid
and the Huber solvers in the next section.

In addition to the two un-regularized least-squares examples above, I also ran a regularized
inversion on the spike-free but drifted data. That means using the fitting goals in equation
3 and equation 4 on the data shown in Figure 3 (b). After L2 fitting, the estimated depth is
shown in Figure 4 (e), and the estimated drift is shown in Figure 4 (f). The regularized drift
in this case, shown in Figure 4 (f) , is a smoothed version of the un-regularized drift as shown
in Figure 4 (b). The smoothing is as expected because of the type of regularization used.
One conclusion is that when the data is spike-free, the L1-type solver is unnecessary, because
Figure 4 (b) shows that we are obtaining a satisfactory result with L2 unregularized fitting.
However, Figure 4 (d) demonstrates that L1-type inversion is needed for data containing
large spikes. The next step is to see how the generalized L1 solver handle this problem
using the hybrid and the Huber norms.

Result of the 1D Galilee Problem using the Generalized norm solver

We begin with the simplest test for any Ll-type solver, which is the ability to remove
outliers in the data. When there is no water-level drift in the Galilee sounding experiment,
the data is affected only by random spikes (non-Gaussian noise). The ideal fitted output
would be to recover the true depth. The result is shown in figure 5. When we apply the
generalized solver to the problem, 1.2 gives the worst result, as expected, because it cannot
isolate outliers from the overall fitting goal. The Huber criteria gives an intermediate result,
while the hybrid minimization criteria gives the best result, almost completely recovering
the true depth of the lake without distortion.

Next, I apply the solver to the full 1-D Galilee problem, which is the inversion using fitting
goals from equation 3 and 4 of data that including drifts and spikes, as shown in Figure 3
(b). The hybrid norm gives the most satisfying result, as summarized in Figure 6. There
are two parameters that can be adjusted in this problem: epsilon, which describes the
level of regularization, and percentile, which describes the transition point between the
L2 and the L1 measure (per the defining equations of each norm). Please refer to Claerbout
(2009) and Maysami and Moussa (2009) for the definition of each norm. In general, a small
epsilon means less weight is placed on the regularization goal, meaning a less smooth
result. The percentile parameter allows us to configure the degree of confidence that any
randomly-selected data element is a statistical outlier, placing it within either the L1 or
the L2 fitting goal. If a low percentile is set, it indicates that we believe most of the data
should be fitted with Lq. For this problem, we have set the percentile to be as low as possible
without having a divergent solution. For the Huber solver, the limit is percentile ~ 0.3. We
found that the hybrid solver has a better tolerance, and the limit for it is percentile ~ 0.1.

In terms of convergence, there are two iterative parameter. The first one is niter, which
controls then number of applications of the costly forward and adjoint operators. Another
one is psiter which corresponds to the number of iterations of the inner loop that deter-
mines the step sizes, a and (3, in our conjugate direction scheme. We found that when
psiter = 1, we obtain the best result in the full 1-D Galilee problem. For the outer loop
parameter, niter, the L2 solver converges in just 16 iterations, the Huber solver converges
in 36 iterations, and the hybrid solver converges in 66 iterations. Repeated experience
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indicates that we can always set psiter to one when using the generalized norm solver.

Comments on the result

From observating the fitted drift between figure 6 (b) and 6 (d) , the Huber solver is not
doing significantly better than the least-squares solver. One possible explanation is that the
underlying Taylor series assumption failed while trying to solve for the stepping coeficient
« and 3. Recall that the formulas for the Huber norm are

C(r) = {’7’\ = [rel/2 Ir/re) > 1

r2/2ry Ir/r| < 1
oy s e 2
cir) {r/rt Ir/r| < 1 5)

> 1
C”(T) _ 0 |T/rt‘ =
1/r¢ |r/r| < 1

Notice that the second derivative vanishes if the residual falls to the threshold value r;.
This could lead to failure of the Huber solver, because the second derivatives are used in
the denonimator when solving for the step size a and  in the conjugate-direction scheme

(Claerbout (2009)).

We are delighted to see that hybrid solver gives a resonable result for the full Galilee
problem as shown in figure 5(c), we can hardly describe the model solution as “blocky.”
This might be because we have used a small threshold value for the model-fitting goal. For
example, a threshold value of 0.30 percentile means we would like to see blocks about 3 to
4 points long. A higher threshold value for the model-fitting goal (equation 4) can increase
blockiness; however our present solver has restricted us to use the same threshold value for
both the model-fitting and the data-fitting goals (equation 3). One possible improvement
for the future is to separate the thresholds for these goals.

CONCLUSION

The applications of the generalized norm solver show promising results in our two sample
problems. The line-fitting problem shows that our solver can correctly remove spikes and
noise added to the data. The 1-D Galilee problem shows that the solver can properly
produce a blocky model space while removing outliers. In terms of convergence, the hybrid
solver takes longer to converge than the Huber solver. While only the one-dimensional
problem is examined with this solver, we plan to further explore this solver with 2-D field
data problem and directly compare the result with the IRLS algorithm.
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Alternatives to conjugate direction optimization for sparse
solutions to geophysical problems

Nader Moussa

ABSTRACT

Throughout much of this summer, we experimented with extensions to the conjugate
direction method to find optimal solutions to sparse geophysical problems. However,
this category of techniques is not unique in its ability to optimize L1-styled fitting goals.
We also investigated a variety of other techniques, including a pure L1 solution via the
weighted median; a steepest-descent algorithm using the signum-function as a gradient
of the true L1 norm; and a totally different approach using the Simplex Algorithm, by
mapping our objective function into a linear programming form. Categorically, the ap-
proaches that relied on the true L1 method failed due to what we believe is a theoretical
shortcoming of the direct application of the pure L1 norm to geophysical optimization
problems. The use of linear programming turned out to be quite successful. This could
be an interesting option for future research in geophysical optimization.

INTRODUCTION

Part of our objective in this summer’s study of the L, optimization criteria was motivated
by new theoretical ideas for the conjugate direction solver (Claerbout, 2009), and its corre-
sponding implementation (Maysami and Moussa, 2009). In addition to this new technique,
we also extensively investigated the basic theory of convex optimization, motivated by our
ultimate desire to find the most generally applicable toolkit for geophysical inversion on
sparse or “blocky” models. Optimization theory has been subject to much research at
Stanford across many fields. Prior art that is directly applicable to L1 minimization spans
the departments of Geophysics (Claerbout, 2008; Guitton, 2000), Computer Science (Golub
and Van Loan, 1996), Operations Research, Management Science & Engineering (Paige and
Saunders, 1982), and Electrical Engineering (Boyd and Vandenberghe, 2009). The enor-
mous wealth of prior research across so many different disciplines has produced numerous
algorithms and mathematical techniques which superficially bear no resemblence to each
other — but all share the same final goal, which is the minimization of a generalized convex
objective function. For the case of conventional geophysical inversion, this objective is some
measure of the error between modeled- and recorded- data.

This broad-based investigation brought attention to techniques, such as linear program-
ming, which are well-developed and widely used in other fields. However, these tools were
rarely utilized by SEP (and presumably in the geophysical inversion community outside
Stanford). Our efforts have developed a formulation of these techniques to convert a stan-
dard form geophysical data-fitting and inversion problem (L m = d) into a linear program-
ming problem.

I demonstrate in the following sections the efforts to construct a pure L; solver, and its

49



50 Moussa SEP-139

associated numerical difficulties. Next is our foray into the realm of linear programming —
a well-developed toolset that has seen little application in geophysical inversion.

PURE L1 SOLUTIONS

Early work focused on a pure conjugate-gradient or steepest-descent method using the true
L1 norm. We implemented a modified version of cg_step, implementing a line search first as
a weighted median search, and also with a full, explicit calculation of the Frechet derivative.
It was conclusively shown that the gradient of a pure L; solution resulted in introduction
of local minima, resulting in a failure to converge. This has been noted in prior work (Bube
and Langan, 1997) — the pure L; norm is not strictly convex. This can be shown with
the trivial example of finding the L; minimum for a median problem with even number of
elements:

HIOEIH (1)

The residual in the L; case is the sum |m — 1| 4+ |m — 2|, which has nonunique global
minima for all m € [1, 2]. The gradient, in this entire region, is exactly zero. In a larger,
non-trivial data-fitting problem, these zero-value gradients can occur at locations other than
the global optimum - and thus the gradient-based methods do not function properly.

LINEAR PROGRAMMING

Theory

The goal of Linear Programming, like optimization in general, is to maximize an objective
function, subject to a set of constraints. In this case, the objective function is a linear
equation in Xx.

Linear programming developed out of the Operations Research community following
World War II (Dantzig, 1963). It developed from earlier planning algorithms and optimiza-
tion methods, finally emerging as one of the simplest tools that could optimally satisfy a
set of competing equations. It is commonly used in business analytics, supply-chain man-
agement, and path planning. Variations of the concept have been applied to geophysical
problems, including tomography inversion (Berryman, 1989); but in general, the geophys-
ical inversion community has not shown strong adoption of this body of techniques. This
is unfortunate, because the methodology of constructing and navigating within a feasible
region of solutions enables both numerical optimization to find a global minimum, as well
as heuristic “picking” interpretations of other valid, non-minimum solutions that satisfy the
problem constraints.

We have successfully mapped general-purpose geophysical optimization problems into
this numerical framework, particularly emphasizing data-fitting with linear operators. Due
to its widespread use in other fields, a variety of software tools exist to find solutions to linear
programming problems. A variety of numerical programming environments provide linear
programming solvers natively; we explored several of these environments and evaluated
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their solver implementations. The most promising environment of the ones we considered is
the GNU Scientific Library and the GNU Linear Programming Kit (GLPK), with language
bindings for C, Python, and FORTRAN. Tools and libraries are also available for GNU
Octave and its commercial equivalent, MATLAB.

The setup for linear programming revolves around a generalized parameter space, X,
which we seek to modify until an optimum is found with respect to some objective function
c subject to constraints b.

‘We have:

x; = the parameter space (2)
¢; = the objective definition (3)
a;j = the definition of the constraints (4)
b; = the constraints vector (5)

where ¢ ranges from 1 to the number of parameters; and j ranges from 1 to the number of
constraints.

Additional physical constraints are represented numerically by introducing auziliary
variables, denoted xg, and adding an objective coefficient ¢; for each introduced constraint.
Minimization of |xg| is equivalent to optimal satisfaction of these physical constraints; this
objective competes with the minimization of |x|. This relationship between model- and
data-fitting constraints is the basis of the optimzation problem.

General solutions to this optimization can be found according to the Simplex Algorithm
(Dantzig, 1963), design of which is rooted in topological graph theory. To find an opti-
mal solution, the system is represented in augmented matrix form. A scalar value Z is
constructed, representing the objective function minus the constraints weightings, for any
given intermediate solution. At each iteration, the simplex solver evaluates the maximal

gradient of Z, with respect to a current set of basis equations, [a:\a:s]T

This gradient provides a descent direction; the model x is updated accordingly, traversing
the linear system until a vertex of the solution graph is found. At each vertex, a new basis set
is calculated by matrix transvection (or equivalent, but slower, Gaussian elimination). This

allows the objective scalar Z to be expressed in terms of the new basis [$!$S]T — in other
words, by rotating the state-matrix according to a transvection operator. (Transvection
simply involves adding a scalar multiple of one row to another row). By choosing the
correct transvections, the next descent direction can be directly read as the coefficients of
the matrix representation. It can be shown that an optimum solution, if one exists, must lie
on either a vertex or as a set of equally-optimum elements on a single edge of the solution
space. This lies within the feasible region defined by the constraining equations.
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Mapping Optimization Problems to Linear Programming

This maps to our conventional model-fitting treatment using optimization theory according
to the following;:

x; ——— model space (6)
parameter space
¢ —————  regularization (7)
objective function
aij forward operator (8)
constraint functions
bj —— data space (9)

constraint vector

with 7 = 1..(model size) and j = 1..(data size) Conveniently, this allows a direct represen-
tation of geophysical data fitting, including regularization on the model space. This linear
programming setup can be represented in matrix form, as follows:

d'x=2 (10)
Ax<b (11)

I have introduced the scalar, Z, which is the value of the objective. This will be either
minimized or maximized depending on the particular geophysical problem. Effectively, this
means finding a value for x that optimally aligns with the model-fitting and data-fitting
goals.

Correspondingly, for a simple 2 x 3 example:

[e1 o] [”51] — 7 (12)

Z2
i | oo by
a1 a2 [562] < |b2 (13)
asy  as2 b3

To solve according to the L; norm, we need to take account of the absolute value in the
definition of the L error criteria, noting that the i** element of the residual is defined as
an absolute value of the error term:

r; = |Lm—d| (14)

To account for this, we extend the linear programming matrix representation to aug-
mented form. This requires an extension of the x vector. The approach is not entirely
dissimilar to the placement of a regularization in the model vector in a conventional setup,
in that it is reformulating the equations to provide us with a fit in compliance with our a
priori geophyiscal knowledge.

The augmented representation is written in matrix form as
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HIHER

The first row of the augmented form results in the optimization criteria:

Z—-cl'x=0 (16)

A large value of Z maximizes the original objective function, subject to the constraints
in the ¢ matrix. The goal is to put as much “energy” in the Z (objective function) with
as little energy in all other rows of the augmented matrix; this is accomplished with the
Simplex Algorithm, simultaneously satisfying the minimization of the pure L1 norm criteria.

L Formulation

To satisfy the L, optimization criteria for a data fitting problem, with data d of length Np,
and model m of size Ny, modeled by |Lm — d| = r, we set up the following to specify the
terms in (15) and (16):

S "
b = [_dd] (18)
' = [0 1an,] (19)

The initial model can be stored in x, which will be updated. The final value of auxiliary
variables xg represents the status of the model regularization constraints (which can also
be assigned an initial value).

X = m (20)

Xs = Myegularization (21)

In this format, the matrices can be fed directly into the GLPK function call in C or
Octave.

RESULTS

The linear programming formulation was among our most robust techniques for estimating
and tracking water-level drift in our synthetic 1-D Sea of Galilee. Below are results plotted
from a sample experiment. In this case, every single data point was corrupted by a water-
level drift of unknown magnitude, and water-level was allowed to vary at any time during
synthetic data collection. After ten sweeps, the linear programming solver is able to nearly
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perfectly reconstruct the drift profile and correctly estimates the true lake depth profile
(except for minor artifacts).

This problem is an example of an underconstrained inversion problem. The source data
is corrupted by an unknown data drift error function, which we seek to estimate based on our
approximation that it should be defined by a sparse derivative. This model approximates
a boat that is sampling lake-depth while floating on an unknown water level, illustrated
in Figure 1. The problem is under-constrained, because we do not know the nature of the
drift function; but by assuming that its derivative is sparse, an L; or linear programming
optimization problem is set up. In Figure 2, the result of the linear programming drift
estimation is shown.

I conclude that linear programming yields a fairly deterministic result, even in the case
of an underconstrained inversion problem. The method is stable and straightforward. The
most serious drawback is that most implementations of the Simplex Algorithm require an
explicit definition of the forward operator (in matrix form) — so for very large geophysical
problems, this can severely limit its applicability.

Data

14 \ |
1 | N ‘\

1 I [ In “
12 | \“ N N f \‘o\ | ‘ !/ \‘ /\«\ /ﬂ“ ‘k\ 1

10 |

Depth
0

0 50 100 150 200 250 300 350 400

Sample Point

Figure 1: The input data for the linear programming Galilee estimation. [CR]

nwmoussal/. lprog-data

ACKNOWLEDGEMENTS

This work was spurned by Jon Claerbout’s theoretical appreciation for alternate methods
of optimization. Mohammad Maysami experimented with a Python linear programming



95

Alternative optimization schemes

SEP-139

Estimated Drift

il
———

Estimated

q-=

True ---

400

350

300

250

200

150

100

50

Figure 2: The estimated lake drift. [CR] ’nwmoussal /- lprog—estimated—drift‘

Estimated Depth

12
10

40

35

30

25

20

15

10

Figure 3: The estimated lake depth. [CR] ’nwmoussal /. lprog—estimated—depth‘



56 Moussa SEP-139

code which successfully solved many test cases. The matrix mapping between Linear Pro-
gramming and more conventional SEP-style data-fitting was largely developed with Elita
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Measuring velocity from zero-offset data by image focusing
analysis

Biondo Biondi

ABSTRACT

Migration velocity can be estimated from zero-offset data by analyzing focusing and
defocusing of residual-migrated images. The accuracy of these velocity estimates is
limited by the inherent ambiguity between velocity and reflector curvature. However,
velocity resolution improves when reflectors with different curvatures are present, as
demonstrated by simple synthetic examples. The application of the proposed method
to zero-offset field data recorded in the New York harbor yields a velocity function that
is consistent with available geologic information and clearly improves the focusing of
the reflectors.

INTRODUCTION

In Biondi (2009) I presented a method to extract quantitative velocity information by
analyzing the focusing and defocusing of seismic images. This method is based on the
image-focusing semblance functional that simultaneously measures image coherency along
the structural-dip axes and the aperture-angle axes. I also discussed the ambiguity between
reflector curvature and velocity, and how reflector curvature may bias velocity estimates
from image focusing. The method I presented has two important characteristics. First, it
explicitly takes into account the relation between reflector curvature and velocity. Second,
it provides velocity information from image focusing that is consistent with the velocity
information that we routinely extract from migrated images by analyzing their coherency
along the data offset or the reflection-aperture angle axes.

In this paper, I apply the new method to velocity estimation from zero-offset data.
Zero-offset data represent the extreme case where there is no velocity information coming
from data redundancy with offset. In this case, velocity-estimation methods can only rely
on velocity information contained in the focusing of the image. Therefore, the ambiguity
between reflector curvature and migration velocity can severely limit velocity resolution.

Tests on simple synthetic data sets illustrate the curvature-velocity ambiguity, but also
demonstrate that velocity resolution increases as the range of reflector curvature broadens.
These results are corroborated by the application of the method to zero-offset data acquired
by a shallow-seismic survey in the New York harbor. I iteratively update interval velocity
in a sedimentary layer just below the water bottom. At each iteration, I estimate the value
of residual-migration parameter that corresponds to the best focused image by evaluating
the image-focusing semblance and picking its maximum. This value is then used to perform
a conventional vertical interval-velocity update. The process converged after two iterations
to an estimate of the sediment velocity that is consistent with available geologic information
and improves the focusing of the migrated image.
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IMAGE-FOCUSING VELOCITY ESTIMATION

In this section I briefly summarize the procedure I used to produce the results shown in the
following two sections. The procedure is a simplification to zero-offset data of the method
I presented in Biondi (2009).

The process starts from a partially-focused migrated image R (x), which is function of
spatial coordinate vector x = {z, z}, and continues with the following steps:

1. Perform residual migration on the initial image to produce an ensemble of residual-
migrated images R (X, p), where the parameter p is the ratio between the new migra-
tion velocity and the migration velocity used for the initial migration.

2. Estimate the local apparent structural dips in the residual-migrated images.

3. Dip-decompose the residual-migrated images, R (x, p), to obtain the dip-decomposed
images R (x, «, p), where « is the structural dip.

4. Perform the curvature correction (equation 2 in Biondi (2009)) of the dip-decomposed
residual-migrated images, R (X, «, p), using the local-dip information extracted at step
2. The results of this process are the curvature-corrected images Rcury (X, o, p, R),
where R is the radius of curvature.

5. Compute image-focusing semblance as a function of p and R by applying the following
equation,

2
S, (X, P, R) . [Za Rcury (X, a, P, R)]

= 5 (1)
Na Za RCurv (X> «, P, R)

where N, is the number of dips included in the semblance computation.

6. Average the semblance computed using equation 1 over a spatial analysis window,
after clipping out the smallest values of the semblance to remove noise and artifacts.

To perform the residual migration listed in step 1 of the procedure outlined above 1
used the linearized residual migration described in the Appendix of Biondi (2008). Other
residual migration methods could be used, such as the one presented in Sava (2003). To
simplify the analysis, I remapped the residual-migrated sections to pseudo-depth; that is, I
remapped the depth axis of residual-migrated images according to the relationship Z = z/p,
where Z is pseudo-depth (Sava, 2004).

To estimate the local structural dips required by step 2, I used the Seplib program Sdip
that implements a variant of the algorithms described by Fomel (2002). Any other local-
dips estimator would be suitable. When performing the curvature correction at step 4, I
define the curvature to be positive if the reflector frowns down (e.g. anticline) and negative
if the reflector smiles up (e.g. syncline). The parameter N, required for evaluating the
focusing semblance at step 5 can be spatially varying according to the actual dip spectrum
in the image. I kept it constant for my tests.
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ZERO-OFFSET SYNTHETIC-DATA EXAMPLES

In this section, I present the application of the method outlined in the previous section to
three zero-offset synthetic data sets. These data sets were modeled assuming reflectivity
models of increasing complexity. The range of reflector curvature progressively increases
from the first model to the third model.

Figure 1 shows the reflectors geometry used to model the three synthetic data sets. 1
modeled the first data set assuming a “cloud” of 46 point diffractors (panel a). For the second
data set, I added eight curved reflectors with positive radius of curvature of approximately
55 meters (panel b). Finally, for the third data set, I added eight additional curved reflectors
with a negative radius of curvature of approximately 55 meters (panel ¢). I set the maximum
amplitude of the curved reflectors to be about 40% of the maximum amplitude of the point
diffractors to maintain a balance between the velocity information provided by the point
diffractors and that provided by the curved reflectors.

All the figures in this section follow the same pattern established in Figure 1. The
left panels correspond to the reflectivity model shown in Figure la, the middle panels
correspond to the reflectivity model shown in Figure 1b, and the right panels correspond
to the reflectivity model shown in Figure 1c.

Figure 2 shows the three data sets modeled from the reflectivity models shown in Figure 1
assuming constant velocity equal to 2 km/s. The data increases in complexity and the
texture changes as the curved reflectors are added to the reflectivity model.

Figure 3 shows the migrated sections obtained with the initial (too low) velocity of 1.951
km/s. The crossing of events in these images clearly indicates undermigration. The events
corresponding to the reflectors with negative curvature are sufficiently undermigrated that
they appear as reflectors with high positive curvature.

Figure 4 shows the results of the focusing analysis on the residual migrated ensembles
obtained from the undermigrated images shown in Figure 3. All three panels show the
image-focusing semblance spatially averaged in analysis windows defined by the following
inequalities along the depth axis: 1.8 km <z< 2.1 km, and by the following inequalities
along the midpoint axis: 4.85 km <x< 5.15 km. These analysis windows are represented
in Figure 3 by the inner squares delimited by the grid superimposed onto the images. The
panels show the average semblance as a function of the velocity parameter p and the radius
of curvature R.

The semblance panels show diagonal trends for all cases because of the velocity /cur-
vature ambiguity. When only point diffractors are present, only one trend is visible and
the pattern is symmetric around p=1.025; that is, the correct value of the parameter. The
addition of the positive-curvature reflectors adds another trend to the semblance panel (Fig-
ure 4b) and breaks downs the symmetry. When reflectors with both negative and positive
curvature are present (Figure 4c), the semblance maxima occur around the correct value
(p=1.025) for all the trends in the panel.

In poorly focused images corresponding to p values both lower and higher than the
correct one, the increase in range of reflector curvatures causes additional crossing events.
These crossing events interfere with the local dip estimation (step 2) and consequently with
the curvature correction (step 4) Biondi (2009). As a result, the image-focusing semblance
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Figure 1: Reflectors geometry used to model the three zero-offset synthetic data sets I used
to test the proposed image-focusing velocity-estimation method: (a) a “cloud” of point
diffractors, (b) point diffractors and curved reflectors with positive curvature, (c) point
diffractors, curved reflectors with positive curvature, and curved reflectors with negative
curvature. [ER] |biond01/ . Refl-all-overn
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Figure 2: Zero-offset data modeled from the reflectivity functions shown in Figure 1. [ER]
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that measures dip coherency after the curvature correction is strongly attenuated for poorly
focused images.

NEW YORK HARBOR DATA EXAMPLE

I tested the method for extracting velocity information from zero-offset data on a shallow
seismic data set acquired in New York harbor using a 512i sub-bottom profiler with a 1-10
kHz pulse (Schock et al., 1989, 1994). Compared with conventional exploration data, these
data contain much higher frequencies (useful signal is up to about 2,000 Hz) and have been
acquired with correspondingly dense, though quite irregular, spatial sampling. For the sake
of simplicity, I assumed that the acquisition grid was regular with spatial sampling of 0.225
meters; that is, the average of the actual sampling for the subset I analyzed. The actual
standard deviation of the spatial sampling is about 0.018 meters; that is, about 8%.

Figure 5 shows the subset of the data that I worked with. The water bottom primary
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Figure 3: Migrated sections obtained by migrating the data shown in 2 with the initial (too
low) velocity of 1.950 km/s. The inner squares delimited by the grid superimposed onto the
images show the analysis windows, where the semblance is spatially averaged to produce
the results shown in Figure 4. [ER] ‘biondol /. Mig-all-overn
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Figure 4: The image-focusing semblance spatially averaged over the analysis windows shown
as a function of velocity parameter p and the radius of curvature R. Panel (a) shows the
result corresponding to the point diffractors, panel (b) shows the result corresponding to
the point diffractors and curved reflectors with positive curvature, and panel (c) shows
the result corresponding to point diffractors, curved reflectors with positive curvature, and
curved reflectors with negative curvature. [CR] ‘biondol /- Sembl—all—overn‘

reflection is recorded at about 18 milliseconds; strong multiple reflections are visible below
the primaries. From nearby well-boring, the layered body in the middle is thought to be
composed by Holocene sediments, mostly sands, with velocity of approximately 2.150 km/s.
The sediments are surrounded by serpentinite that has much higher seismic velocity. The
serpentinite velocity ranges from 2.500 km/s where the rock is fractured (on the left of the
sediments) to 4.300 km/s, where the rock is intact (below the sediments).

I first migrated the data assuming a constant velocity equal to the velocity of water;
that is, 1.500 km/s. Figure 6 shows the depth-migrated section. The diffraction-like events
visible in the data just after the water-bottom reflection are properly focused in the migrated
section. The deeper events show some sign of undermigration, but it is difficult to judge
with certainty.

I performed the focusing analysis described earlier in the paper on a small analysis
window; this window was centered on the events at flattish sediment-serpentinite interface
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at the bottom of the sediment layers. The depth of the analysis window ranged from 21 to
25 meters, for the first iteration. I adjusted the depth for the following iterations to ensure
that the analysis windows consistently included the same reflectors across iterations. To
avoid artifacts caused by the noisy traces clearly visible in the data around the midpoint
location of 126 meters, I further limited the analysis window horizontally, to span only the
midpoint interval between 87 to 126 meters.

Figure 7 shows the image-focusing semblance averaged in the analysis window as a func-
tion of the velocity parameter p and the radius of curvature R. There are two distinguishable
trends in this semblance plot. The strongest trend corresponds to reflectors with positive
radius of curvature between 2 and 5 meters. A much weaker trend corresponds to reflectors
with curvature of similar magnitude, but negative. The semblance global maximum can be
found at p=1.225 and R=4 meters. It is thus reasonable to assume that the majority of re-
flectors have positive curvature and a small fraction have negative curvature. Consequently,
I used the value of p corresponding to the semblance global maximum to update the interval
velocity for the sediments. Notice that if the curved reflectors from the strongest trend were
assumed to be diffractors (R=0), the corresponding estimated residual-migration parameter
p would be approximately 1.3, which is clearly too high.

To update the velocity in the sediments from the picked p value I followed conventional
migration velocity analysis procedure for vertical velocity updating (Biondi, 2006). I as-
sumed constant velocity in the sediment layer and estimated the updated velocity in the
sediments ‘75 by applying the following equation:

o \/ (02 — 1) V2At, + p2V2AL,

Aty ’ 2)

where V,, is water velocity, Vs is the current estimate of sediment velocity, At,, is two-way
traveltime in the water layer, and At is two-way traveltime in the sediments. At the first
iteration Vy is set to water velocity. I picked the values of the traveltime intervals from the
section displayed in Figure 5 and set At,=.018 s and At;=.012 s. Entering these values
and p=1.225 into equation 2 results into 175:2.250 km/s.

This velocity is slightly higher than the final one because of the limitation of the lin-
earized residual migration I used. For large velocity errors, this residual migration under-
corrects the image because it does not take into account ray bending. The error encountered
in this case is larger than 20%. Consequently, the residual-migration parameter p is overes-
timated. However, another iteration of the velocity updating is sufficient to converge. My
conjecture about the cause of the velocity-correction overshooting is supported by Figure 12,
as discussed below.

The two panels in Figure 8 show respectively the result of the focusing analysis after
migrating the data with the intermediate velocity function, Vs=2.250 km/s (panel a), and
the final velocity function, V;=2.155 km/s (panel b). This final velocity for the sediments
was estimated using equation 2 with p=0.975; that is, the p value that corresponds to the
maximum in Figure 8a. The semblance peak in Figure 8b occurs at p=1, indicating that
the process has converged. The estimated value of 2.155 km/s for the sediment velocity is
consistent with the geologic information available from well drilled near the location where
the data were acquired.

Figure 9 summarizes the iterative velocity-estimation process by showing the velocities
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Figure 5: Zero-offset data recorded in New York harbor using a 512i sub-bottom profiler
with a 1-10 kHz pulse. [CR] |biond01 /. Data3—overn|
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Figure 6: Depth-migrated section obtained assuming a constant velocity equal to the ve-
locity of water; that is, 1.500 km/s. [CR] |biond01 /- Mig—water—overn|
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Figure 7: Image-focusing semblance
computed from the initial migrated
section and spatially averaged over
the analysis window. Figure 6. [CR]
‘ biondol/. Sembl3-overn ‘

Figure 8: Image-focusing semblance
computed from: (a) the interme-
diate migrated section, and (b)
the final migrated section. [CR|]
‘ biondol/. Sembl-iter]12-overn ‘
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as a function of depth at each iteration. The solid line (labeled as “Initial”) represents
the starting velocity, constant and equal to water velocity. The dashed line (labeled as
“Intermediate”) represents the result of the first correction, which slightly overshoots. The
dotted line (labeled as “Final”) represents the final velocity function.

Figure 10 compares the images obtained with the three velocities in the analysis window.
Figure 10a shows a zoom into the image shown in Figure 6. Figure 10b shows a zoom into
the migrated image obtained using the overcorrected velocity function, and Figure 10c shows
the final image. Compared with the other two images, the final image shows substantial
improvement in the continuity of the reflectors and a reduction in the amount of crossing
events.

Figure 11 compares the entire image obtained with the initial velocity (top panel) with
the entire image obtained with the final velocity (bottom panel). The improvement in
the image are substantial also outside of the analysis window. The image for the dipping
interface between the sediments and serpentinite at the left of the analysis window (between
60 and 90 meters along the midpoint axis) is more continuous in the final than in the initial
image. The reflections just below this interface are also better focused in Figure 11b than in
Figure 11a. Similarly, the reflector at the bottom of the sediment layer on the right of the
analysis window (between 140 and 160 meters along the midpoint axis) is more continuous
in the final image than in the initial one.

Finally, Figure 12 supports my previous conjecture that the overestimation of the veloc-
ity correction at the first iteration is caused by accuracy limitations of the linearized residual
migration I employed when correcting for large velocity errors. This figure compares the
analysis window for the final migrated image (top panel) with the analysis window taken
from the residual migration of the first migrated image that corresponds to the picked value
of p; that is, with p = 1.225 (bottom panel). These two images are very similar, demonstrat-
ing that the first p estimate is consistent with the final, and “optimal”, velocity estimate. It
leads to overshooting the interval-velocity correction because the residual migration is inac-
curate. Notice that the differences in the vertical axis between the two sections are caused
by the remapping to pseudo-depth of the residual-migrated section shown in Figure 12b.

CONCLUSIONS

Velocity information can be successfully extracted from zero-offset data by analyzing focus-
ing and defocusing of residual-migrated images. The results shown in this paper demon-
strate that the estimation method I presented in Biondi (2009) provides quantitative infor-
mation on velocity without relying on subjective interpretative criteria.

The synthetic examples illustrate how the resolution and reliability of the velocity esti-
mates increase when the target contains reflectors with a broad range of curvatures. This
insight is useful to guide the application of the suggested method to practical problems.

The New York harbor example shows that the proposed method is sufficiently robust
to provide reliable and quantitative velocity information from field data. The estimated
interval velocity function is consistent with available geologic information and improves the
focusing of the image both in the analysis window and outside the analysis window.
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Figure 10: Migrated images in the analysis window for the three iterations: (a) initial
velocity, (b) intermediate velocity, and (c) final velocity. [CR] |biond01 /- Mig—win—overn|
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Figure 11: Comparison of the entire images obtained with: (a) initial velocity, and (b) final
velocity. [CR] |biond01 /. Mig-overn
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Figure 12: Comparison of the migrated images in the analysis window for (a) final veloc-
ity, (b) residual migration of the starting image for p=1.225. The image-focusing method
selected the bottom image to be the best focused image among the ensemble of residual
migrated images obtained from the initial migration. [CR] |biondol /. ResMig-win-overn
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Gradient of image-space wave-equation tomography by the
adjoint-state method

Claudio Guerra

ABSTRACT

Optimization with gradient-descent techniques requires computing the gradient of the
objective function. The gradient can be determined by using the Frechét derivatives,
but, for practical problems, this can be very expensive. The gradient can be more
efficiently computed by the adjoint-state method, which does not require the use of
the Frechét derivatives. Here, I derive the gradient of the image-space wave-equation
tomography using the adjoint-state method. I also show its application with a numerical
example using image-space phase-encoded gathers.

INTRODUCTION

Wave-equation tomography aims to solve for earth models that explain observed seismo-
grams under some norm. There are two main categories, depending on the domain in which
the objective function is computed. In one category, known as waveform inversion (Lines
and Treitel, 1984; Tarantola, 1987; Woodward, 1992), the objective function is defined in the
data space, where the modeled data are compared with the recorded seismograms. In the
other category, here called image-space wave-equation tomography (ISWET), the objective
function is minimized in the image space. Two variants of ISWET are wave-equation mi-
gration velocity analysis (WEMVA) (Sava and Biondi, 2004a,b) and differential semblance
velocity analysis (DSVA) (Shen, 2004; Shen and Symes, 2008).

Like waveform inversion, ISWET is a computationally demanding process. This compu-
tational cost is commonly decreased by using generalized sources (Shen and Symes, 2008;
Tang et al., 2008). Because wavefield propagation is a linear process, generalized sources
are computed by linearly combining source wavefields and receiver wavefields, using phase-
encoding techniques (Whitmore, 1995; Romero et al., 2000). In particular, Guerra et al.
(2009) used phase-encoding modeling in the image space to synthesize generalized source
functions that drastically decrease the cost of DSVA.

WEMVA and DVSA seek the optimal slowness by driving an image perturbation to
a minimum. However, they differ in the way the image perturbation is computed and,
consequently, in the numerical optimization scheme applied. As Biondi (2008) points out,
WEMVA is not easily automated. The image perturbation is computed by the linearized
residual prestack-depth migration (Sava and Biondi, 2004a), which uses a manually picked
residual-moveout parameter. Because the perturbed image computed with the linearized
residual prestack-depth migration is consistent with the application of the forward wave-
equation tomographic operator, the forward and adjoint ISWET operators can be used in
conjugate-gradient methods to invert for the slowness perturbation. In DSVA, the perturbed
image is computed by applying the fully automated differential-semblance operator (DSO)
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to the subsurface-offset gathers (ODCIGs) or angle gathers (ADCIGs). When applied to
ODCIGs, DSVA minimizes the energy not focused at zero-offset. When applied to ADCIGs,
DSVA minimizes energy departing from flatness of the reflectors. Although DSVA easily
automates ISWET, it produces perturbed images that do not present the depth phase-shift
introduced by the forward one-way ISWET operator, neither the DVSA amplitude behavior
can be modeled by this operator. Therefore, the objective function computed with DSO is
tipically minimized by quasi-Newton algorithms, which require computation of the gradient
of the objective function.

The gradient of the objective function can be computed with the Frechét derivatives.
However, even for 2D applications of ISWET this computation can be very expensive.
An efficient way to compute the gradient without using Frechét derivatives is the adjoint-
state method (Chavent and Jacewitz, 1995; Plessix, 2006). Plessix (2006) describes two
methodologies for computing the gradient of the objective function using the adjoint-state
method. One methodology uses the perturbation theory, which states that, at first order,
a perturbation of the model parameters causes a perturbation of the objective function.
The other uses the augmented Lagrangian. The augmented Lagrangian is formed by the
objective function and the scalar product of the adjoint-state variables with general solutions
of the forward modeling equations. The adjoint-state variables are, in turn, solutions of the
adjoint-state equations. The adjoint-state equations are defined by equating to zero the
derivatives of the augmented Lagrangian with respect to the state variables. For the linear
case, the adjoint of the modeling operator applied to the adjoint-state variables gives the
gradient of the objective function.

Although previous studies have computed the gradient of the ISWET objective function
by the adjoint-state method (for example, Shen et al. (2003)), they have not provided a
detailed derivation. Here, I show a detailed derivation the gradient of the ISWET objective
function using the augmented Lagrangian methodology. The derivation is valid whether
ISWET uses areal-shot migration or shot-profile migration. A complete description of the
forward and adjoint of ISWET operators is given in Tang et al. (2008). A numerical example
of slowness optimization on the Marmousi model illustrates the use of the gradient by a
quasi-Newton algorithm.

Because I use image-space phase-encoded gathers in the numerical example, for com-
pleteness, I first briefly describe how to compute these phase-encoded gathers. A detailed
treatment of the image-space phase-encoded gathers can be found in Biondi (2006, 2007)
and Guerra and Biondi (2008a). Then I derive the ISWET gradient using the adjoint-state
method, and show the numerical example .

IMAGE-SPACE PHASE-ENCODED GATHERS

Biondi (2006, 2007) introduced the concept of the prestack exploding-reflector as a general-
ization of the exploding-reflector method (Loewenthal et al., 1976). The prestack exploding-
reflector modeling synthesizes areal data and the corresponding areal source function, hav-
ing as an initial condition a prestack image computed with wave-equation migration. If
the slowness is accurate and the energy is focused at zero-subsurface offset, the prestack
exploding-reflector modeling reduces to the conventional exploding-reflector method. Basi-
cally, the prestack exploding-reflector method models one single reflection event from one
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single ODCIG by recursive upward continuation with the following one-way wave equations:

(8 - iv/ePP) = TKP) (%, 2 ) = 7%, B T ) "
d(a:, Y, Z = Zmax, W; xmyym) =0 ’

and

(% +1 w2.§2(x) - |k’2> u(va;l'ma ym) = TU(Xy h; z,,, ym) : (2)
u(m,y,z = Zmax>w;xmaym) =0

where rp(x, h; p,, ym) and ry(x, h; 24, ym) are a single ODCIG at the horizontal location
(Tm, ym) with a single reflector, and are suitable initial conditions for modeling the source
and receiver wavefields, respectively. They are obtained by rotating the original unfocused
ODCIGs according to the apparent geological dip of the reflector. This operation main-
tains the velocity information needed for migration velocity analysis, especially for dipping
reflectors (Biondi, 2007). Note that d(z,y,z = z¢,w; Tm, Ym) is the areal source data and
u(x,y, 2z = z¢, w; Tm, Ym) 1s the areal receiver data for a single reflector and a single ODCIG
located at (2, ym); 2 = z. denotes that the wavefields can be collected at any depth level,
ze. This characteristic is important for accelerating ISWET, especially if z. separates re-
gions of sufficiently accurate slowness above and inaccurate slowness below. Therefore, the
synthesized gathers are naturally datumized, and the wavefield propagations during ISWET
can be restricted to the region where the slowness model must be updated. This feature
allows the application of ISWET to be target-oriented.

As initially formulated, if one models a single reflection from one ODCIG at a time, the
prestack exploding-reflector method generates a dataset that can be orders of magnitude
bigger than the original dataset. As discussed by Biondi (2006) and Guerra and Biondi
(2008b,a), modeling several reflectors and several ODCIGs simultaneously and using random
phase encoding generates a much smaller dataset that, when migrated, do not produce
crosstalk. The randomly encoded areal source and areal receiver wavefields can be computed
as follows:

(% —iy/w?232(x) — |k\2> d(X, pm,w) =Tp(X,h, pm,w) 3)
d(ﬂ?7 Y, 2 = Zmax; Pm; w) =0

and
(£ + V256 = [KP) @, P, ) = 7 (%, B, B, ) (4)
ﬂ(a:, Y, Z = Zmax, pmnw) =0

where 7p(x, h, p;,w) and 7y (x, h, p;,,w) are the encoded ODCIGs after rotations. They
are defined as follows:

?D(x,h,pm,w) = ZZTD(X7hvxmaym)ﬁ(xaxm7ymapmaw), (5)
Tm Ym

7f:U(Xah?I)’VTlvuj) = ZZTU(Xvhax’n’wym)/g(xwxmvyﬂ’wpmaw)v (6)
Im Ym

where B(X, T, Ym, Pm,w) = eV (5TmYmPmow) ig g pseudo-random phase-encoding function,
with v(X, Zpm, Ym, Pm,w) being a uniformly distributed random sequence in X, Z,, Y, and w;
the variable py, is the index of different realizations of the random sequence. The recursive
solution of equations 3 and 4 gives the encoded areal source data d(z,y,z = z¢, pm,w) and
areal receiver data u(x,y,z = z¢, Pm,w), at the depth level, z..
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GRADIENT OF ISWET BY THE ADJOINT-STATE METHOD

Image-space wave-equation tomography aims to iteratively solve for the slowness model,
s = s(x), that minimizes the nonlinear objective function:

Ts) = 5 1IAr(S)]E = S 1Ir(s) ~ Mr(s)| @

where Ar = Ar(x,h) is the image perturbation that measures the accuracy of the slowness
model. To compute Ar, a differential residual-focusing operator M is applied to the image
r = r(x, h) obtained with the current slowness (Biondi, 2008), using either differential resid-
ual prestack migration (Sava and Biondi, 2004a,b) or differential-semblance optimization
(DSO) operators (Shen and Symes, 2008). In this paper, operators are represented by bold
capital letters.

If the differential residual-focusing operator M is independent of the slowness, the gra-
dient of this objective function evaluated at the current slowness s = 5(x) is

v = (2)

where the prime denotes the adjoint, I is the identity operator, and Ar = A7(x,h) is the

perturbed image obtained with the current slowness model. The linear operator % defines

(I-M) A7, (8)

S=S§

the mapping %As = Ar between the slowness perturbation As and the image perturbation
Ar; it is called the image-space wave-equation tomographic operator.

Because the image-space wave-equation tomographic operator is composed of different
operators, it is difficult to envision from equation 8 which operations are performed to
compute the gradient. Therefore, for a clear explanation of the operators involved, I use
the adjoint-state method to derive the gradient of the objective function (equation 7).

In migration with generalized sources or shot-profile migration, the source and receiver
wavefields are propagated independently, and the image r, = r,(x,h) at a depth level z, is
computed by the crosscorrelation

r.(x,h) = Z di(x —h,w)u,(x + h,w), 9)

where d,(x,w) is the source wavefield for a single frequency w at horizontal coordinates
X = (z,y) ; ux(x,w) is the receiver wavefield, h = (hy, hy) is the subsurface half-offset,
and “*” stands for the complex-conjugate. An additional summation over shots is required
when migrating more than one shot. Hereafter, letters d and u stand for source and receiver
wavefields, respectively, irrespective of the migration scheme.

In a more compact notation, not explicitly writing the dependencies on x and h, equation
9 can be re-written as follows:

r. = SD/(w)u.(w) = SU(w)d:(w), (10)

where D and U are convolutional operators composed of (hg, hy)-shifted versions of d(x, w)
and u,(x,w), respectively. Operator S corresponds to the summation over frequency.
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For subsequent depth levels, d(x,w) is computed by means of the recursive downward
propagation

Ao (w) = Th(w, s)d=(w)
{m@o:«w, (1D

where T} is the downward continuation operator, which is a function of the slowness s, and
¢(w) is the source wavefield used as a boundary condition. In the case of conventional shot-
profile migration, g(w) = fs(w)d(x — xs) is the source signature located at xs; = (x5, ys,0).
If using the generalized sources in the image space, ¢(w) represents the image-space phase-
encoded source wavefield of equation 3.

The downward continuation of the receiver wavefield is performed by

Uz+1(w) = Ti(w, S)Uz(w)
{ummzwwx (12)

where w(w) is the recorded data at the surface for shot-profile migration. If using generalized
sources in the image space, w(w) is the phase-encoded areal receiver wavefield of equation 4.
In equations 11 and 12, I omitted the dependencies of the wavefield with respect to x. The
subscript I in equations 11 and 12 represents the surface for the shot-profile migration and
the “collection” depth level, z., for the image-space phase-encoded wavefields.

In the image-space wave-equation tomography problem, the perturbed source and re-
ceiver wavefields, and the image perturbation are used to compute the slowness perturbation
that updates the current slowness model. From the perturbation theory, we have d = &\—FAd,
u = U+ Au, and, consequently, r = 7+ Ar are physical realizations with s = 5+ As, where
the hat refers to fields obtained with the background slowness. To the first order (Born
approximation), these perturbed fields are given by

Ad.11(w) = THw,3)Ad, (w) + D, (w)As, (13)
and
Aty 1 (@) = T (w, 5) Ay () + U, () As,. (14)

The diagonal operators ]~)Z and ﬁz have in the diagonal entries the scattered source and
receiver wavefields, respectively. These wavefields are given by the action of the scattering
operator AT! on the background wavefields:

~ 2

D.(w) = ATH(w, §)d. (w) = i———d d. () (15)
w282 — [k|?
and
= IR , w?s .
U, (w) = AT} (w, 9)U,(w) = —i————=dz U, (w). (16)
w282 — |k|?

The perturbed image is given by

Ar, =S (Gz(w)Ad;(w) n f)'z(w)AuZ(w)) : (17)
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The matrix representations of equations 13, 14, 17 are

Ad = T'Ad + PS/As, (18)
Au = T'Au + US'As, (19)

and
Ar =S (fmg* n f)'Ag) : (20)

where S’ is a spreading operator that replicates the slowness perturbation for every fre-
quency.

Equations 18, 19, and 20 are the forward modeling equations of the image-space wave-
equation tomography problem using the generalized sources or shot-profile schemes. They
depend on the state variables Ad, Au, and Ar. Plessix (2006) describes how to compute
the adjoint states using the augmented functional methodology. By introducing the adjoint-
state variables Ay, A,, and A, the augmented Lagrangian reads

L(Ad, Au, Ar, Ay, Ay i A8) = R[4 | Ar|? -
Ag, (I=TH Ad - DS'As ) —
Ay (I—TY) Au— US'As ) —
<A,., Ar—S (ﬁAQ* + f)’Ag) > .

The adjoint-state variables are computed by taking the derivative of £ with respect to the
state variables and equating to zero, which gives

(I - Ti)'gd ~ U\, (21a)
(I - T1>/Au — D), (21b)
A, = Ar. (21c)

Notice that

(I—Ti)' - (I—Ti’) - (I—TT> (22)

corresponds to the recursive upward propagation operator. Therefore, equations 21a and
21b can be written as

Ap = TTAd + ﬁArv (233)
A, =TI\, +D)\,, (23b)

which correspond to the recursive upward propagation of the perturbed wavefields result-
ing from the convolution of the wavefields computed with the current slowness and the
perturbed image.

Finally, the gradient of J is
~/ ~/
ViJ(s) =S (D A+ U /\u> . (24)

To compute the gradient, the adjoint-state wavefields, \; and ),, are upward propagated

and cross-correlated in time with the scattered wavefields.

)’
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NUMERICAL EXAMPLE

The gradient of the ISWET objective function computed in the previous section can be
used in a quasi-Newton optimization scheme. I use the L-BFGS-B bound constrained opti-
mization algorithm (Nocedal and Wright, 2000) to invert for slowness using the Marmousi
model. A B-spline smoothing, with nodes spaced at 240 m in x and 16 m in z, is applied
to the gradient to prevent problems caused by poor illumination and noise. I model 375
two-way shots with 24 m spacing using the original Marmousi model of Figure la. The
maximum offset is 6600 m.

The one-way shot profile image with the correct slowness model can be seen in Figure
1b. The modeled data were also migrated using the background slowness of Figure 2a to
compute the background image of Figure 2b. The background slowness differs from the
true slowness in a limited region, as can be seen in Figure 3, which shows the ratio between
true and background slowness. When comparing the two images, there is a clear pull-up
effect at the center-bottom of the background image caused by migrating with a velocity
which is too slow.

Following Guerra et al. (2009), representative reflectors were selected from the back-
ground image (Figure 4) to synthesize eleven image-space phase-encoded source and receiver
wavefields using the background slowness. Prior to modeling, the selected reflectors were
subjected to rotation according to the apparent geological dip as previously mentioned. I
estimate that, by using only eleven areal shots, the computational cost decreased in 95%
considering if the slowness optimization was carried out with the original 376 shot-profiles.

The optimization stopped after 4 iterations comprising 41 function and gradient evalu-
ations. The optimized slowness model can be seen in Figure 5a. The optimized slowness
decreased as expected, but did not recover the details of the true slowness. The smoothness
of the optimized slowness is partially because of the B-spline filtering of the gradient but
also because image-space wave-equation tomography cannot solve for the short wavelengths
of the slowness model, as pointed out by Symes (2008).

The accuracy of the optimized slowness model can be evaluated by comparing the com-
puted images with true, background, and optimized slowness. The shot-profile migration of
the original shots using the optimized slowness is shown in Figure 5b. Notice that the pull-
up effect, which occurs in the background image, is greatly mitigated. In addition, reflectors
are more focused in the image computed with the optimized slowness than in the image
computed with the background slowness. Another slowness accuracy indicator is flatness
of the reflectors in the ADCIGs. The ADCIGs resulting from shot-profile migration of the
original shots using, from top to bottom, the true slowness, the background slowness and
the optimized slowness are shown in Figure 6. The reflectors computed with the optimized
slowness are flatter than those with the background slowness, demonstrating the greater
accuracy of the optimized slowness.

CONCLUSION

I showed a detailed derivation of the gradient of the objective function for the image-space
wave-equation tomography by means of the adjoint-state method. I used the augmented La-
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Figure 1: (a) True slowness of the Marmousi model. (b) Zero-subsurface-offset section of

the one-way shot-profile migration with the true slowness model.[CR] |claudi01 /. true|
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Figure 2: (a) Background slowness. (b) Zero-subsurface-offset section of the one-way shot-

profile migration with the background slowness model.[CR] |claudiol /- bckg|
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grangian methodology, which clarifies the action of the different operators that compose the
image-space wave-equation tomography operator. The derivation is valid whether one con-
siders migration of shot-profiles or generalized sources. Image-space phase-encoded gathers
significantly accelerate image-space wave-equation tomography. In addition to decreasing
the computational cost, the numerical example shows that image-space phase-encoded gath-
ers can be used to generate sufficiently accurate optimized slowness.
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Geophysical data integration and its application to seismic
tomography

Mohammad Maysamsi

ABSTRACT

For oil exploration and reservoir monitoring purposes, we probe the earth’s subsurface
with a variety of geophysical methods, generating data with different natures, scales and
frequency content. This diversity represents a large problem when trying to integrate
all the gathered information. The concept of a shared earth by all these geophysical
surveys suggests the presence of structural similarities in different data sets. For that
purpose, it is necessary to work with geophysical properties that are scale-independent
and not physical properties in individual layers. In this paper, I overview two methods
for extracting structural information from data and using it as a constraint to the
seismic tomography problem to compare different techniques and their effectiveness.

INTRODUCTION

In earth sciences, subsurface structures are studied by collecting large and various types
of geophysical data. Different geophysical attributes of the subsurface are measured by a
variety of geophysical measuring techniques, including but not limited to seismic, magnetic,
and well-logs. For many years, different types of data have been used for specific stages of
oil exploration and production. However, in recent years, many authors have considered
using diverse data in geophysical inversion can reduce uncertainty (de Nardis et al., 2005;
Bosch et al., 2005; Colombo and De Stefano, 2007). One of the main challenges of data
integration is the difference in physical nature, scale, and frequency contents. All of the
collected data, however, while measuring different properties, sample of the same geophys-
ical structures. We can extract mathematical/geophysical properties from a data set that
provides structural information. This structural information can be used in geophysical
problems as auxiliary data to improve model estimation results by constraining the opti-
mization problem. Geophysical inversion problems can benefit from this method in the form
of a regularization misfit term that imposes structural similarity between the main and the
auxiliary data fields. It is also applicable to both joint inversion and inversion using the
auxiliary data.

STRUCTURAL SIMILARITY MEASURES

Properties of the subsurface can have very different dynamic ranges of values, the frequency
band and scale in which they are measured. For example, magnetotelluric data has a much
lower frequency than seismic data, while its dynamic range of amplitudes is broader. In
this section, I review two attributes that provide some measure of structural similarity.
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Cross-gradient function

Gallardo and Meju (2004) introduce the cross-gradient as follows:
g=Vux Vv, (1)

where u and v are two measured fields. By using normalized values of each data field,
the cross-gradient function vanishes where the two fields are similar in structure or either
one of them is very smooth. Maysami (2008) and Maysami and Clapp (2009) note that
cross-gradient functions can be used as a measure of similarity. The cross-gradient function
can be a suitable choice for the regularization (model-shaping) term of an optimization
problem that imposes the structure of the auxiliary field on the estimated model. The
differentiating nature of these functions, however, raises a sensitivity issue where there is
a large gap between the frequency bands of different types of data. It is also expected
that cross-gradient function is not a very effective choice for low-frequency data, since the
smooth behavior causes the gradient to vanish.

Dip residual

In practice, the frequency spectrum of different types of geophysical data can change very
widely, and there might be cases with no overlap in frequency band. To address these types
of data integration problems, we need to choose properties that are frequency-independent.
Local dip is one such property, which can be estimated by solving a regularized optimization
(see Fomel (2000) for more details). Given a 2-D field u(z, z), one can estimate the dip values
where the data misfit function is given by

argmin,,  C(py,)u subject to
, (2)
eDAp, =0

where C(p,) is a convolution operator with a 2-D filter based on the local dip, and D
represents an appropriate roughening operator. The estimated local dip values are frequency
independent, making dip a candidate for carrying geological information from one data field
to another. Again, the estimated dips can be used in a regularization term of an optimization
problem to impose the structure of the auxiliary data on the estimated model. This model
misfit function can be given as follows:

rm(z,2) = ((% + pu %)’U(ZE,Z) ~ 0. (3)

Note that the structural similarity measures do not include any physical link that might
potentially exist between two fields. In other words, these functions only help the model-
shaping part of optimization, and the physics of estimation lies in the data-misfit term with
the mapping operator.

Figures 1 and 2 show examples where the reflectivity of the Marmousi synthetic model
is used as auxiliary data to impose the geophysical structures on a random noise field and
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a smooth velocity field. The optimization problem used to generate the estimated model
shown by Figures 1 and 2 is given by

2
arg min,, H d-1I mH2 subject to
) (4)
e A(u)y m=0

where I is identity matrix; A is either the cross-gradient or dip residual operator; u and d
represent the auxiliary reflectivity field and the data (noise or smooth velocity field), respec-
tively; and m is the estimated model which incorporates some of the structural information
provided by u. Note that a large € is needed to emphasize on model-shaping term and
impose structure. Figures 1(a) and 2(b) show the data d and the auxiliary field u. Figure
1(d) shows a better reconstruction of the Marmousi structure with dip residual technique
than the cross-gradient function (Figure 1(c)). This is clearly visible by comparing the
continuity of reconstructed amplitude along the geological dips in Figure 1(d)).

Figure 2 shows a similar problem where we start with a smooth velocity of the Marmousi
model instead of noise. Similarly, Figure 2(d) suggests that the dip residual technique leads
to a less noisy partial reconstruction of the Marmousi structure; but not all the details
are included. However, some of the horizontal parts of structures are reconstructed by the
cross-gradient function (Figure 2(c)), but not with the dip residual (Figure 2(d)). Note that
frequency ranges in smooth velocity and reflectivity are low and high, respectively.

APPLICATION TO SEISMIC TOMOGRAPHY

Following the earlier work by Maysami (2008) and Maysami and Clapp (2009), I apply
the methods discussed above to regularize the seismic velocity tomography problem. In
this optimization problem, the data misfit term includes the physics and kinematics of the
tomography problem, while the regularization (model-shaping) term imposes the structure
present in the auxiliary field, which is chosen to be either the reflectivity or the resistivity
field (see Figure 3). This problem can be stated as

2
arg minag H At—TLAsH2 subject to
, : (5)
€ H A(r)(so + As) H2 ~ 0

where s and r are the slowness and auxiliary fields, respectively; At and Ty represents
traveltime updates and the linearized tomography mapping operator; and A is the model-
shaping operator, which is picked as either the cross-gradient operator or the dip residual
operator. In the latter case, the regularization operator is given by A(r) = % + pr %.

Although the reflectivity field is in practice a function of velocity, we assume that it is
an accurate representation. One may consider a more general case, where the regulariza-
tion operator is also a function of model, which needs to be linearized around the current
estimation.

Figure 4 shows the results of solving the tomography problem (Equation 5) for an
optimal update in velocity. I start with a smooth velocity as the initial guess. I use either
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Figure 1: Data integration problem 1: The starting model is random noise (a) and the auxil-
iary data is the reflectivity of the Marmousi model (b). Panel (c) shows the estimated model
with the cross-gradient function and panel (d) shows the estimated model with the dip resid-
ual. Note the reconstruction of the structure in the estimated models and how each method
provides different quality of reconstruction. [ER|] ‘moharnmad2 /. noise,ref nxrx,nxrp
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Figure 2: Data integration problem 2: The starting model is now changed to a smooth
version of velocity (a) and the auxiliary data is the reflectivity of the Marmousi model
(b) . Next panels show the estimated model with (c) the cross-gradient function and (d)
dip residual. Note that we only expect to reconstruct the structure of the model, and the
formulation of our optimization problems does not include the physics behind the wave
propagation. [ER] |mohammad2/. vs,ref,mxrx,mxrp‘
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reflectivity or resistivity as auxiliary data and I choose either the cross-gradient function
or the dip residual for the regularization operator. This leads to four different updates
based on the choice of auxiliary data and data integration method. Note the different
frequency contents of the two types of auxiliary data in Figure 3. Updated velocities with
cross-gradient functions (Figure 4(a) and 4(b)) seem to have more contribution of structure
(model-shaping term) than the physics (data misfit term) of the problem, as the structure
of model is clearly visible in the results. The dip residual method, however, shows a better
portion of physics in the results and less of the actual structure. This suggests that we may
be able to benefit from combining these methods in a specific fashion to obtain a better
velocity estimation.
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Figure 3: Synthetic 2-D model used as an example for comparison of different data integra-
tion methods: (a) True velocity, (b) initial guess for velocity, (c) approximation of resis-
tivity, and (d) true reflectivity. [ER] ’mohammad2/ . vel-t,vel-0,softdatal-0,softdata2-0
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Figure 4: Updated velocities for the model shown in Figure 3 obtained by solving the
tomography problem using (a) resistivity and the cross-gradient function, (b) reflectivity
and the cross-gradient function (c), resistivity and the dip residual, and (d) reflectivity and
dip residual. [CR] ’mohammadQ/ . Velxl—dSO,veIX2—dsO,velp1—dsO,velp2—dsO‘
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CONCLUSIONS

As mentioned above, geophysical data integration can greatly affect the quality of estimation
of attributes by reducing the uncertainty in the model. In this paper, I reviewed the
structural similarity and some measurement techniques. The efficiency of these techniques
was compared with a simple example, where the physics were not taken into account to
emphasize the effect of data-integration techniques. The results suggest that the dip-residual
method provides better continuity in estimated structures than does the cross-gradient
function. Model estimation results using cross-gradient function shows higher sensitivity,
which can be explained by its differentiating nature.

I also compared these methods on a velocity estimation problem, where the physics are
also included in the problem statement. I used two different types of auxiliary data with
different frequency content to compare the efficiency of the techniques reviewed above. In
this case, the cross-gradient function shows a stronger structure-imposing effect. However,
the cross-gradient functions are not guaranteed to produce improved results when the fre-
quency contents of the main data field and the auxiliary data are very different. The dip-
residual method integrates less structural information by missing some of the anomalies.
More examples are suggested to validate the comparison results.
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Selecting the right hardware for Reverse Time Migration

Robert G. Clapp, Haohuan Fu, and Olav Lindtjorn

ABSTRACT

The optimal computational platform for Reverse Time Migration (RTM) has recently
become a topic of significant debate, with proponents of the Central Processing Unit
(CPU), General Purpose Graphics Processing Unit (GPGPU), and Field Programmable
Gate Arrays (FPGA) all claiming superiority. The difficulty of comparing these three
platforms for RT'M performance is that the underlying architecture leads to significantly
different algorithmic approaches. The flexibility of the CPU allows for significant algo-
rithmic changes, which can lead to more than an order of magnitude improvement in
performance. The GPGPU’s large number of computational threads and overall mem-
ory bandwidth provide a significant uplift but require a simpler algorithmic approach,
requiring more computation for the same size problem. The FPGA’s streaming pro-
gramming model results in an attractive but different cost metric. The current lack of
a standardized high-level language is problematic.

INTRODUCTION

Over the last couple of years, it has become more difficult to assess which hardware can
deliver the most cost-optimal solution for demanding imaging tasks. The days of faster
and faster CPUs are over. A clear choice of hardware has been replaced with many-core
technologies, and a proliferation of alternatives. In particular, accelerators like GP-GPU
and Field Programmable Gate Arrays (FPGAs) have emerged as strong contenders for the
title of hardware platform of choice. With the radical difference in hardware architectures,
it has also become more and more difficult to evaluate which platform is optimal for the
application in question. An apples-to-apples comparison is no longer possible. Through
the example of RTM, we demonstrate that only through a careful optimization for each
platform, with the involvement of Hardware, Computer-Science and algorithmic scientists,
can we come up with a reasonable assessment of the alternatives available today.

At the core of the RTM algorithm is a modeling kernel. The simplicity of the modeling
kernel has led to high-performance implementation on Field Programmable Gate Arrays
(FPGA) (Nemeth et al., 2008), General Processing Graphics Processing Units (GPGPU)
(Micikevicius, 2008), and conventional processors. There has been significant debate on
which platform produces the most efficient code, both in terms of runtime and when code
maintainability is factored in. One of the largest difficulties in comparing these three plat-
forms is that while a naive, unoptimized RTM algorithm could be implemented on each
platform and directly compared, an optimized version of the RT'M algorithm varies signifi-
cantly due to the strengths and weaknesses of each architecture.

In this paper, we discuss some of the algorithmic and optimization decisions used to
implement RTM on each platform. In addition, we show how these choices are often di-
rectly tied to the characteristics of the underlying architecture. We begin by describing
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the basic RTM algorithm. We then discuss some of the strengths and weaknesses of each
platform for RTM and the various algorithmic approaches and optimization techniques for
implementing RT'M on each platform. We conclude with a discussion about what generali-
ties can be extracted from three different implementation approaches and at what level the
implementations are architecture-specific.

RTM

The concept behind RTM is relatively simple. We start with a known earth model. This
earth model might be simply acoustic velocity but can be anisotropic, elastic, or even visco-
elastic. Two different modeling experiments are conducted simultaneously through the
earth model. Both attempt to simulate the seismic experiment conducted in the field, one
from the perspective of the source and one from the perspective of the receivers. The source
experiment involves injecting our estimated source wavelet into the earth and propagating it
from ¢ = 0 to our maximum recording time ¢y, creating a 4-D source field s(z,y, z,t). At
the same time, we conduct the receiver experiment. We inject and propagate our recorded
data starting from tyax to to, creating a similar four dimensional volume g(x,y, z,t). The
most common approach is to propagate these fields using an explicit time marching scheme
(Dablain, 1986). We start from the acoustic wave equation
0%u 5 [ 02 0? 0? 1

= (5 * oy * ) W
where u is pressure and v is velocity. We can use a Taylor expansion to approximate these
derivatives. Algorithm 2 shows the pseudo-code for how to forward propagate by nt steps
a source function w, with a dt interval on a regular mesh whose size is nx, ny, nz indexed
by iz, iy, iz, it, using a second-order approximation of the time and space derivatives.

Algorithm 2 Second-order acoustic modeling
for it=3...nt do
for ix=2...nx-1 do
for iy=2...ny-1 do
for iz=2...nz-1 do
s(ix,ly,iz,it)= 2*s(ix,iy,iz,it-1)-s(ix,liy,iz,it-2)+
v(ix,iy,iz) *dt*dt* (s(ix,iy,iz,it-1)*8+
-(s(ix-1,iy,iz,it-1)+s(ix+1,iy,iz,it-1)) /dx/dx
-(s(ix,iy-1,iz,it-1)+s(ix,iy+1,iz,it-1)) /dy /dy
-(s(ix,iy,iz-1,it-1)+s(ix,iy,iz+1,it-1)) /dy /dz) +w(ix,iy,iz,it)
end for
end for
end for
end for

We have a reflection where the energy propagated from the source and the receiver are
located at the same position at the same time. The final image ¢ is the summation of
correlating the source and receiver wavefield at every time and every shot,

tmax

i(@,y,2) = > Y s(g.2,y,2,t)g(x,y,2,1). (2)

shots t=0
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Bottlenecks

There are four potential bottlenecks in this process. The first two involve the cost of
propagating the wavefield from ¢ = 0..tjax. The explicit time marching scheme described
above has an operation count proportional to the number time steps nt times the size of
the domain nx * ny * nz. In order to obtain a stable and non-dispersive solution, we are
constrained in choosing our sampling in time and space. If we use too large of time steps
or sample our medium too coarsely for a given velocity or frequency in our data, we can
run into problems with stability, dispersion, and/or accuracy. Our sampling is controlled
by the minimum and maximum velocity in the media, the maximum frequency we want
propagated, and the order of accuracy of the derivative approximations. By using higher
approximations to the space and time derivatives, we can get away with coarser sampling
in time and space with the trade-off of a larger number of operations per sample. This is
generally a beneficial trade-off, particularly for the spatial derivatives, because we trade off
linear growth in our derivative approximation with cubic growth in the number of samples.

An unmentioned aspect of the time marching scheme is that our physical experiment
takes place in a half-space while our computational experiment happens in a more lim-
ited domain. As a result the computational experiment has artificial reflections from the
boundaries of the domain. The reduction of these effects is usually handled through one or
more of the following techniques: introducing a damping region around the computation
domain (Cerjan et al., 1985); introducing a boundary condition that attempts to kill energy
propagating at some limited range of angles perpendicular to the boundary (Clayton and
Engquist, 1980); or, most effective, costly, and complex, using Perfectly Matched Boundary
(PML) (Berenger, 1996) which simulates propagating a complex wave whose energy decays
as it approaches the boundary.

A third problem is that it is impractical to store the 4-D volumes s and ¢ in memory.
These volumes are often multiple terabytes in size. As a result, for a second-order time
approximation, we normally keep in memory only the previous two time steps needed to
update the wavefield. This causes a problem with our imaging condition where the source
field must propagated from ¢ = 0. to t = maxtime while the receiver wavefield must be
propagated from ¢t = maxtime to t = 0 yet the fields must be correlated at equivalent
time positions. To solve this problem, one propagation must be stored either completely
or in a check-pointed manner to disk. Symes (2007) and Dussaud et al. (2008) discuss
checkpointing methods to handle the different propagation directions.

A fourth potential problem is the very large size of the image domain required when
constructing subsurface offset gathers. This is a particular problem for some accelerators
with limited memory.

Modeling costs

From the above list of bottlenecks, one could conclude that optimization and algorithmic
techniques are concentrated on reducing the total number of operations and figuring out
how to minimize the need to go to disk. This is an incomplete and, particularly for reducing
operation count, a misleading description of the problem. Reducing the total number of
operations is important but in most cases the problem is the ‘cost’ of transferring data from
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where it exists on some memory device to the processing unit. The cost of transferring the
data has two parts; the latency, which is the amount of time it takes to send the first byte;
and the bandwidth, which is how much data can be sent in a given time. The definition of
a memory device has many potential meanings. On the latest Intel CPU (Nehalem) these
include L1, L2, and L3 cache; the Random Access Memory (RAM) on the system; the disk,
solid state or conventional; and transferring from another processor, or node. Accelerators
such as the GPU or FPGA have additional levels of memory devices. The core of many
optimizations and algorithmic techniques is to get as much of the data as possible to the
least costly memory device before the processor needs it.

To understand how latency and bandwidth can play an important role in seismic mod-
eling, let’s take a closer look at the general structure of algorithm 2 with a simplistic view
of a conventional CPU, where vectorization, prefetching, and pipelining don’t exist. To
compute s(2,2,2,3) we need one element in each of the 3-d volumes s(:,:,:,1),w and v;
and seven elements in s(:,:,:,2). Let’s ignore the source term w, as it is non-zero at very
few values. So, to compute the very first element of the array, we need to read 9 values
(36 bytes) and store 4 bytes. In reality, we are going to read significantly more than 36
bytes. CPUs don’t transfer individual bytes from main memory but instead transfer cache
lines which are composed of between 8-256 contiguous bytes (we will use 64 bytes for this
example) to L1 cache. The individual value we want is then transferred to a register for
our given calculation. So, for this idealized case, we will have the cost of transferring the
following eight cache lines to the L1 cache.

’ Cache line ‘ Usage

v(1:16,2,2) Velocity
s(1:16,2,2,1) | Used for time derivative
s(1:16,2,2,2) | Used for time and z derivative

»
—

:16,1,2,2) | Used for y derivative
:16,3,2,2) | Used for y derivative

—_

V)

(
(
(
(
(
(
(
(

s(1:16,2,3,2) | Used for x derivative
s(1:16,2,1,2) | Used for x derivative
s(1:16,2,2,3) | Output

The cost will be dominated by the latency associated with transferring eight cache lines
from main memory. Everything we need to compute the next 15 elements, s(3,2,2,3), is
now sitting on our L1 cache, which tends to have a latency an order of magnitude less
than transferring from main memory. When we hit s(17,2,1,3) we will have to transfer
additional cache lines from main memory to the L1 cache. We will continue in this pattern
along the iz axis. At some stage, the L1 cache becomes full an cache lines will instead
be sent to the L2 cache. When the L2 cache is full, cache lines will be transferred to
the L3 cache, then main memory. Things get more interesting when we begin the iy = 3
loop. We will definitely have to read in the new cache lines v(1 : 16, 3,2), s(1 : 16,3,2,1),
s(1:16,4,2,2), s(1 :16,3,1,2) and s(1 : 16,3,3,2) but the remaining three cache lines
needed for the calculation have been read before and may exist in L1, L2, L3, or main
memory depending on the size of our domain. The larger our domain, the more likely
that the cache lines will have migrated to main memory, costing us the order of magnitude
additional penalty. When we begin the iz = 3 loop only three of the cache lines needed (
v(1:16,2,3), s(1:16,2,3,1), and s(1 : 16,2,4,2)) haven’t been previously read. For higher
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order spatial derivatives, the problem is significantly worse. For example, in the case of a
14th order in space stencil, we need to read 46 different cache lines. The odds of reuse go
down significantly, increasing our cache misses and straining the total bandwidth needed
between our caches and main memory.

CPU

Of the three potential architectures described in this paper, the CPU is by far the most
flexible and offers the most potential optimization and algorithmic manipulation paths.

Following the wavefield

The computational domain used for RTM is usually controlled by the desired migration
aperture. The source function w from algorithm 2 is non-zero in a very small portion of the
computational domain. When propagating a source, we might have as few as 9 non-zero
elements in a mesh that is a billion points in size. As a result, at early times, algorithm 2
would spend over 99% of its efforts propagating zeros. As time progresses, the wavefield
will be non-zero at a larger percentage of the volume. As Figure 1 shows, we can slowly
expand the range of ix, iy and iz, reducing the total number of operations.

X

Figure 1: An illustion of how we can
restrict the size of computational do-
main at early times. The circle rep-
resents a source at the surface and 7
the wavefronts are drawn different
time locations (t1,t2,t3). The do-
main where we update our wavefield
can safely be restricted to the corre-

sponding boxes.[NR] |bobl/. range

Domain decomposition and resampling

Domain decomposition involves splitting our computation domain into several sub-domains.
Figure 2 shows how each sub-domain is then marched forward in time (one or more steps)
separately. Domain decomposition can be done at the core, processor, or node level. Differ-
ent computational units are assigned different portions of the domain. They are responsible
for computing an updated solution in their region.

The primary advantage of this approach is that each sub-domain is smaller, increas-
ing the likelihood that the cache line will be close (in L1 or L2 cache) rather flushed to
main memory. A more subtle advantage of domain decomposition is that sub-domains
can represent significantly different velocity ranges, and therefore different spatial sampling
requirements to obtain the same level of accuracy, stability, and dispersion. These modifi-
cations can potentially allow significant performance gains.
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Figure 2: An example domain de-
composition. The domain is bro-
ken into four portions reducing the
amount of memory needed and/or
reducing cache misses improving
performance. The domains can not
be treated completely indepently be-
cause the rely on retrieving informa-
tion from the neighbors as the time
marching scheme progresses.[NR|]

1,2

’bobl /. decomposition‘

Naturally, there are also disadvantages. First, notice the shaded squares in Figure 2
that demonstrate that a sub-domain must access some of its neighbors’ elements in order
to calculate the spatial derivative along its own edge. As a result, there is a limit on how
independently each sub-domain can operate and how small the sub-domains can become
before the cost of rereading or passing the boundary region becomes the dominant cost.
In addition, transferring this boundary region from one computational unit to another can
become a bottleneck. Calculating derivatives at the boundaries and potentially handling
load balancing can make the code considerably more complex.

Property compression

Usually we store our velocity, density, and anisotropic parameters as 4 byte floats. This is
far more precision than is warranted by our knowledge of velocity, let alone our anisotropic
density parameters. All of our property descriptors can be compressed, increasing the
number of output points that can be computed per cache line read and the amount of space
the storing property description takes up on the L1, L2, and L3 cache. For example, storing
velocity as a short (2 bytes) rather than float would double the number of output points
that could be calculated per cache line read.

Cache-oblivious approaches

Cache optimization techniques, such as finding the optimal sub-domain for domain decom-
position, are very CPU-specific. Cache-oblivious approaches attempt to find a solution that
is independent of cache size, resulting in a minimum number of cache misses. These ap-
proaches generally use a divide and conquer scheme. Imagine the 1-D version of algorithm 2
and say we want to calculate the 10th position at x at the 5th time sample s(10,5). Ignor-
ing velocity for a minute, we need s(9 : 11,4) and s(10,3). To obtain s(9 : 11,4), we need
s(8:12,3) and s(9 : 11,2). To obtain s(8 : 12,3) we need s(7: 13,2) and s(8 : 12,1). This
concept is demonstrated in Figure 3. In addition, for all of these calculations, we will need
v(8 : 12). If we then do the progression of calculating s(8 : 12,3), the L1 cache will have
everything we need to update s(9 : 11,4) and s(10,5) without suffering a single cache miss.
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X

Figure 3: The concept behind oblivious cache. By reading all of the values at the bottom
at the bottom of each pyramid the solution can be updated at all the location at the second
level of the pyramid. The second level provides all that is needed to update the third level.
Finally all the elements on the third level provide everything that is need to create the
element at the top of the pyramid. This technique minimizes cache misses by reformulating
the algorithm to maximize data reuse.[NR] ’bobl /. oblivious

GPGPU

GPGPUs are a rather new high performance computing platform. Current high-end GPG-
PUs have hundreds of processing units and total memory bandwidth that is several times
greater than Intel and AMD’s current architectures. The hardware roadmap for GPGPUs
versus CPUs show this disparity increasing significantly in the near future. GPGPUs con-
nect to the motherboard through either the PCI-X slot on the motherboard or directly into
the CPU socket on the motherboard. The PCI-X approach has the advantage of being
motherboard agnostic. Connecting directly into the CPU socket allows easier, and often
quicker, access to system memory, but takes away from the system’s total CPU computing
power. The most common programming language for GPGPUs is Nvidia’s CUDA. An open
standard language, OpenCL, will soon be available on both Nvidia and ATI hardware.

GPGPUs are often referred to as “streaming processors”. In this context, a streaming
paradigm means that the same operation, or set of operations, is performed on a stream of
data, a form of Single Instruction Multiple Data (SIMD). A GPGPU is broken into a grid of
thread blocks. Ideally, the number of thread blocks is equal to greater than the number of
processing units on the GPGPU. Multiple threads, up to 512 on the latest Nvidia GPGPU,
are started on each grid block. The threads help hide memory latency. While one thread
is waiting for data, another thread can be executing. Each thread block has its own set of
registers (fastest memory) and each grid block has a pool of shared memory, which can be
as fast to access as register. In addition, there is a large pool of global memory (4GB on
the latest Nvidia GPGPU). This global memory has latency two orders of magnitude larger
than accessing registers or shared memory. Figure 4 shows this two level parallelism.

On the GPGPU, the basic acoustic algorithm shown in algorithm 2 is broken into two
parts. Replacing the unrealistic 4-D source volume with the previous prev, current pcur,
and updated pnext wavefield, the CPU portion of the code has a form similar to algorithm 3.

The GPGPU update kernel has nearly as simple a form.

GPGPUs are often considered difficult to program. This is partially due to unfamiliarity
with the parallelism model and partially due to the need to explicitly handle transfers to and
from the GPGPU and at different levels of GPGPU memory in order to achieve maximum
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Global memory
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Figure 4: The memory hierarchy of typical GPGPU. The processing elements are broken
into a 2-D grid block. Each 2-D grid block is broken into a grid of thread blocks. Each
thread has its own set of registers. Each grid block can access the same shared memory and

grid blocks can access the globabl memory.[NR] |bobl/. gpgpu

Algorithm 3 Second-order acoustic modeling
Allocate and transfer velocity to GPU
Allocate and zero prev, pcur, pnext
Allocate and transfer source function locations and data
Create GPGPU grid blocks
Create GPGPU thread blocks
for it=3...nt do
Call GPGPU kernel to inject wavefield into pcur
Call GPGPU kernel to update wavefield
Switch GPGPU pointers on prev, pcur, and pnext
end for

Algorithm 4 Second-order acoustic modeling

Figure out location based on grid and thread number
for ix=2,nx-2 do

Transfer pcur values to shared memory

Apply space and time derivatives to form pnew
end for
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performance. For an unoptimized code, this perspective has validity. An optimized GPGPU
code most likely contains less lines and less complexity. Once the relative simplicity of the
GPGPU kernel parallelism and memory hierarchy is understood, one could argue that the
GPGPU offers a quicker development cycle.

Simply looking at the total memory bandwidth available and the raw compute power
offered, GPUs would seem to be the obvious best compute device for RTM. Unfortunately,
some of the limitations on the programming model and memory hierarchy makes it less
clear.

Programming model limitations

To achieve maximum GPGPU performance, we need to maximize the number of threads
per thread block and have at least as many grid blocks as the number of processing units.
On the high end GPGPU, this means we would like to have at least 100,000 identical tasks.
Unfortunately, this eliminates some of the optimization opportunities available on the CPU.
Oblivious cache is impractical and we are limited in our ability to compress model param-
eters. Both of these result in significantly more strains on global memory. A potentially
greater problem is introduced with the boundary condition. The SIMD parallelism required
for performance on the GPU makes complex boundary conditions like PML and probably
the zero slope boundary condition impractical. As a result, we are limited to using damping
schemes that require us to expand our computational domain to achieve damping results
that are sub-optimal compared to PML schemes.

Memory limitations

As mentioned above, in the GPU hierarchy, registers and shared memory provide two orders
of magnitude faster access than the global memory and function in the role of cache in CPU
architectures. The size limits of registers and shared memory per block are both 16 KB.
While the shared memory is shared among all the threads in the block, the threads keep
their own copies of the registers. As a result, when we increase the number of threads in
a block to achieve better performance, the size of registers usually becomes the bottleneck.
In the CUDA framework, the supported maximum number of threads per block is 512. If
the size of the stencil increases from 9 points to 33 points, the number of registers needed
for each thread increases from 28 to 55. To stay under the maximum number of threads
per block (512), the stencil sizes must be smaller than 17 points. For stencil sizes larger
than that, we need to reduce the number of threads per block, thus sacrificing some of the
computation performance.

Although global memory access is much slower than registers and shared memory, the
bandwidth of global memory (80 GB/s) is much higher than the bandwidth to the host
memory through PCI-Express (4 GB/s). However, the size of global memory is usually
not enough for the large dimension sizes of seismic problems. Typically, we need to store
four arrays (prev, cur, next, v), allowing a domain size of only 250 million points, much
smaller than is often needed. For larger domains, we must split over multiple GPUs, creating
a bottleneck either over the PCI-X link or the network.

The correlation step is also constrained by memory bandwidth. The fact that the source
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and receiver wavefields are propagated in different directions is also problematic. Assuming a
check-pointing scheme is used, we must continually transfer snapshots of the source wavefield
across the PCI-X bus when propagating the wavefield forward and transfer them back while
propagating the receiver wavefield. Wavefield buffering that is usually used to minimize the
number of checkpoints and the resulting IO load must be spaced much closer together given
the relatively small amount of memory on the GPGPUs. Constructing subsurface offset
gathers is also hindered by the limited memory. The GPGPU can only create offset gathers
at a small percentage of imaging locations before we again become memory limited.

FPGAS

Similar to GPGPUs, FPGAs are usually classified as streaming computation devices. How-
ever, the actual ‘streaming’ mechanism differs significantly between GPGPUs and FPGAs.
While a GPGPU generally issues loads of identical threads to handle different data items
(Single Instruction Multiple Data), an FPGA pushes one data item through loads of differ-
ent operations (Single Data Multiple Instruction). In a fully-pipelined FPGA design, you
may even have different data items processed for different operations at different pipe stages
(Multiple Data Multiple Instructions).

Before diving into the technical details of FPGA implementations, this section provides
a general picture of the streaming architecture of FPGA computation compared to the
classical Von Neumann architecture.

Figure 5 shows a classical Von Neumann architecture containing two major parts, the
processing unit and the memory. The memory stores both the data and instructions. To
execute each instruction, the processing unit loads the first instruction in the sequence
and the related data from the memory, performs the corresponding arithmetic or logic
operations, and stores the data back into the memory.

In contrast to the Von Neumann, FPGAs take a streaming approach to perform com-
putation.

Figure 6 shows how as the data items are pushed in and out as sequential streams, the
instructions are mapped into programmable circuit units along the path from the input
ports to output ports. Therefore, instead of fetching instructions and data back and forth
from the memory, the computation gets performed as the data streams flow through the
circuit units in one pass.

The performance of an FPGA streaming design relates to two key factors: one is how
fast we can clock the pipeline, i.e. the throughput of the FPGA circuit; the other one is
how fast we can push the data in and out, i.e. the bandwidth between the FPGA and the
outside data.

To achieve a high computation throughput, the FPGA designs are generally fully-
pipelined, with registers storing intermediate computation results. With pipelining, the
throughput of the entire design is no longer determined by the latency of entire pass. In-
stead, the throughput is determined by the largest latency among circuit parts separated
by registers. Therefore, for current commercial FPGAs, as long as the FPGA has enough
registers to break the large latency into small separated parts, the computation through-
put of the design can always be optimized to a level around the FPGA frequency. The
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Figure 5: The classical Von Neumann architecture.[NR] ’bobl /. von-neumann
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pipelining in the design makes the FPGA’s performance behavior quite different from con-
ventional processors. In conventional processors, more mathematical operations consume
more computation time. In FPGAs, more mathematical operations consume more hard-
ware resources. While the latency from input to output port is increased, the throughput
of the design remains the same. For applications like RTM that process a huge amount of
data items, the long stream of input and output values hide the increase in latency.

Current commercial FPGAs contain three major categories of resources: reconfigurable
logic; arithmetic units that can perform 18-bit by 25-bit multiplications; and Block RAMs
that serve as distributed local storage units. On a current high end FPGA from Xilinx we
can implement up to 1000 single-precision floating-point multipliers or 500 adders. Note
that,if Moore’s Law holds, these resources on the commercial FPGAs can get doubled every
eighteen months.

Implementing RTM on FPGAs

The core computation of RTM is finite-difference-based 3D convolutions, which normally
perform multiplications and additions on a number of adjacent points. While the points
are neighbors to each other in a 3D geometric perspective, they are often stored relatively
far apart in memory. For example, in the 7-point 2D convolution performed on a 2D array
shown in Figure 7, data items (0,3) and (1,3) are neighbors in the y direction. However,
suppose the array uses a row-major storage and has a row size of 512, the storage locations of
(0,3) and (1, 3) will be 512 items (one line) away. For a 3D array of the size 512 x 512 x 512,
the neighbors in the z direction will be 512 x 512 items (one slice) away. In software
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implementations, this memory storage pattern can incur a lot of cache misses when the
domain gets larger, and decreases the efficiency of the computation.

Figure 7: A streaming example of 2D convolution.[NR] ’bobl /. convolution-2D

In an FPGA implementation, we use BRAMs to store a window of the input stream
and enable the circuit to compute one result per cycle. Figure 7 demonstrates this concept.
Suppose we are applying the stencil on the data item (3,3), meaning the circuit requires 13
different values (shown in red). As the data items are streamed in one by one, in order to
make the values from (0,3) to (6,3) available to the circuit, we use BRAMs to buffer the
window of all the six lines of input values from (0,3) to (6,3) (shown in grey grid). In the
next cycle, the first value (0,3) pops out of the window, as (0, 3) is no longer needed for the
following computation. Meanwhile, the next value (6,4) is pushed into the window buffer,
as (6,4) is needed for the next stencil operation.

Considering the BRAMs as the ‘cache’ of an FPGA design, the above window buffer
mechanism provides a perfect ‘cache’ behavior: firstly, the data item gets streamed into the
window buffer at exactly the cycle that the data item is needed for the computation for the
first time; secondly, the data item only resides in the window buffer for the period of time
that the data item is needed for the computation. Current BRAMs can hold 6MB of data,
or 1.5 million elements, when the data is stored as float. The window size that needs to be
buffered is proportional to nl*n2*no, where no is the spatial derivative approximation. For
large data volumes and high order stencils, this exceeds current BRAM storage, requiring
domain decomposition. The size of BRAM tends to follow Moore’s Law, doubling every 18
months.

Processing Multiple Time Steps

As mentioned above, current FPGAs have the resources to implement hundreds of floating-
point arithmetic units. Therefore, one stencil operator design only consumes a small portion
of the total resources of an FPGA. To make a full utilization of all the resources on an FPGA,
one straightforward way is to fill multiple stencil operators into one FPGA.

However, increasing the number of stencil operators does not always improve the overall
performance due to the constraint of the memory bandwidth between the FPGA and the
onboard memories. When the input streams for the multiple stencil operators approach the
saturation point of the memory bandwidth, increasing the number of stencil operators may
not improve the performance any more.
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Instead of implementing multiple stencil operators, another strategy is to extend the
streaming pass to process multiple time steps. In RTM, the dt of modelling is a fraction of
the sampling of the recorded data. These wavefields are intermediate results unneeded in
the imaging process. The streaming architecture of FPGA provides an ideal platform for
convolving multiple time steps in one pass.

As mentioned in the previous sections, as long as the FPGA has enough resources, we
can add more computation units without reducing the throughput of the design. Therefore,
instead of sending the results of the stencil operator to the output port, we can push the
results into another stencil operator and perform the computation for the next time step.

Figure 8 shows the general structure for processing multiple time steps in one pass. As
mentioned in previous section, at the input port, a window buffer is used to store all the
data items needed for the stencil operator. Similarly, we can put another window buffer
to store the convolution results of time step 0 and feed the corresponding values into the
stencil operator for time step 1. Therefore, we can multiply the computation performance
without consuming multiple times of memory bandwidth.

‘A[n]‘ ------ ‘A[s]‘A[z]‘Am‘A[O]’—» window buffer

<L

stencil operator:
time step 0

— window buffer

<L

stencil operator:
time step 1

— eecccee

Figure 8: General structure for processing multiple time steps in one pass.[NR]

’ bobl/. multiple-time-step

Bit-width Minimization

Conventional seismic processing is performed on a CPU with 32 or 64-bit precision for all
operations. In certain cases, using a reduced precision produces equivalent results within
acceptable tolerances. However, as CPUs do not support configurable bit-widths, reducing
precision brings no benefits to performance. In contrast, FPGAs enable application-specific
number representations. With hardware support for reconfigurable number format and
bit-width, reduced precision can greatly decrease the area cost and I/O bandwidth of the
design, thus multiplying the performance with concurrent processing cores on an FPGA.

In our previous work on exploring different bit widths in complex exponential opera-
tions Fu et al. (2008), we show that in certain parts of the calculation, fixed-point numbers
with 12 bits can be applied to achieve a similar accuracy as 32-bit floating-point numbers.
Similarly, for the 3D convolution in RTM algorithm, we can achieve acceptable accuracy
using 24-bit fixed-point numbers instead of 32-bit floating-point numbers. The reduction
in representation precision leads to significant reduction in the area cost of arithmetic op-
erations and the bandwidth requirement between the FPGA and the outside data memory.
As a result, the performance of the design gets significantly improved.
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Data Compression

In contrast to CPUs, implementing decompression and compression on streaming architec-
tures only consumes extra hardware resources. The computation performance does not get
affected, as the fully-pipelined circuit would provide the same throughput. Moreover, as the
performance of the design is in most cases constrained by how fast we can push the data in
and out, i.e. the memory bandwidth, adding data decompression and compressing stages
enables us to push more data through the processing circuits and improve the performance
of the design.

For typical seismic applications, by utilizing the similar value range of neighboring data
items, both the wavefield and velocity can be compressed by a significant ratio. For wavefield
and the velocity data represented in 32-bit single-precision floating-point numbers, two
times compression is usually achievable by converting the values into 16-bit fixed-point
representation, and the performance of the design can be doubled for the cases in which
memory bandwidth is the bottleneck.

Limitations

Streaming is not suited for all applications or even all portions of an application. Not
all of the algorithmic tweaks that make RTM run efficiently on a CPU are feasible. Some
algorithmic complexities, such as the PML boundary condition and variable grids, eat up too
many FGPA resources to be viable. The number of arithmetic units is finite. Approaches
such as multiple time steps per pass can oversaturate these resources. In addition, while
wavefield precision and compression can significantly improve performance, their viability
when using the RTM kernel for waveform inversion needs to be investigated.

Programming Difficulty

As mentioned in the above sections, the streaming architecture of FPGAs show great po-
tential for achieving high performance for RTM. However, the difficulty in programming
FPGAs has long been considered a disadvantage that prevents FPGA from becoming a
general computation solution.

Firstly, the mindset for programming an FPGA is much different from the mindset of
software programming. In contrast to writing a sequence of logic and mathematic opera-
tions in software programming, programming an FPGA is more like writing a description
of a hardware design. The programmer needs to specify the input and output variables
of each unit as well as the timing schedule between different signals. The different mind-
sets bring significant difficulties for common users, who are usually more into the software
programming mindset, to map their designs into the FPGA’s streaming architecture.

Secondly, the FPGA programming process itself is also much more complicated. In early
days, FPGA programmers used to write their design using VHDL or Verilog, which are very
low level hardware description languages. In recent years, people have made various efforts
to develop high-level compilers for FPGA programming. Some of the emerging high-level
compilers manage to hide most of the low-level details of hardware design, and enable the
users to describe the hardware design using a high-level language, such as C++/Java.



SEP-139 Hardware for RTM 105

void stencil_operator(input, coeff, output){

output = coeff[0] * input +
coeff[1] * (prev(input, 1) + after(input, 1) +
prev(input, nx) + after(input, nx) +
prev(input, nx*ny) + after(input, nx*ny)) +
coeff[2] * (prev(input, 2) + after(input, 2) +
prev(input, 2*nx) + after(input, 2#*nx) +
prev(input, 2*nx*ny) + after(input, 2*nx*ny)) +

The above shows an example of a high-level description for a 3D stencil operator. In
this high-level description, the arithmetic operations are described using straightforward
arithmetic expressions. The complicated window buffer mechanism (as described in previous
sections) is described using the offset functions ‘prev’ and ‘after’. In this piece of pseudo
code, ‘prev’ and ‘after’ functions simply return the value of the variable in previous or
afterwards cycles. By specifying the offset as a certain number of data items, data rows
or even data slices, the compiler can automatically generate a buffer that covers all the
data items needed for the current stencil operator. Therefore, the programming difficulty
is significantly reduced.

DISCUSSION

Writing a code that uses the same data access pattern for all three architectures would lead
to a far-from-optimal code. As a result, an unbiased comparison is difficult. Any one of the
three can be declared the best or worst depending on what constraints you choose to put on
your test. If you have a very large domain or a large stencil, the GPGPU isn’t competitive.
If you don’t have a large domain requirement and want the simplest to understand and
maintain optimized code, the GPGPU is probably the winner. The CPU has the advantage
of being omni-present, and all but cache-specific code portions are virtually guaranteed
to perform in the future, making it an attractive alternative. On the other hand, the
raw compute advantage of GPGPUs and FPGAs looks to be growing over the next few
years. FPGAs have the raw compute power to rival the GPGPUs and don’t suffer from
the size limitations of GPGPUs, but use a significantly different programming model whose
abstraction level is still in flux. An abstraction layer that leaves the data movement and
storage mechanism to a precompiler while limiting itself describing the mathematical update
procedure, similar to the FPGA example shown above, holds some potential.

CONCLUSIONS

The variations in approaches for implementing an optimized version of RTM on CPU,
GPGPU, and FPGA archictectures make direct comparison infeasible. Finding the platform
that provides the optimal RTM performance involves balancing price, compute and memory
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potential, programmability, and the set of algorithmic approaches that are feasible on a given
platform. Understanding the variation in underlying architecture and the resulting optimal
programming approach can lead to new insights on how to produce optimal code.
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Reverse Time Migration of up and down going signal for
ocean bottom data

Mandy Wong, Biondo L. Biondi, and Shuki Ronen

ABSTRACT

We present the results of reverse time migration (RTM) on ocean-bottom data as a
precursor to applying reverse time migration and inversion of multi-component ocean-
bottom data using the two-way acoustic wave-equation. We propose a joint-inversion
scheme that constructively combines up- and down-going migration results and removes
spurious artifacts in the final image. Reverse time migration of up-going data gives
stronger reflector amplitude and weaker artifacts than migration of down-going data;
however, due to mirror-imaging, the area of sub-surface illumination is narrower when
using up-going energy. In addition, we observe that a new class of artifacts is present
due to RTM injection of receiver wavefields with the ocean bottom geometry.

INTRODUCTION

Reverse time migration (RTM) is a method of choice for imaging complex structure due
to its ability to image steep reflectors (Baysal et al., 1983; Whitmore, 1983; Etgen, 1986).
Despite its computational cost and sensitivity to the background velocity model, RTM has
evolved from poststack migration to prestack migration using single component data ac-
quired with the traditional streamer geometry. However, conventional streamers acquisition
has significant limitations. One limitation is that production and drilling rigs interfere with
the survey geometry. Such obstructions cause large gaps in the coverage of streamer surveys.
Undershooting such obstructions with a separate source vessel is an imperfect solution be-
cause of the varying offset and azimuth distribution of such undershoots. These limitations
foster a growing demand for ocean bottom seismometers (OBS). OBS data acquisition is
an alternate approach in which seismometers are placed on the seafloor and shots are fired
at the ocean surface. Therefore, OBS surveys are less sensitive to structural obstacles.
OBS have other advantages including: full azimuth coverage, multi-component data, and
potentially improved repeatability. Full azimuth coverage improves imaging and demultiple
processing under complex overburden. Multi-component data enables better demultiple
processing, or even imaging with multiples. Moreover, recording of shear waves contains
additional information about the lithology and fractures and are less sensitive than P waves
to gas clouds. These advantages often justify the additional cost of acquiring OBS data.

The ultimate goal of our research is to develop a better way to image OBS data and to
refine the art of processing OBS data. The most significant difference is that OBS data are
multi-components: pressure P, and the three components, X, Y, Z, of the particle velocity
or acceleration. Figure 1 shows a common receiver gather of a single shot line in a typical
ocean bottom acquisition. From Figure 1, we can see that both pressure (P) and shear (S)
waves are recorded. A natural approach is to use elastic modeling in the migration process.
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Figure 1: Four component (4C) common receiver gather for a single shot line. [NR]
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Indeed, Yan and Sava (2008) has proposed a way to perform isotropic elastic reverse time
migration in the angle-domain. Such a scheme, although feasible, is still computationally
expensive and the dependency on both P and S velocity model can be challenging.

At this stage, we focus on P wave imaging. The hydrophone records both up- and down-
going pressure waves. The additional information from the OBS geophone’s Z velocity
measurement includes a polarity flip between up- and down-going waves. This enables
separation of the up- and the down-going waves. Accounting for instrument gain, coupling
to the seabed, and the fact that pressure is the acoustic impedance times the particle
velocity, we can write:

P = Up + Down,
Z = Up — Down. (1)

Therefore, up- and down-going data at the receiver can be obtained as shown,

P+Z
s
Down = ¥ (2)

Equation 2 is often refered as PZ summation (White, 1965; Barr and Sanders, 1989; Amund-
sen, 1993). The advantage of turning P and Z data into up- and down-going data is that
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primary reflection events are contained solely in the up-going data. Therefore, a “conven-
tional” migration can be performed on the cleaner up-going data. Recent work by Dash
et al. (2009) suggested that the down-going waves should also be processed. Imaging the
down-going waves is known as mirror imaging (Ebrom et al., 2000). We seek to incorporate
the information in migrating with up-going data and migrating with down-going data by
using a joint-inversion scheme as illustrated in Figure 2 and Figure 3.

After velocity analysis, migration is the process that estimates the earth reflectivity for given
data and velocity model. With the velocity as the parameter space, migration is a linear
operator (Figure 2(a)). Similarly, with the same parameter and model space, modeling is
a linear operator (Figure 2(b)) and can be inverted. Figure 2(c) describes the concept of
linear inversion. Migration and stacking is the adjoint of modeling. Sometimes the adjoint
is a very good approximation to the inverse. Ideally, a good adjoint (migration) operator
should be as close to the inverse of modeling as possible.

For single-component (acoustic) data, imaging with migration or with inversion are common.
For multi-component ocean bottom data, applying the corresponding concept would require
the use of elastic wave-equation either in migration or in inversion (Figure 2(d)). Elastic
modeling is costly and the dependency on both P and S velocity models is problematic.
On the other hand acoustic modeling is less costly and does not depend on shear velocity.
We limit our ambition to acoustic waves and use hydrophone and vertical component of
geophone measurements to image with both the primaries and the multiples signal. We
illustrate this method in Figure 3. P and Z data can be converted into up- and down-going
data with PZ summation, Equation 2. Up- and down-going data can be converted into
over /under data, which are pressure waves sampled at two depth levels. Effectively, we can
transform from P and Z data to up- and down-going data, and finally to over/under data.
This allows us to perform inversion in the acoustic regime.

It is worth mentioning that our joint inversion scheme can be applied to the processing
of dual-sensor streamer data. The P and Z measurements of dual-sensor data can be
conveniently combined to produce up- and down-going data using PZ summation and sub-
sequently be used for joint-inversion imaging. The two advantages with this procedure for
dual sensor data are (1) the repairing of attenuated signal at the notch frequencies and (2)
the improved image from the additional information provided by the mirror signal (receiver
ghost).

This is a progress report to apply joint inversion of up- and down-signal described in Wong
et al. (2009). We apply reverse time migration to synthetic ocean bottom data to compare
the migration result using either the up-going or the down-going signal. While OBS measure
the pressure and shear waves, we limit our synthetic study to acoustic data only. To
avoid using elastic modeling to synthesize multi-component ocean bottom data, we generate
acoustic up- and down-going ocean bottom recording in two steps. First, two-way acoustic
wave-equation is used to generate data at two different depths level, called the over/under
data, near the seabed. Then an up-down separation operator, S, is applied to produce our
desired up- and down-going ocean bottom data.

We found that while migrating the up-going data gives strong reflector amplitudes and weak
artifacts, its area of sub-surface illumination is narrower than migrating with down-going
signal. We also found that there are additional RTM artifacts because of the recorded waves
injection at the ocean bottom. This new class of artifacts does not exist with the traditional
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Figure 2: (a) The processing flow of imaging with reflectivity, also known as migra-
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streamer geometry.

The rest of the paper is organized as follows. We first explain our method of constructing
the RTM operator and the up-down separation operator. Next, we present the results of
migrating with the up-going wave only, down-going wave only, and the total signal. A
discussion on the types of artifacts follows. Finally, we propose a way to eliminate ocean
bottom RTM artifacts, as well as combining up- and down-going migration results using
joint inversion, which will be the focus of future research.

THE RTM AND THE UP-DOWN SEPARATION OPERATORS

The RTM operator

Since there are many different ways to implement reverse time migration, we must specify
how we construct our RTM operator. Our model space is the reflectivity of the subsurface.
It is computed by cross-correlating the source wavefield with the receiver wavefield injected
backward in time,

m(x) = ) ug(x,t,8)up(x,1,8), (3)

where s marks the location of the source, t is the time, x represents a point in the sub-surface,
m(x) is the reflectivity of the sub-surface, and us(x,t,s) and u,(x,t,s) are the source and
receiver wavefields at location x, time ¢, and shot location s. Our reverse time migration
is set up so that us(x,t,s) and wu,(x,t,s) are computed using a background velocity model,
Vo(x) and the constant-density acoustic wave equation:

1 d*u
— —— = V?u. 4
In our finite differencing scheme, we approximate the Laplacian to fourth order in space and
the time derivative to second order in time. Note that in this study, we only migrate with
the correct velocity. The correct velocity is smoothed to avoid spurious cross-correlation
artifacts.

For ocean-bottom data, the receiver ghost reflection is very valuable, because when applied
with mirror imaging, it produces better sub-surface illumination than the primary event.
This claim will be apparent from later results. To create overlapping of the receiver ghost
for ocean bottom RTM, we must have a reflecting top boundary.

The up-down separation operator

The derivation for decomposing over/under pressure waves into up-going and down-going
signals is best done in the Fourier domain. For a thorough review of this method, please re-
fer to Sonneland et al. (1986). Denote P;(w, k;) and Pa(w, k;) to be the Fourier-transformed
measurements of compressional waves at depths z; (over) and z (under). Theoretically,
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Py (w, kz) is a sum of the up-going U (w, k) and down-going D (w, k;) components. Like-
wise for Po(w, ky):

Pl(w,k:m) = Ul(w,kx)—l—Dl(w,k‘ﬁ),
Pg(w,kix) = Ug(w,k‘w)—{—Dg(w,k‘m). (5)

Down-going waves arrive at the under array (Dz) before the over (D;) array. Therefore,
shifting Dy forward in time would match the signal D;. Similarly, up-going waves visit the
over array first. Therefore, shifting U; forward in time would match the signal Us. This
relationship is equivalent to a phase-shift in the Fourier domain:

eiszZDz — Dly
U, = 6ik2AZU1, (6)

where Az = z9 — z1, and k, is the usual dispersion relation. Finally, substituting equation 6
into equation 5 yields the formula for the up-going and down-going waves at the receivers:

P2 o eiszzpl

U2 = 1 _ o2ik=0z
D B eszAzPI o 621szzP2 (7)
2 = 1 _ e2ik=Az :

Over /under acquisition is used to eliminate receiver ghosting and water reverberation. Al-
though over/under arrays are rarely placed on the sea floor in real seismic surveys, this
technique allows easy generation of up-going and down-going waves at the sea bottom for
synthetic examples or modeling. For the remaining of this paper, we will denote the oper-
ation that separates over/under data into up-down data in equation 7 as S.

SYNTHETIC OCEAN-BOTTOM DATA

Originally, field ocean-bottom data consists of two measurements, the pressure and the shear
waves. However, we limit our synthetic study by using the acoustic wave equation instead
of the elastic wave equation. Instead of converting the P and Z measurements into up-
and down-going data, we use the constant density, two-way acoustic wave equation to first
generate over/under data, which are measured at two depth levels near the ocean bottom.
Next, we convert the over/under data into up-down data using the separation operator S
described in the last section. We use a very simple one-reflector problem. Figure 4(a) shows
the velocity model used to generate the synthetic over-under data.

One shot is fired at zero depth and x = 5500 m. Two lines of receivers are placed at 480
m and 500 m depth and span from x = 0 m to x = 14000 m with a 10 m spacing. The
receiver signals are shown in Figure 4(b). The first signal that arrives in time is the direct
arrival, which propagates from the source directly downward to the receivers. The second
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signal is our primary reflection that bounces off the reflector at 800 m depth and returns to
the receiver going upward. The third signal is the receiver ghost. Figure 4(c) and Figure
4(d) show a close up of the direct arrival and primary reflection of the over and the under
data collected. Notice that the direct wave arrives sooner in figure 4(c) than in figure 4(d),
because the direct arrival is down-going. Similarly, the up-going primary reflection arrives
sooner in Figure 4(d) than in Figure 4(c).

RTM ON OCEAN-BOTTOM DATA

In our RTM scheme, we perform migration by injecting over-under data into the finite
difference grid. Figure 5(a) shows the resulting reflectivity after injecting the over signal at
480m depth and under signal at 500 m depth. As expected from the original velocity model
displayed in Figure 4(a), there is a reflector below the 800 m depth. In addition, there are
also two weaker coherent artifacts at 1200 m and 1300 m depth.

We also migrate with only the up-going and only the down-going signal. This can be
accomplished using the adjoint of the up-down separation operator S’ and zeroing the
appropriate data component in the up-down space. Let d, and d, be the over and under
data synthesized as described in the last section. To filter out the down-going energy in d,
and d,, we can zero the down-going data in the up-down data space before applying the
adjoint separation operator S’ as shown below:

HRC AR
di w1/ d,=0 L ld =0

Note that the resulting data dl and dL are still in the over-under data space but contain
only up-going energy. Similarly, to filter out the up-going energy in d, and d,,, we can use:

sz, ol
di v 1/ d;=0 L lap=o0

The results of performing RTM with only the down-energy and only the up-energy are
shown in Figure 5(b) and Figure 5(c) respectively. Both figures have the same clip. In
Figure 5(b), the reflector at 800 m is much wider than the corresponding one in Figure
5(c). This is because migrating with down-going energy is primarily imaging with the
receiver ghost signal. On the other hand, migrating with up-going energy is primarily
imaging with the primary signal. Imaging with the receiver ghost data provides a wider
subsurface illumination, because its point of reflection is further away from the receiver
than that of the primary reflection. Another observation is that the amplitude of the 800 m
reflector in figure 5(c) is stronger than the amplitude in Figure 5(b). The primary signal has
stronger amplitude than any signal of higher order (ghost or multiples) because of geometric
spreading. Therefore, imaging with the primary gives a higher-amplitude reflectivity model
than imaging with the receiver ghost.
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Figure 5: (a) The migration result using the over-under data. There is a reflector below the
800 m depth. In addition, there are also two weaker coherent artifacts at 1200 m and 1300 m
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Artifacts in Ocean-Bottom RTM

The two artifacts that appear in Figure 5(a) can be identified when migrating with only
up-energy and with only down-energy. The deeper artifact (= 1300 m) appears in Figure
5(b) while the 1200 m artifact appears in figure 5(c). These artifacts do not appear in
streamer RTM. When injecting the down-going data into the finite difference grid, the
signal actually spreads both upward and downward in the computation grid. This creates
spurious events when correlating, because down-going energy should only travel upward
in reverse time. Similarly, up-going data should only traverse downward when injected
in reverse time to the finite-difference grid. To alleviate this problem, we propose a joint
inversion scheme. Such a scheme not only addresses the artifacts problem, it also provides
a way to constructively combine up- and down-going migration results.

JOINT INVERSION OF UP-GOING AND DOWN-GOING
OCEAN-BOTTOM DATA

The goals of our joint inversion scheme are threefold:

1. To migrate two of the four-component ocean-bottom data with acoustic modeling.
Field data is collected as pressure (P)and vertical particle velocity (Z). To make use
of the Z measurement, we would need to apply elastic modeling. Our proposed joint
inversion scheme will avoid this difficulty.

2. To alleviate the migration artifacts in ocean-bottom RTM caused by to its acquisition
geometry.

3. To combine up-going and down-going reflectivity solutions in a constructive way.

Our proposed scheme can be summarized using the flowchart in Figure 6. Field data dp and
dz can be converted into up-going and down-going data at the receiver level by applying
the PZ summation operator P. There are many ways to implement PZ summation; one of
the simplest is described in Wong et al. (2009).

Rt

Next, up- and down-going data can be converted into over- and under- data using the
adjoint of the separation operator S:

RTM is performed using over and under data via the RTM operator, denoted as F’:
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Figure 6: This flowchart shows the relationship between multi-component pressure (P)
and vertical particle velocity (Z) data, up- and down-going data, and over/under data.
Reverse time migration (RTM) is performed with over/undre data and generate reflectivity
in migration using a background velocity model. [NR] |mandy2 /- Flowchart2|

Since all three operators are linear, we can do acoustic RT'M on dp and dz by applying a
cascade of these operators, denoted as L':

Ceoldr ] o[ dp
mowse[ o] _u[ ]

We claim that by applying the inverse operator L' instead of the adjoint operator L/, the
three goals discussed at the beginning of the section can be achieved. The testing of this
theory is the focus of our current research.

CONCLUSION

We discuss our progress in migrating multi-component ocean-bottom data, focusing on joint
inversion of up- and down-going data using two-way acoustic wave equation. We observe
that applying RTM to up-going energy and down-going energy shows different illumination
of the sub-surface. Migration of the up-going data gives strong reflector amplitude and
weaker artifacts. However, its area of sub-surface illumination is narrower than migrating



118 Wong et al. SEP-139

with the down-going signal due to mirror imaging. In addition, a new class of artifacts
appears because of the injection of receiver wavefields with the ocean-bottom geometry. We
propose a joint-inversion scheme that can constructively achieve three goals; (1) combining
the up- and down-going migration result, (2) removing spurious artifacts in the final re-
flectivity model and (3) migrating multi-components ocean bottom data with only acoustic
modeling.
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Theory and practice of interpolation in the pyramid domain

Antoine Guitton and Jon Claerbout

ABSTRACT

With the pyramid transform, 2-D dip spectra can be characterized by 1-D prediction-
error filters (pefs) and 3-D dip spectra by 2-D pefs. This transform takes data from
(w, x)-space to data in (w,u = w - x)-space using a simple mapping procedure that
leaves empty locations in the pyramid domain. Missing data in (w,x)-space create
even more empty bins in (w, u)-space. We propose a multi-stage least-squares approach
where both unknown pefs and missing data are estimated. This approach is tested on
synthetic and field data examples where aliasing and irregular spacing are present.

INTRODUCTION

For interpolation, it is often assumed that the seismic data are made from a superposition
of locally planar events [Claerbout (1992); Symes (1994); Fomel (2002)]. Since plane-waves
are highly predictable, interpolating seismic data with prediction-error filters (pefs) is both
very effective and efficient, either in the Fourier [Spitz (1991)] or time domain [Crawley
et al. (1999)].

In the Fourier domain and for aliased data, pefs from lower frequencies are used to
de-alias higher frequencies [Spitz (1991)]. Therefore, many pefs need to be estimated for
complete processing. Sun and Ronen (1996) introduce a frequency dependent sampling
in the (w,z) domain such that a data vector d at each frequency in the (w,z) domain is
mapped into a new vector m (pyramid domain) according to

m(w,u) = d(w,z = u/w), (1)

where u has units of velocities and z is a spatial axis (offset or mid-point position). We
demonstrate in this paper that this transform has the advantage of making the pefs fre-
quency independent, thus offering useful properties (for stationary data):

e Only one pef is necessary for interpolation
e This single pef can be estimated from all the frequencies

e For noisy data, many regressions are available from all the frequencies, yielding robust
pef estimation

This paper investigates the pyramid domain method and introduces a linear operator
called the pyramid transform. First, we illustrate the properties of the pyramid transform
and explain why, in theory, only one pef is necessary for interpolation. Second, we identify
mapping artifacts from (w, x)-space to (w, U=w - x)—space and propose a strategy both to
attenuate them and to interpolate seismic data. This strategy works for both aliased and
irregularly-sampled data. Finally, we illustrate the proposed algorithm on synthetic and
real data cases.
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THEORY: INTRODUCING THE PYRAMID TRANSFORM

In this section, we first introduce the pyramid transform, which is a linear operation that
remaps the Fourier transformed data in (w, z) into the pyramid domain in (w,u). Then we
introduce some properties of the pyramid domain and their implications for pef estimation
and missing data interpolation.

The pyramid transform

To begin introduce the forward transformation from the pyramid domain (w,u) to the
Fourier space (w,z) as follows:

dw,z) =m(w,u =w-x). (2)

The adjoint transformation is defined in equation (1). These definitions can be extended in
3-D easily for the forward case:

d(w,x,y)Zm(w,u:w'x,v:w-y), (3)
and for the adjoint case:
m(w,u,v) = d(w,z =u/w,y =v/w), (4)

where y is a spatial axis in the crossline direction (offset of mid-point position) and v the
dual of y in the pyramid domain. Equations (2) and (3) can be rewritten in a more compact
form:

d =Lm, (5)
where L is the pyramid transform. Similarly, equations (1) and (4) can be rewritten as
m = L'd, (6)

where L’ is the adjoint of L. Note that the remapping between z and u (plus y and v
in 3-D) requires an interpolation operator. A linear interpolation process looping over the
data space d(w, ) is applied in all our results.

Properties

The equation of a plane-wave in (¢, x) is given by

P(t,:L‘) = f(t - pl’), (7)

where f is a waveform and p is a constant slope. The prediction operator B from one trace
to another at a distance Az in (w, ) for the plane-wave in equation (7) is given by Fomel
(2002):

B(w, Azx) = e“PAT, (8)

If we now introduce the new variable Au = wAx in equation (8), then we have a new
prediction operator A in the (w,u) domain:

Aw, Au) = ePAv, 9)
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From Equation (9), we notice that the dependency in w of the prediction operator has
vanished in the pyramid domain. Sun and Ronen (1996) extend this property to more than
one plane-wave. We illustrate the pyramid domain in Figure 1. Figure 1a shows two plane-
waves with the same wavelet (Ricker 2 with a fundamental frequency of 20Hz). Figure 1b
displays the real part of the Fourier transformed data in the (w,z) domain and Figure 1c
the real part of the (w,u) pyramid domain. Notice that we limited the range of frequencies
for display purposes only in Figures 1b and lc. In 2-D, the pyramid domain maps into a
triangle-shaped area. In 3-D, it will map into a pyramid-shaped volume. Consequently,
each trace in (w,x) is transformed into a radial trace in (w,u).

As anticipated from the definition of the prediction operator in equation (9), the infor-
mation at each frequency in Figure 1c is independent of w, which means that any scheme
involving pefs in the pyramid domain will require only one filter (one 1-D filter for 2-D
data, and one 2-D filter for 3-D data). In addition, we observe that the slope p now acts
as a wavenumber on the u axis. This fact implies that the low velocity event in Figure la
will look like a high wavenumber component on the u-axis whereas the high velocity event
will look like a low wavenumber. An added feature is that since we only have one pef for
the whole domain (in theory), the filter estimation should be relatively robust to the noise
present in the data (especially for random noise).

Transformation artifacts

Going back and forth between the (w,z) and (w,u) domains will leave artifacts in (¢, ).
There are two main reasons for this. First, the linear interpolation operator we use to
transform one domain to the other is not unitary. Second, the pyramid transform (forward
and adjoint operators) compresses and stretches the horizontal axis in ways that can affect
the reconstruction of the frequency content, especially for the low frequencies [remember
that a trace in (w, x)-space is mapped into a radial trace in (w, u)-space|. We illustrate this
effect in Figure 2a. This Figure is the result of the following operation:

d=LLd (10)

where d is the Fourier transform of Figure la and d contains the reconstructed data. In
this example, because the u axis is too coarse, the information of the slowest event (ringiest
on the u axis) disappears.

In order to mitigate these effects, we propose making the u axis very dense. Theoreti-
cally, we could derive the maximum bin size du to accommodate the slowest event. From
simple Fourier analysis, we can establish that

du < ;
2pma:):

(11)

where ppq. 18 the slope of the slowest event. This relation is a necessary, but not sufficient,
condition for du since some of the artifacts are also due to the linear interpolation itself (i.e.,
the linear interpolation operator is not unitary). Therefore in practice, smaller du’s than the
one in equation 11 are necessary. Having very fine sampling in u will help attenuate most of
the transformation errors seen in Figure 2. Figure 3 shows LL’d for the same dataset, but
with a sampling 12 times finer on the u axis than on Figure 2b. Now, Figure 3a shows the
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two events with some remaining artifacts due to the linear interpolation operator only. In
the next section, we introduce an algorithm that will both remove these remaining artifacts
and also allow us to interpolate missing data.

ALGORITHM FOR MISSING DATA INTERPOLATION

Having a very fine sampling on the u axis attenuates most of the transformation artifacts
of the pyramid transform. However, as seen in Figure 3a, some noise due to the linear
interpolation operator used for the mapping between the (w,z) and (w,u) domains still
remains. This section introduces an algorithm that will (1) remove the remaining artifacts
and (2), interpolate missing data (regularly or irregularly spaced).

Mitigating mapping effects

The remaining artifacts in Figure 3a can be attenuated in many ways. For instance, Hung
et al. (2004) propose using a sinc interpolation instead of a linear interpolation. Other-
wise, if missing-data interpolation is not required, the effects of linear interpolation can be
attenuated by inserting a tridiagonal solver within the adjoint in equations (1) and (4).
Alternatively, we can recast this attenuation as an inverse problem, in which we want to
minimize the energy of the residual vector r where

r=Lm —d, (12)

and minimize f(m) = ||r||y iteratively to find the minimum m = (L'L)"!L/d. The results
of this iterative formulation can be seen in Figure 4: The plane-waves are recovered without
any noise. Note that the iterative solution and the tridiagonal solver approach are equiva-
lent. However, the missing data problem we are trying to solve makes the tridiagonal solver
difficult to use.

Putting everything together

We are now ready to present the missing data interpolation algorithm. One side effect of the
fine sampling of the u axis is that empty bins will appear in the pyramid domain. Missing
data in d will add even more empty locations. We propose interpolating the missing data
in d by filling the empty bins in m. For this, we follow the approach of Claerbout and
Fomel (2002). First, we want to honor the data where they are known by introducing the
residual vector

rq = Wq(Lm —d), (13)

where Wy is a masking operator equal to unity where data are known, and zero where data
are missing. Solving for m minimizing the amplitude of rq only will not fill the empty bins.
We need to add a regularization term that will enforce a certain multivariate spectrum to
the vector m:

ry = Am, (14)

where A is a pef in the model space. Assuming that the pef A is known, we can fill the
empty locations in m by minimizing f(m) = ||rq|/2+¢€[|rm||2, where € is a balancing operator
between data fitting and model space regularization.
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There are two issues with this approach. The first issue is that the convergence towards
a solution will be slow. To accelerate this process we introduce a new variable q = Am
and rewrite equations (13) and (14) as follows:

rq = Wd(LAilq - d) (15)
rq = q

We then minimize f(q) = |[rall2 + €[|rql2 and compute m = A~'q, where g minimizes
f(q). The term A~1 is computed by applying a polynomial division to q which yields fast
filling of the empty bins. Because A is a miminum-phase filter, the polynomial division
is stable and will not cause the solution to blow-up. This preconditioning of the problem
has been used in numerous geophysical problems [Clapp et al. (2004); Fomel and Guitton
(2006); Herrmann et al. (2009)]. In practice, we set e = 0 and minimize rq only [Trad et al.
(2003); Guitton and Claerbout (2004)].

The second issue is that both q and A are unknown in equation (15). To circumvent
this problem we bootstrap the pef estimation by first assuming that A is a 1-D gradient.
To make sure that we can apply the polynomial division, we set the second coefficient of
the gradient to —0.96 instead of —1. We then minimize f(q) with this first pef, find a new
m and estimate a better pef A from it. Having a better pef, we can minimize f(q) again:

A — (1-0.96)T

iterate {
minimize f(q)
m«— A~lq

estimate A from m

}

We are essentially solving the non-linear problem in a step-wise fashion by keeping A
constant within each non-linear loop. In practice, we notice that only 4 to 5 non-linear
iterations are necessary to converge towards a pef that yields accurate interpolation of the
missing data.

In the next section, we apply this algorithm to synthetic and field data examples in 2-D.
We show that aliased and irregularly-sampled data can be interpolated.

EXAMPLES

Results in this section illustrate how the pyramid domain can be used to interpolate missing
data. One interesting feature of the preceding algorithm is that no assumptions are made
concerning the type of problem that can be tackled: here, we show interpolation results for
aliased and irregularly-spaced data.

Interpolation of aliased data

We illustrate in Figure 5 the dealiasing properties of the interpolation algorithm. Figure
5a shows an aliased dataset (Ax=50 m) as a first example. Its F'K spectrum is displayed
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in 5b and illustrates the aliasing effects above 13 Hz. We interpolate this data set on a 25
m grid by first binning the data in Figure 5a onto a 25 m grid. This binning will leave
every other trace empty: the weighting operator Wy in equation (15) is set to zero at these
locations. Figures 5c¢ and 5d display the interpolated data in (¢, x) and (f, k)-spaces. Most
of the aliasing has been removed, except for the slowest event. We completely de-alias this
dataset by binning Figure 5c on a 12.5 m grid and interpolating the missing traces in the
pyramid domain. This final interpolation is shown in Figures 5e and 5f.

Now, we interpolate non-stationary data for two shots from one synthetic and one field
experiment. Being a frequency domain approach, the interpolation in the pyramid domain
forces us to decompose the data in patches, or time windows, first. The size of these windows
is one second in time and 500 m in offset. Each window is processed independently. Figure
6a shows the input data for the synthetic example with a 50 m offset sampling. Its amplitude
F K spectrum is displayed in Figure 6b: some events are aliased for frequencies above 15 Hz.
After interpolation on a 25 m grid in Figure 6¢, most of the aliased energy is gone (Figure
6d), while all the main events are preserved. Note that in principle, more interpolation
steps would be necessary to remove all aliased energy (above 30 Hz).

Finally, we interpolate a shot gather from a field data experiment in the Gulf of Mexico
(Figure 7). The close-up in Figure 7a shows primaries above 4 seconds and multiples below.
The FK spectrum in Figure 7b shows some aliasing for the slowest events around 40 Hz.
We interpolate this shot from a 26 m to a 13 m grid in Figure 7c. Most of the aliasing
artifacts have been attenuated (Figure 7d).

Interpolation of irregularly-sampled data

The interpolation of irregularly-sampled data in the pyramid domain requires a binning
of the data onto a regular grid first. This binning is done with a simple nearest-neighbor
scheme. Like what is done for the regular case, the weighting operator Wq in equation (15)
is set to zero at the empty trace locations. For all following examples, 50% of the traces
were set to zero randomly in order to emulate a realistic acquisition geometry.

Figure 8a shows the data to interpolate with its amplitude spectrum (Figure 8b). Many
methods exploit the F/K domain directly in order to interpolate missing data [Xu et al.
(2005); Abma and Kabir (2006); Zwartjes and Sacchi (2007)], with or without nonuniform
Fourier transforms. The interpolation result in Figure 8c proves that the proposed algorithm
works in this case as well. The FK domain in Figure 8d validates these findings.

Figure 9a and 9c display the input data and the interpolation results, respectively. This
dataset is similar to the one used in Figure 6a. The missing traces have been properly
interpolated almost everywhere. Where gaps are big, however, the proposed algorithm
might have some difficulties which could be overcome by using a multiscaling strategy.
Note, in Figures 9b and 9d, the clean up of the FFK domain after interpolation.

Finally, we interpolate irregularly-spaced data for a field data example shown in Figure
10a. This dataset was also used in Figure 7a. Like what we observed in the previous
example, the interpolation result in Figure 10c exemplifies how the proposed algorithm can
interpolate missing data: the reconstructed traces look very similar to the original ones.
The FK spectra in Figures 10b and 10d show the attenuation of artifacts due to the random
sampling in Figure 10a.
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Parameter estimation

One of the most important parameters in our algorithm is the sampling in the pyramid
domain. We find that for interpolating irregularly-spaced data, half of the value of du given
in equation 11 is usually enough. For interpolating aliased data, however, the sampling
becomes more difficult to establish. In this case, the sampling becomes smaller as the
maximum non-aliased frequency becomes smaller. In practice, we tend to find the right
sampling by trial and error, starting from the value we would use for the irregularly-spaced
data case. This approach is unsatisfying and we feel that more work should be done to
automate this important parameter selection.

CONCLUSION

The pyramid transform creates a domain where linear events in (¢, x)-space are linear in
(w,u)-space. This property offers many opportunities for interpolation schemes based on
prediction-error filters. First, one filter can predict all frequencies. Second, this pef can be
estimated from all frequencies. Finally, the filter estimation should be more robust to the
noise present in data (although not shown here).

One challenge with the pyramid transform is the remapping between the (w,z) and
(w, u) domains which can introduce artifacts. We propose mitigating these effects by making
the pyramid axis u very dense and using a simple linear interpolation for the transform.
One consequence of this proposal is that many empty bins appear in the pyramid domain.
Realizing that missing data will add even more empty locations, we introduce a non-linear
algorithm that both interpolates missing data (regularly or irregularly-spaced data) and
fills the empty bin locations (those resulting from the transform).

Our synthetic and field data experiments prove that the proposed algorithm works and
that the pyramid domain is a sensible complement to our existing interpolation toolbox.
Although not presented here, the extension to 3-D would be straightforward. Interpolating
aliased or irregularly-space data does not require any change of the algorithm. However,
we notice that smaller du’s are required when de-alasing is needed.

Comparing the pyramid transform to other domains for missing data interpolation goes
beyond the scope of this paper, but more work needs to be done to understand how the
proposed algorithm fairs when compared to more popular techniques such as F.X interpo-
lation.

The pyramid transform could benefit other applications. For instance, the irregular
sampling case could be treated with a combination of nonuniform Fourier transform and
pyramid transform. The signal/noise separation problem could be easily recast in the
pyramid domain where only 1-D (for 2-D data) and 2-D (for 3-D data) projection filters are
necessary [Soubaras (1994)].
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Figure 1: Two plane waves in (a) (¢,z), (b) (w,x) and (c), (w,u) domains.(b) and (c) show
the real parts only. [NR] |antoine1 /- comp—tx—fx—fu—synthplane3|
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Figure 2: Tllustration of transformation artifacts: (a) is LL'd back in the (¢,2) domain and
(b) is the real part R(L'd), where d is the data in Figure la. The slowest event, with the
highest wavenumber component on the u axis, disappears due to the parameterization of
the pyramid transform. [NR] |antoine1 /- comp—tx—fu—pyramid—60—synthplane2|
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Figure 3: Same as Figure 2 but with a 12 times finer horizontal sampling on the u axis.
The two plane-waves are recovered. Some noise is still present due the linear interpolation
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Figure 5: Interpolation results for aliased data: (a) Shows the input data at Az=50 m
The slowest event is aliased for frequencies

and its corresponding FK spectrum in (b).
above 13 Hz and the fastest for frequencies above 22 Hz.
result with Az=25 m and the corresponding FK spectrum in (d).

(c) Shows the interpolation
The slowest event is

still aliased above 22 Hz. (e) Shows the interpolation result with Az=12.5 m and the
corresponding F'K spectrum in (e). The data in (a) have been dealiased for all frequencies.
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Figure 6: Interpolation results of a realistic synthetic data experiment. (a) Shows the input
data on a 50 m grid with its F'K amplitude spectrum in (b). (c) Shows the same data after
interpolation on a 25 m grid (F'K spectrum in (d)). All the events have been correctly
interpolated but some aliasing remains. [NR] ‘antoinel /- aliased-bp‘
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Figure 7: Interpolation results of a shot gather from the Gulf of Mexico. (a) Shows a close-
up of the input data on a 26 m grid with its F'K amplitude spectrum in (b). (c¢) Shows the
same data after interpolation on a 13 m grid (FK spectrum in (d)). All the events have
been correctly interpolated. [NR] ‘antoinel /- aliased-gm‘
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Figure 8: Interpolation of irregularly-sampled data. (a) Shows the input data binned onto a
regular grid before interpolation where 50% of the traces are missing and its corresponding
FK spectrum in (b). Interpolation results are shown in (¢) (FK spectrum in (d)): the
linear events are recovered. [NR] ‘antoinel /. irregular-synth‘
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Figure 9: Interpolation of a synthetic shot gather with irregular sampling. (a) Shows
the input data binned onto a regular grid before interpolation and its corresponding F K
spectrum in (b). Interpolation results are shown in (¢) (FK spectrum in (d)). Our
proposed algorithm recovers the missing traces where conflicting dips are present. [NR]
antoinel/. irregular-bp
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Figure 10: Interpolation of a shot gather from the Gulf of Mexico with irregular sampling.
(a) Shows the input data binned onto a regular grid before interpolation and its corre-
sponding F'K spectrum in (b). Interpolation results are shown in (¢) (F'K spectrum in
(d)). The missing traces are reconstructed and there is no noticeable footprint left by the
interpolation algorithm. [NR] ‘antoinel /. irregular-gm
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Schoenberg’s angle on fractures and anisotropy: A study in
orthotropy

James G. Berryman

ABSTRACT

For vertical-fracture sets at arbitrary orientation angles to each other — but not per-
fectly randomly oriented, I present a detailed model in which the resulting anisotropic
fractured medium generally has orthorhombic symmetry overall. Analysis methods
of Schoenberg are emphasized, together with their connections to other similarly mo-
tivated and conceptually related methods by Sayers and Kachanov, among others.
Examples show how parallel vertical fracture sets having HTI symmetry turn into or-
thotropic fractured media if some subsets of the vertical fractures are misaligned with
the others, and then the fractured system can have VTI symmetry if all the fractures
are aligned either randomly, or half parallel and half perpendicular to a given vertical
plane. Another orthotropic case of vertical fractures in an otherwise VTI earth sys-
tem treated previously by Schoenberg and Helbig is compared to, and contrasted with,
other examples treated here.

INTRODUCTION

The present work covers various issues related to fractures and anisotropy, especially in
relation to some of the published work of Michael Schoenberg (Schoenberg, 1980; Schoenberg
and Muir, 1989; Schoenberg and Sayers, 1995; Schoenberg and Helbig, 1997). Details of
methods presented here will also make use of an approach outlined by Sayers and Kachanov
(1991), and used previously by Berryman (2006, 2008, 2009) in a recent series of published
papers. [However, it is important to recognize that in earlier work it has also been shown
(Berryman, 2006) that the general results of Bakulin et al. (2000) (for example) for the
Thomsen (1986, 2002) weak anisotropy seismic parameters and contained in their Figure
6, are both qualitatively and even (reasonably) quantitatively consistent with each other,
as well as being consistent with results from the method of Sayers and Kachanov (1991)
treated explicitly here.] Thus, a high degree of consistency has been established among
fracture-influence results that are based in part on the linear-slip model of fractures by
Schoenberg (1980) and in part on penny-shaped (or approximately penny-shaped) cracks.
[Also see Grechka et al. (2006).] This fact is important to the theme of the paper, because
it shows that the details are often less important than the grand scheme of how fractures
affect both the elastic system response and the wave propagation results.

FRACTURE ANALYSIS

For waves propagating in the [x;-z3]-plane with wavenumbers k1 = ksin @ and ks = k cos 6
where k% = k¥ + k3, Tsvankin (1997) shows that we have the following equations [patterned
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here after the notation of Berryman (1979)]:

1
pwi = B [(c11 + es5)k + (c33 + cs5)k3 £ R] (1)
where
R=/[(en — css)k? — (ess — ess)k3)” + Aers + o) 2303 (2)

and where p (with no subscript) is the inertial density. Equation (1) determines the two
wave speeds
2 wi

Vi=13- (3)
The quantities wy have dimensions of angular frequency, but they are introduced mostly
to simplify the form of the equations. The pertinent phase speeds V. for quasi- P-waves
and V_ for quasi-SV-waves are given respectively by values corresponding to the + and —
subscripts in the velocity equation (3). Group velocities [Brillouin (1946); Riiger (2002);
Tsvankin (2005)] can be computed relatively easily as well when using the methods outlined
earlier by Berryman (1979).

Sayers and Kachanov (1991) consider a model with two sets of possibly nonorthogonal
fractures, also possibly having two different fracture density values p, and pp. Total fracture
density is therefore py = p, + pp. These authors found that the pertinent fracture influence
parameters were multiplied in this situation, when the angle between the fracture sets is ¢,
either solely by p; itself or by one of the two factors:

A=ps+ [p? — 4papp sin® Qﬂ v :
1/2 (4)
B =pj— [pfc — 4papy sin® ¢] :

Table 1 shows the Sayers and Kachanov (1991) results for corrections to the isotropic
background values of compliance (in Voigt 6 x 6 matrix notation — the original paper had
results expressed in terms of tensor notation). Those background values are specfically
for one model considered having Poisson’s ratio v = 0.4375 (dimensionless), effective bulk
modulus K = 16.87, shear modulus ¢ = 2.20, and Young’s modulus F = 6.325, with all
moduli measured in units of GPa. For the assumed inertial density p = 2200.0 kg/m?,
the resulting isotropic background compressional wave speed is V,, = 3.0 km/s and shear
wave speed is Vs = 1.0 km/s. For our computations, we also need the isotropic background
compliance values, which are S11 = Soy = S33 = 6.325, S19 = Si3 = Sog = —2.767,
and Sy = Ss55 = Sgg = 0.4545. The fracture influence factors 71 and 7, found for this
specific model by Berryman and Grechka (2006), are displayed in Table 2. Some higher
order fracture-influence factors were also obtained in the earlier work, but I will not be
considering such factors in this short paper.

In the examples that follow, I will consider only the case of equal fracture densities
Pa = pp = py/2. For this somewhat simpler situation, I also have

A=ps(1+cosg),

B = p¢(1 —cosg). (5)

There may also be some uncertainty about exactly which of these factors is which in
this degenerate case, because of the sign ambiguity in taking the square root of cos? ¢. But
I will not concern myself with this detail here.
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AS11 = (m+m)A
ASy»p = (m+m)B
AS33s = 0

AS12 = mpy

ASi3 = mAJ2
ASyy = mB/2
ASy = mB

ASss = mA

ASes = 2maps

Table 1: Compliance matrix correction values for the vertical fracture model considered in
Eq. 4, which are also true for the specific limit of Eq. 5, as a special case of the general
result.

Fracture parameter | GPa™!
m —0.0192
Mo 0.3944

Table 2: Fracture-influence parameters (see Table 1 for usage) in a model reservoir having
isotropic background with Poisson’s ratio v = 0.4375, V}, = 3.0 km/s, and V5 = 1.0 km/s.

VANISHING OF THE ANELLIPTICITY PARAMETERS

One observation made immediately upon computing sample results for the model specified
here is that the quasi-SV-wave propagating in the [z1-x3]-plane apparently has constant (or
very nearly constant to numerical accuracy) wave speed at all angles in this plane (see Table
3). This result is startling when first seen, but it has been remarked upon previously in the
literature by Gassmann (1964) and Schoenberg and Sayers (1995). One useful interpretation
of this fact is obtained by noting that for quasi-SV-waves to have constant velocity in the
plane, it is necessary for the pertinent effective anellipticity parameter to vanish for this
plane of propagation. If it does not vanish identically, then it must at least vanish to
first order in the fracture dependent correction factors (shown here in Table 1) in order to
explain the numerical results for the relatively small fracture densities considered here. The
condition required for exact vanishing of the pertinent anellipticity parameter in terms of
stiffness coefficients turns out to be:

cr1c33 — €13 = 55 (€11 + ¢33 + 2¢13) (6)

as was already known to Gassmann (1964). But going farther in the analysis, it takes a fair
amount of algebra to show that — to first order in the correction factors — the result (6)
amounts to a condition relating compliance correction factors:

AS55 = AS11 + AS33 — 2A573. (7)

This condition holds when we can ignore the higher order terms O(A?), as well as all still
higher orders (think of the proportionality A o< py). Then, we find that (7) is in fact satisfied
identically when the expressions in Table 1 are substituted. It is important to notice as well
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that exact satisfaction of the condition in (7) is true for the general form of the definitions
in Table 1, and not just for the restricted definitions used in the examples we computed,
where the simplified definitions of (5) were employed to reduce our bookkeeping load. So
the result in (7) is more general than just the specific examples I have computed. But the
result is certainly not expected to be true for arbitrary compliance matrices. Nevertheless,
it does seem to be true for a wide range of compliance matrices having vertical fractures in
an otherwise isotropic earth.

¢ | Vs (km/s)

0° 0.8602
30° 0.8678
45° 0.8771
60° 0.8896
90° 0.9222

Table 3: Constant Vj, wave speeds in the [z1-z3]-plane found for various values of the angle
¢ between fracture planes, and for the fixed value of fracture density py = 0.20.

This result surely seems quite interesting all by itself, but the curiously symmetric
nature of the full fracture model can be highlighted further by noting that the following
two expressions analogous to (7):

ASys = ASy + AS33 — 2A 553, (8)

and
ASes = AS11 + ASzy — 2A 59, 9)

which are also both satisfied identically by the same set of expressions found in Table 1.
These facts indicate that the model also has vanishing anellipticity factors (at least to the
precision at which we are working) in the other orthogonal planes of propagation [zo-z3]
and [x1-z9)], as well.

As is well-known [see Gassmann (1964)], vanishing of the anellipticity factors means
that there will be no triplications of wave arrivals for these models from propagation in
any of these planes we have considered. Triplications arise because of complications from
taking the derivatives required to compute group velocity from the phase velocities quoted
here [also see Berryman (1979) for examples|. Group velocity determines the wave speed of
signals and/or pulses of seismic energy [see Brillouin (1946) for a discussion].

VERTICAL FRACTURES IN VTI EARTH

Another model in a very similar context that has been discussed frequently by Schoenberg
and Helbig (1997), Bakulin et al. (2000), and others is the model of a VTI earth system
(where the background elastic medium is transversely isotropic with vertical axis of system,
as it would be in a layered earth model having isotropic layers [Backus (1962)]) with super-
posed vertical fractures. A result that is often quoted in this context concerns a condition
that is necessarily satisfied by the elastic stiffness matrix elements for such a system:

c13(ca2 + c12) = ca3(ci1 + c12). (10)
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Using the same ideas applied here already, we can reduce this equation to a simple statement
about the system compliances. The resulting statement is the formula:

S13 = Sa3, (11)

by which we mean to say that the only requirement imposed on the compliances after the
introduction of the vertical fractures to the VTI earth background is that the new overall
system compliance must satisfy the conditions in (11) after the changes due to the fractures
are included in the values of these two compliance components. No other special constraints
appear.

To see that (11) is the correct condition, note that

S13 = (c12¢23 — c13¢22)/ det (C)

12
Saz = (c12¢13 — c23¢11)/ det (C), (12)

where det (C) is the determinant of the upper left 3 x 3 sub-matrix of the orthotropic
stiffness matrix C. Equating these two expressions from (12) and rearranging the final
result gives a formula that is precisely the same condition (10) given by Schoenberg and
Helbig (1997). What this condition implies for the physical system — since the background
earth medium is assumed to be VTI with vertical axis of symmetry and also since S13 = So3
for the background medium itself (before the fractures are added to it) — is that our final
result must be the condition:

Aslg = ASQg. (13)

This very simple equality means the changes (i.e., increases) in these off-diagonal compli-
ances — when due to the addition of the vertical fractures to this model — have just one
constraint, and that single constraint is that changes in these two off-diagonal compliances
S13 and Ss3 must occur in unison. This result is also seen as a limiting case found in Table
1, when A = B, which occurs only when ¢ = 0°. Since ¢ = 0° means that all the vertical
fractures are parallel, and therefore being all aligned fractures, I therefore then have exactly
the case studied explicitly by Schoenberg and Helbig (1997).

DISCUSSION OF VARIOUS FRACTURE MODELS

Among others, there are two main methods that are typically used in the seismic exploration
literature for modeling the effects of fractures on seismic wave propagation: One is the
method introduced originally by Schoenberg (1980) and the other was introduced at about
the same time by Kachanov (1980). These two methods have both been used extensively
in the exporation community, especially since the work of Sayers and Kachanov (1991)
and Schoenberg and Sayers (1995). Connections, including many similarities and a few
differences, are discussed in an overview by Schoenberg and Sayers (1995). I have some
personal preference for the analytical version of Sayers and Kachanov (1991), because it
is so explicit and also permits deep connections to be made to effective medium theory,
especially through the work of Eshelby (1957). In particular, some recent and related
work on fractures in outcrops using an effective medium theory approach by Berryman and
Aydin (2009) has made use of the approach put forward by Sayers and Kachanov (1991)
for modeling higher fracture density media. This study might have been more difficult
to carry through using the original Schoenberg (1980) approach. But, once these higher
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fracture density results were known, it became straightforward to incorporate them into the
layer-averaging approach emphasized by Backus (1962) and Schoenberg and Muir (1989).
Thus, the effective medium theory for layering was found to be most useful for providing
a means of determining fracture-fracture interactions when the fracture sets are close, but
not actually intersecting.

Effects of fluids on the fracture behavior have not been emphasized here, but this issue is
obviously a very important one for our applications, and it has been treated in other recent
work by Daley et al. (2006) and Berryman (2006). Effects that liquids have on elastic
moduli may be incorporated fairly easily using results of Gassmann (1951) and Skempton
(1954), as shown by Berryman (2006).

CONCLUSIONS

In this paper I have treated various methods for quantifying the geomechanical effects of
fracture sets on reservoirs. Special emphasis has been given to recent work, and also to the
influence that the work of Michael Schoenberg has had on this subject. I conclude that the
methods currently in use provide a consistent and presumably quite accurate picture of the
influence of fractures on wave propagation in many cases, and that the various methods in
use, although sometimes presented quite differently, are actually very closely related both
conceptually and also in the quantitative details of their predictions.

Of course, elastic orthotropy is not universal in the earth [see Sayers et al. (2009)], so
we should not and I do not assume that all the problems in exploration seismology will
be solved by such relatively simple models. One final conclusion is that, although good
progress has been made, there is also clearly more work to be done relative to the influence
of fractures and anisotropy on seismic waves.
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Poroelastic measurements resulting in complete data sets for
granular and other anisotropic porous media

James G. Berryman

ABSTRACT

Poroelastic analysis usually progresses from assumed knowledge of dry or drained
porous media to the predicted behavior of fluid-saturated and undrained porous media.
Unfortunately, the experimental situation is often incompatible with these assumptions,
especially when field data (from hydrological or oil/gas reservoirs) are involved. The
present work considers several different experimental scenarios typified by one in which
a set of undrained poroelastic (stiffness) constants has been measured using either ul-
trasound or seismic wave analysis, while some or all of the dry or drained constants are
normally unknown. Drained constants for such a poroelastic system can be deduced for
isotropic systems from available data if a complete set of undrained compliance data for
the principal stresses is available, together with a few other commonly measured quan-
tities such as porosity, fluid bulk modulus, and grain bulk modulus. Similar results are
also developed here for anisotropic systems having up to orthotropic symmetry if the
system is granular (i.e., composed of solid grains assembled into a solid matrix, either
by a cementation process or by applied stress) and the grains are known to be elasti-
cally homogeneous. Finally, the analysis is also fully developed for anisotropic systems
with nonhomogeneous (more than one mineral type), but still isotropic, grains — as
well as for uniform collections of anisotropic grains as long as their axes of symmetry
are either perfectly aligned or perfectly random.

INTRODUCTION

Poroelastic analysis (Gassmann, 1951; Biot and Willis, 1957; Brown and Korringa, 1975;
Rice and Cleary, 1976; Thigpen and Berryman, 1985; Cheng, 1997; Wang, 2000) usually pro-
gresses from assumed knowledge of dry or drained porous media to the predicted behavior
of fluid-saturated and undrained porous media. When field data (say from oil, gas, or hy-
drological reservoirs) are involved, the experimental situation is generally and unfortunately
incompatible with these assumptions.

For this reason, I want to consider several different experimental scenarios typified by
one in which a set of undrained constants has been measured using either ultrasound (in
the laboratory) or seismic wave analysis (for field data), while some or all of the dry or
drained constants are usually unmeasured and therefore unknown. Drained constants for
such a poroelastic system can be deduced from available data if a complete set of undrained
compliance data (as could be calculated by inverting the stiffness data, which are almost
directly obtained, within a factor of the density, from wave speed measurements) is avail-
able, together with a few other commonly measured quantities such as porosity, fluid bulk
modulus, and grain bulk modulus for isotropic systems. Similar results are developed here
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for anisotropic systems having up to orthotropic symmetry if the system is granular (i.e.,
composed of solid grains assembled into solid either by a cementation process or by applied
stress) and the grains are known to be elastically homogeneous.

In the later sections, the analysis is also fully developed for anisotropic systems with
inhomogeneous (meaning more than one mineral type is present), but still isotropic, grains.
Also studied is the case for uniform collections of the same types of anisotropic grains,
as long as the grain symmetry axes are either perfectly aligned or perfectly random. I
show how many poroelastic data are needed in order to consider the data sets complete,
and which types of data are in some sense redundant. Some combinations can be used to
replace other data types that remain missing when lab experimental and/or field limitations
prevent direct measurements of all the poroelastic coefficients.

ISOTROPIC POROELASTICITY

Homogeneous grains

The famous equation for undrained bulk modulus named for Gassmann (1951) can be
written in the form

K* = K% + a?/[(a — 6)/K? + ¢/K] (1)
for isotropic systems, where a = 1 — K%/K9 is the Biot-Willis coefficient or effective stress
(Biot and Willis, 1957) coefficient, K9 is the solid modulus of the grains (assumed homo-
geneous), K% is the drained modulus of the porous medium, K # is the pore fluid modulus,
and ¢ is the porosity. The formula becomes more complicated if the solids constituting
the porous medium are heterogeneous. But we will delay discussion of this point to the
next subsection and for now assume that the solids are truly homogeneous. For notational
convenience, I next introduce a modulus for a fluid suspension having the same solid and
fluid components as well as the same porosity, but having drained modulus K¢ = 0. Then
I find that the effective modulus is given by

1-¢ qb]‘l'

_|_7

i (2)

Ksusp = |:

In fact this result follows directly from Gassmann’s formula (1) by setting K¢ = 0 every-
where, since then K* = K,s,. But of course this result is also well-known in mechanics
and acoustics (Wood, 1955) for these types of fluid-solid suspensions.

Deducing drained moduli from undrained: Isotropic system with homoge-
neous grains

Rewriting Gassmann’s formula in these terms, I first find that

(1 - K4/K)? 5
1/ Kousp — K4/ (K9)>
Note that all explicit porosity (¢) dependence is now imbedded in the modulus Kgys,. Now
if I simply multiply through by the denominator on the right hand side, then I find

1 Kd K4 K4
KY _— | =1-2— . 4
(Ksusp (Kg)?) K9 Kouyp @

K=K+
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Also notice that two terms of the form (K¢/K9)? have cancelled from this expression. Once
these convenient cancellations have occurred, K¢ appears only linearly in the resulting
expression. The equation can therefore be solved immediately for drained modulus K¢ in
terms of the undrained modulus K* and the other factors that are also assumed to be
known (and in fact these other factors are usually easier to measure than either K% or K4).
Finally, I obtain:

u

K= ( KT 1> [1/ K qusp — 2/ K9+ K*/(K9)?] " (5)
Ksusp

This result shows that the drained modulus can be deduced from measurements of the

undrained modulus, together with knowledge of ¢, Ky, and KY9. Note that this result

was first derived by Zhu and McMechan (1990), but apparently published only in an SEG

conference proceedings.

Heterogeneous grains

When the grains in a granular packing are no longer composed of elastically homogeneous
and isotropic materials, or if they are homogeneous but anisotropic while nevertheless being
distributed in a randomly oriented way in space, then — as has been pointed out previously
in Brown and Korringa (1975), Rice and Cleary (1976), and the work of others [e.g., Wang
(2000)] — I need to introduce a more general notation to deal with these circumstances.

Recall that the Reuss (1929) average of the grain bulk moduli for a heterogeneous
medium with a distribution of grain types is given by:
1 Im_

K%, Ky’

m=1,....n

(6)

where vy, is the volume fraction (out of all the solid material present, so that > v, =1)
of the m-th isotropic grain having bulk modulus K,,. This average should be distinguished
from that of the Voigt (1928) average

Ke= S onkm, (7)

m=1,....n

which is known (Hill, 1952) to satisfy K}, > K},. Furthermore, these two measures are
also known (Reuss, 1929; Voigt, 1928; Hill, 1952) to satisfy K}, > K; > K7, where K is
the effective bulk modulus of an isotropic elastic composite consisting only of the minerals
m = 1,...,n in the same volume proportions given by the v,, values. However, this fact
actually is not pertinent here, as the only averages of this type that play a direct role in the
poroelastic equations are always those of the Reuss-type, as will be shown in the further
developments.

To clarify later usage of the same notation K7, I emphasize here that when (or if)
the grains in our assemblage are all anisotropic — but nevertheless of the same type and
oriented randomly in space — then the pertinent average is again the Reuss average. But
in this case the average is determined by the equation

1
KT~ > s (8)

R =123
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where the sfj for 4,5 = 1,2,3 are the principal components of the compliance matrix for
the anisotropic grain material itself. It is easy to see that this must be the case by referring
back to the equations above, specifically those requiring the suspension result K. The
formula as quoted in (2) was only written for the case of homogeneous grains. But if we
generalize this formula slightly as:

+ —

Ksusp = K]g% Kf

-1

[1 ¢, ¢ ] ’ )
then we see that it holds equally true: (a) for homogeneous isotropic grains (when K9, =
K9), (b) for heterogeneous volumes of isotropic grains [when K7, is given by (6)], or (c) for
anisotropic grains when they are randomly oriented in the fluid [and then K }’@{ is given by
(8)]. In all these cases, I do assume that this mixture of grains and fluid is close to being a
true suspension, by which we mean that individual grains are acted on similarly by changes
in fluid pressure.

If the clumpings are loose enough, then the fluid can act equally on all the individual
grains, and the result in (9) holds true regardless of the heterogeneity. However, if this is not
the case, then there must be elastically distinct clumpings of grains forming solid composites
locally — so the individual grains are no longer uniformly surrounded by the pore fluid. Then,
each grain’s fluid environment is different, due to welded contacts with other contiguous
grains. I am assuming for the present purposes that such effects are negligible in the
types of comparatively homogeneous porous media (on the meso- and macroscales, but not
necessarily on the microscale) being studied here. In fact, some types of more heterogeneous
systems can be treated, and some of these have already been studied (Berryman and Milton,
1991; Berryman and Pride, 2002) when the porous system is composed of just two distinct
types of grain clumpings; however, I will not be discussing such double-porosity and/or
multi-porosity effects in the present paper.

Heterogeneous pores

Another important type of heterogeneity that can occur in practice involves heterogeneity
of the pore space. One obvious issue is whether the pores are all connected to each other,
or whether there may be two (or more) distinct, but intertwining, pore systems. One well-
known example of this situation is the double-porosity concept (Berryman and Pride, 2002;
Gurevich et al., 2009; Barenblatt and Zheltov, 1960), in which one type of pore has high
volume but low permeability, while the other has low volume (imagine a system of very
flat cracks or fractures) and high permeability. I can also consider that some pores might
be interior to some grains and not connected to any other pores (and might therefore also
be empty of pore fluid), while other subsets of the grains have no inherent porosity of this
type, and so are truly solid grains.

I will not try to deal with all these cases simultaneously, as even enumerating all the
possibilities quickly becomes burdensome. I will limit myself instead to one of the more
typical scenarios, considered for example by Brown and Korringa (1975) and by Rice and
Cleary (1976) — and also see the recent related work of Gurevich et al. (2009).

Heterogeneity of the pore space is most important when considering flow of fluid into
and out of the boundaries of a porous sample. Then, the concept of increment of fluid
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content ¢ comes into play, and special care is required. A straightforward definition of this
dimensionless parameter (just as the strains eqq, €29, ..., €13 are all dimensionless) is given

by:
¢

5(oV) = 8V; <5v¢,_5Vf> 10)

% N\,

where V is the overall volume of the initially fully fluid-saturated porous material at the
first instant of consideration, V; = ¢V is the pore volume, with ¢ being the fluid-saturated
porosity of the volume, and V; is the volume occupied by the pore-fluid, making V; = ¢V
at the start. The §’s indicate small changes in the quantities following. For “drained”
systems, there must be a reservoir of the same fluid just outside the volume V that can
either supply more fluid or absorb any excreted fluid as needed during the nonstationary
phase of the poroelastic process; the amount of pore fluid can therefore either increase or
decrease from the initial amount of pore fluid, and at the same time the pore volume can
also be changing, but not necessarily at exactly the same rate as the pore fluid itself. The
one exception to these statements is when the surface pores of the total volume V are sealed,
in which case the system is “undrained” and ¢ = 0, identically. In these circumstances, it is
still possible that Vy and Vi, = ¢V are both changing, but because of the imposed undrained
boundary conditions, they are necessarily changing at the same rate. The result is that, for
an isotropic system, I have:

1 1 1
0% L gpp (- L LY (1)
Ky Ky Kj Kj

and where the various moduli in (11) are defined by the following relations [see Brown and
Korringa (1975)]:

Vi _ opg
Vi Ky’
o0V Opa  Opy

v "KL KL

(12)

(13)

and Vy bpa §

—t = 2 (14)

¢ r Kp

The changes in fluid pressure and differential pressure are respectively dp; and dpg =
dpe — dpy, where dp. = —do. is the uniform confining pressure, if the external confining
pressure is uniform. If not, then this quantity is replaced in the definition of dp. by —doy,,
which is the change in the mean confining pressure and where o,,, = (011 +022+033)/3 is the
definition of the mean principal stress. Clearly, if the confining principal stress is uniform
(011 = 092 = 033), then the mean stress equals this uniform confining stress. If not, then
there can be additional shearing effects that need to taken into account, but these do not
play any role in the changes of fluid content since this quantity is effectively a measure only
of the total number of fluid particles contained in the pertinent pore volume.

It can also be shown using poroelastic reciprocity (and I will show this later as it very
clearly develops in the following anisotropic analysis) that

10} QR 1 1

R . S 15
K, K§ Ki K (15)
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So generalizing Gassmann’s formula for undrained modulus gives:
1 1-agrB
Ki Ky

where ap =1 — K% /K% and

G R e I

is the second coefficient of Skempton (1954). Combining these terms, I find that the most
general form of the equation for the undrained bulk modulus in the isotropic case is:

-1
11 < 11 >2 ( 11 >_%¢ 11 a8)
Kp Ky \Kp Kgp) [\K; Kpg Ky kp)| '
or, alternatively,
L_ 1 (ar/KR)”

Kp KL |
RO anng o (4 - )

which is the isotropic result of Brown and Korringa (1975), and should also be compared

(19)

directly to (1). So, if the pore modulus and grain modulus are equal with Kg =K f%, then
(19) reduces exactly to (1). Although this result is the same as that of Brown and Korringa
(1975), I nevertheless write it differently to emphasize different features.

Deducing drained constants from undrained: Heterogeneous grains and
pores

I was able to deduce Kj‘% from our knowledge of K%, K]%, Ky, and ¢ in subsection 2.2.
But even though I am still assuming the system is isotropic, I have now introduced some
additional degrees of freedom by permitting the grains and pores to be heterogeneous. It is
clear that I cannot deduce Kj‘é if T just have the same amount of information as before. In
particular, it does seem fairly straightforward to measure K%, as I have already described
its meaning in the earlier discussion and even given formulas for it — if I have information
about the constituents and their volume fractions, or alternatively about the principal
components of elastic compliance and/or stiffness matrices. But I have another variable
now, which is the pore modulus K ¢, and this bulk modulus is not so easy either to model
or to measure directly (Lockner and Stanchits, 2002). However, by adding one more piece
of information — namely the second Skempton coefficient B = p¢/p., which is a fact that
should typically be known in poroelastic systems — then it turns out that I can solve for
both Kj'l% and Kﬁ. Again, I assume that K f’% and K are known. But now I also assume
that B is also known experimentally. Working through the algebra, I find that

p 1-B

" K~ B, -

[which is a rearrangement of K% = K% /(1 — agB)], and similarly that

11 1-B 1 1y 1 1 1 1 01
K;;—Kf‘<¢B)(z¢‘f¢g>—m‘(w>(@‘@)- 2D
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In (21), I used the previous result (20) for K% to simplify the final formula.

These forms are very useful for many applications in poroelasticity, but so far they apply
only to the fully isotropic case. I show next that a very similar set of formulas applies to
the anisotropic cases under consideration. I am able to attain greater clarity at this point
by switching to the more general anisotropic problem, where it can seen more easily how
poroelastic reciprocity comes directly into play.

ANISOTROPIC POROELASTICITY

If the overall porous medium is anisotropic due either to some preferential alignment of the
constituent particles or to externally imposed stress (such as a gravity field and weight of
overburden, for example), I consider the orthorhombic anisotropic version of the poroelastic
equations:

e11 s11 s12 s13 —fh o11

ez | _ | s12 sz sz —[2 092 (22)
€33 513 s23  s33  —3 o33 |’

—C —-f =B —B3 v —Dps

From here on throughout the paper, I will drop the ¢’s from the stresses and strains, as this
extra notation is truly redundant when they are all being treated as small (and therefore
resulting in linear effects), as I do here.

The e;; are strains in the ¢ = 1,2, 3 directions. The o0;; are the corresponding stresses.
The fluid pressure is py. The increment of fluid content is (. The drained compliances
are s;; = S?j. Undrained compliances (not yet shown) are symbolized by Sij- Coeflicients
Bi = si1 + Si2 + si3 — 1/3K %, where K }‘7% is again the Reuss average modulus of the grains.
The drained Reuss average bulk modulus is defined by

1 d
TR I )

For the Reuss average undrained bulk modulus K, I have drained compliances replaced
by undrained compliances. A similar definition of K %, with drained compliances replaced
by grain compliances has already been introduced earlier in the discussion. The alternative
Voigt (1928) average [also see Hill (1952)] of the stiffnesses will play no role in the present
work. And, finally, v = >"._, 5 3;/BK%, where B is the second Skempton (1954) coefficient,
which will be defined carefully again later in our discussion.

The shear terms due to twisting motions (i.e., strains ea3, es;, ez and stresses oas,
031, 012) are excluded from this discussion since they typically do not couple to the modes
of interest for anisotropic systems having orthotropic symmetry, or any more symmetric
system such as transversely isotropic or isotropic. I have also assumed that the true axes of
symmetry are known, and make use of them in my formulation of the problem. Note that the
si;’s are the elements of the compliance matrix S and are all independent of the fluid, and
therefore would be the same if the medium were treated as elastic (i.e., by ignoring the fluid
pressure, or assuming that the fluid saturant is air). In keeping with the earlier discussions,
I typically call these compliances the drained compliances and the corresponding matrix the
drained compliance matrix S¢, since the fluids do not contribute to the stored mechanical
energy if they are free to drain into a surrounding reservoir containing the same type of
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fluid. In contrast, the undrained compliance matrix S* presupposes that the fluid is trapped
(unable to drain from the system into an adjacent reservoir) and therefore contributes in
a significant and measureable way to the compliance and stiffness (C* = [S%]™!), and also
therefore to the stored mechanical energy of the undrained system.

Although the significance of the formula is somewhat different now, I find again that

B1+ B2+ B3 = L _ 1 _co= (24)

K1 KL KE
if T also define (as I did for the isotropic case) a Reuss effective stress coefficient:

ap=1-K§/KY,. (25)

Furthermore, I have

B K%

B1+ B2+ « 1 1
= PLTP2TES R+¢<Kf Kfz), (26)

since I have the rigorous result in this notation (Berryman, 1997) that Skempton’s B coef-
ficient is given by
1-K$/Ky ar/K$

b 1 - K4L/KS d —1/K%)
rR/IB R  ar/Kj+¢(1/Ky —1/Kp)

(27)

Note that both (26) and (27) contain dependence on the pore bulk modulus K}g that comes
into play when the pores are heterogeneous, regardless of whether the system is isotropic
or anisotropic. I want to emphasize that all these formulas are rigorous statements based
on the earlier anisotropic analysis. The appearance of Kj‘% and ap is not an approximation,
but merely a useful choice of notation made here because it will make clear the similarity
between the rigorous anisotropic formulas and the isotropic ones.

The [; coefficients

I will now provide several results for the §; coefficients, and then follow the results with a
general proof of their correctness.

In many important and useful cases, the coefficients §; are determined by

1

d d d
ﬂi:8i1+8i2+5i3_7g-
3KY

(28)
Again, K9, is the Reuss average of the grain modulus, since the local grain modulus is
not necessarily assumed uniform here as mentioned previously. Equation (28) holds true
for homogeneous grains, such that K%, = K9. It also holds true for the case when K7, is
determined instead by (6). However, when the grains themselves are anisotropic, I need to
allow again for this possibility, and this can be accomplished by defining three directional
grain bulk moduli determined by:

1
3KY = sy + sy + 8%y = s, + 55, + 55, (29)

(2
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for i = 1,2,3. The second equality follows because the compliance matrix is always sym-
metric. I call these quantities in (29) the partial grain-compliance sums, and the K f are
the directional grain bulk moduli. Then, the formula for (28) is replaced by

1
d d d
Bi = si1 + Sip + siz — SR (30)
Note that the factors of three have been correctly accounted for because
1 1
D (31)
i=1,2,3 3K Kp

in agreement with (8). If the three contributions represented by (29) for ¢« = 1,2, 3 happen
to be equal, then each equals one-third of the sum (31).

The preceding results are for perfectly aligned grains. If the grains are instead perfectly
randomly oriented, then it is clear that the formulas in (28) hold as before, but now K7, is
determined instead by (8).

All of these statements about the (; are easily proven by considering the case when

o11 = 092 = 033 = —p. = —py. In this situation, from (22), I have:
p
—€i = (8?1 + s + 5?3) e+ Bi(=py) = (s} + sy + sl) py = 37%5;’ (32)
i

in the most general of the three cases discussed, and holding true for each value of i = 1,2, 3.
This is a statement about the strain e;; that would be observed in this situation, as it must
be the same if these anisotropic (or inhomogeneous) grains were immersed in the fluid, while
measurements were taken of the strains observed in each of the three directions i = 1,2, 3,
during variations of the fluid pressure py. Consider this proof to be a thought experiment
for determining the coefficients, in the same spirit as those proposed originally by Biot and
Willis [see Biot and Willis (1957); Stoll (1974)] for the isotropic and homogeneous case.

Coefficient ~

The relationship of coefficient v to the other coefficients is easily established because I have
already discussed the main issue, which involves determining the role of the various other
constants contained in the Skempton (1954) coefficient B. I have quoted this result in (17).

Again, from (22), I find that

—(=0=—(61+ P2+ B3) oc — Py, (33)
for undrained boundary conditions. Thus, I again have
QEB:51+52+53’ (34)
Pc v
where p. = —o. is the confining pressure. Thus, the scalar coefficient v is determined

immediately and given by

K¢ 1 1
’Yzﬁl—I—%—I—ﬁg:aRj/BRZQR/K%‘Hb([(Jc—Kg)‘ (35)
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Alternatively, I could say that
QR

B = 2E
YK%

(36)

I have now determined the physical/mechanical significance of all the coefficients in the
poroelastic matrix (22). These results are as general as possible without considering poroe-
lastic symmetries that have less than orthotropic symmetry, while also taking advantage of
my assumption that I do typically know (or can often determine) the three directions of the
principal axes of symmetry.

Inverting poroelastic compliance

The matrix in (22) is in compliance form and has extremely simple poroelastic behavior in
the sense that all the fluid mechanical effects appear only in the single coefficient 7. I can
simplify the notation a little more by lumping some coefficients together, combining the
3 x 3 submatrix in the upper left corner of the matrix in (22) as S, and defining the column
vector b by

bl = (81, B2, Bs). (37)

The resulting 4 x 4 matrix and its inverse are now related by:

(5 7)-(F 1) 6

where the elements of the inverse matrix can be shown to be written in terms of drained stiff-
ness matrix C¢ = C = S~! by introducing three components: (a) scalar z = [y — bTCb] _1,
(b) column vector q = zCb, and (c¢) undrained 3 x 3 stiffness matrix (i.e., the pertinent one
connecting the principal strains to principal stresses) A = C + 2Cbb?’C = C?+ 27 1qq! =
C*, since C? is drained stiffness and A = C" is clearly undrained stiffness by construction.
This result is the same as that of Gassmann (1951) for anisotropic porous media, although

his results were presented in a form somewhat harder to scan than the form shown here.

Also, note the important fact that the observed decoupling of the fluid effects occurs
only in the compliance form (22) of the equations, and never in the stiffness (inverse) form
for the poroelasticity equations.

From these results, it is not hard to show that
S? = 8% + 4 1bbT. (39)

This result emphasizes the remarkably simple fact that the drained compliance matrix can
be found directly from knowledge of the inverse of undrained compliance, and the still
unknown, but sometimes relatively easy to estimate, values of v, together with the three
distinct orthotropic 3; coefficients, for i = 1,2, 3.

TABLE 1. Reuss (R), Voigt (V), and self-consistent effective (x) bulk moduli of various

common anisotropic materials (Berryman, 2005): Water ice, cadmium, zinc, graphite,

a-quartz, corundum, barium titanate, rutile, aluminum, copper, magnesia, spinel. Full

references for the data used in both TABLES 1 and 2 are provided in Berryman (2005).
Units of bulk modulus K are GPa.
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Complete poroelastic data sets

Material Symmetry Kgr K* Ky Ky /Kpg
H>O Hexagonal 8.89 8.89 8.89 1.00
Cd Hexagonal 48.8 54.7 58.1 1.19
Zn Hexagonal 61.6 70.9 75.1 1.22
Graphite Hexagonal 35.8 88.0 286.3 8.00

Al O3 Trigonal 253.5 253.7 253.9 1.002

a-Si0q Trigonal 37.6 37.8 38.1 1.01
TiOq Tetragonal 209 213 218 1.04
BaTiOq Tetragonal | 163.1 179.3 186.8 1.15
Al Cubic 76.3 76.3 76.3 1.00
MgO Cubic 162.4 162.4 162.4 1.00
MgAl, Oy Cubic 196.7 196.7 196.7 1.00
Cu Cubic 138.0 138.0 138.0 1.00

155

Deducing coefficients from measurements: Anisotropic example with ho-
mogeneous grains

Now, further progress is made by considering the Reuss average again for both of the

orthotropic drained and undrained compliances:

and

d
KR

1

Kp

— § : d

i,j=1,2,3

>

u
SZj

4,j=1,2,3

(41)

These effective moduli are the Reuss averages of the nine compliances in the upper left 3 x 3
of the full (including the uncoupled shear components) 6 x 6 compliance matrix for the two
cases, respectively, when the pore fluid is allowed to drain from the porous system, and

when the pore fluid is trapped by a jacketing material and therefore undrained.

TABLE 2. Reuss (R), Voigt (V), and self-consistent effective (x) shear moduli of various
common materials [see Berryman (2005)]: Water ice, cadmium, zinc, graphite, a-quartz,
corundum, barium titanate, rutile, aluminum, copper, magnesia, and spinel. Units of

shear modulus G are GPa. The anisotropy parameter A = Sg—; + % — 6 [from
Ranganathan and Ostoja-Starzewski (2008a,b)].
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Material Symmetry Gr G* Gy Gy /Gr A
H,O Hexagonal 3.48 3.52 3.55 1.02 0.10
Cd Hexagonal 22.1 24.3 26.4 1.19 1.14
7n Hexagonal 34.1 40.6 44.8 1.31 1.77
Graphite | Hexagonal 9.2 52.6 2194 23.8 121.0
AlyO3 Trigonal 160.7 163.1 165.5 1.03 0.15
a-Si09 Trigonal 41.0 44.0 47.6 1.16 0.81
TiOq Tetragonal 99.5 114.5 124.9 1.26 1.34
BaTiOq Tetragonal 474 53.6 59.8 1.26 1.46
Al Cubic 26.0 26.2 26.3 1.01 0.05
MgO Cubic 123.9 126.3 128.6 1.04 0.20
MgAl, Oy Cubic 98.6 109.0 118.0 1.20 1.00
Cu Cubic 40.0 46.3 51.3 1.28 1.41

Although the significance of the formula in the anisotropic case is somewhat different

now, I find again that

1 1 QR
Bi+Bet+B3=—g— 5= —g (42)
Ky Ky K§

if I also define a Reuss effective stress coefficient:
arp=1-K%/KY, (43)
by analogy to the isotropic case. Furthermore, I have

Pr+ P2+ 03  ar < 1 1 >
= AERTE SR (- 2), (44)
B K% Ky K%,
since I have the rigorous result in this notation (Berryman, 1997) that Skempton’s B coef-

ficient (Skempton, 1954) is given by

1 KK
= KRR

aR/K%

B .
ar/Kh + ¢(1/Ky —1/K3)

(45)

I want to emphasize that all these formulas are rigorous statements based on the earlier
anisotropic analysis. The appearance of Kfl% and ap is not an approximation. In fact it
is important now in the anisotropic case (but not in the isotropic cases considered earlier
as long as the grains were also homogeneous) to make this distinction between the Reuss
and Voigt averages. Making this choice of notation will help demonstrate useful analogies
between the rigorous anisotropic formulas and the isotropic ones. I have prepared the way
for these analogies by using the Reuss averages in earlier notation, even though they were
mostly redundant in those isotropic examples.

d
BEy _ also see (36). Sol

R

First note that, from (42) and (44), it follows that y~! =
can now rearrange (39) to give the formal relationship

BK¢
%z%}%;f@@,ﬁrﬁj:Ll3 (46)
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At this point in the analysis, I know everything needed except for the three coefficients 3;,
for i = 1,2,3. But, by taking appropriate sums of (46), I find that

1
= 8?1 + 3?2 + S;‘MS — — + Bﬂz (47)

_od d d
Bi = s31 + Sia + Sig — 3K7

3KY,
Rearranging, I find that

1

Bi(1 — B) = sy + si5 + si5 — 3K

(48)

Formula (45) for the Skempton (1954) coefficient determines B exactly in terms of pre-
sumed known quantities. In the present case, the Skempton coefficient B, however, was not
assumed to be known, since for homogeneous grains I can compute K % relatively easily, and
then B follows since I also know K7. [For the case of heterogeneous or anisotropic grains,

the necessary introduction of the additional variable Kﬁ requires still more measured data,
and it turns out that the next easiest quantity to measure is B itself — as was already
shown in the isotropic case.] So, all three f;’s (which are themselves drained constants)
and 7 are now precisely determined. All the remaining drained compliances sgj can then
be found directly from (46). Note that all the steps in this inversion procedure are linear;
there was no need to solve any quadratic equation in this formulation of the undrained-to-
drained inversion problem. There is also no iteration, and no fitting steps are required in

this procedure.

Deducing anisotropic drained constants from undrained: Homogeneous
grains and pores

I am now in position to develop the analogy between the isotropic and anisotropic Gassmann
(1951) equations for the case of homogeneous grains. In particular, the equation for the
suspension modulus in (2) does not change at all. In contrast, the equation for the effective
undrained bulk modulus K", as shown in both (1) and (3), changes only in that the rela-
tionship is now between the Reuss averages Kj; and K}iz of these quantities. This result is
completely analogous to (3), and so will not be shown here.

Since the remainder of the argument is virtually identical to the isotropic case, I therefore
obtain:

K% ” —1
K% = <K R _ 1) [1/Kusp — 2/ K% + Ki/(K$)?] . (49)
Susp

This formula shows how to invert for drained Reuss bulk modulus K}i% from knowledge of
K, ¢, Ky and K }q% in an anisotropic (up to orthotropic) poroelastic system.

TABLE 3. Data for the principal stiffness coefficients c;; of orthorhombic sulfur (S),
Rochelle salt, Benzophenone, and a-Uranium (a-U). All data from Musgrave (2003), but
re-expressed in units of GPa.
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Stiffness | Sulfur (S) | Rochelle Salt | Benzophenone | «-Uranium
c11 24.0 25.5 107.0 215.0
c22 20.5 38.1 100.0 199.0
C33 48.3 37.1 71.0 267.0
C12 13.3 14.1 55.0 46.0
c13 17.1 11.6 16.9 22.0
C23 15.9 14.6 32.1 107.0

TABLE 4. Data for various measures of bulk modulus K (Voigt, Reuss, and three partial
sum moduli) for orthorhombic sulfur (S), Rochelle salt, Benzophenone, and a-Uranium
(a-U). All data from Musgrave (2003) [see TABLE 3 here], while the expressions in the

main text were used for the computations. All moduli in units of GPa.

Bulk Modulus | Sulfur (S) | Rochelle Salt | Benzophenone | «-Uranium
Ky 20.6 20.1 54.0 114.6
Kpg 17.6 19.3 49.2 111.3
K 15.2 12.5 55.8 87.9
Ky 10.1 30.6 107.5 113.6
Ks 15.8 23.3 29.6 147.7

Clearly this formula does not yet provide the individual compliance matrix elements s;jj
directly. Nevertheless, Equation (49) was the hardest step in the overall procedure. The
rest of the steps follow easily once I have this rigorous result available to use.

To finish the analysis, I make use of the newly computed value of K%, and substitute
this number into the formula for B, which in this case is:

d U

SR 763 Kg/Kg. (50)

1-K¢/Ky,

Once I know Skempton coefficient B, this value can be substituted into (48) in order to

determine the 3; coefficients for ¢ = 1,2, 3. The remaining coefficient is v = ag/ BK%. Sol

have shown that the critical step in this process was determining the value of the drained
Reuss bulk modulus K}i%.

Deducing anisotropic drained constants from undrained: Heterogeneous
grains and pores

One difficulty for heterogeneous grains comes from the additional constant Kﬁ that I do
not know how to determine independently from the other poroelastic measurements. But
this fundamental problem is actually no different for the anisotropic case than it was for
the isotropic one, and the solution is also the same. In both cases, I need more information,
and in both cases the necessary information will most likely come from our knowledge of
the Skempton (1954) coefficient B. If I assume that B can be directly measured (which
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is plausible, since B = py/p. in the undrained case when a uniform confining pressure is
applied to the system), then the problem is completely solved, because B is the key to
solving for the coefficients 3; in (48). The only new difficulty is that the terms of the form
1/3KY, must also be replaced by the partial grain compliance sums 3%, as shown in (30).

So I now have

1 1
B = s + s + sk — —5 = s + sty + sl — —; + B, (51)
R 7 S ¥ ¢

i

Rearranging, I find that, for heterogeneous grains, the result is:

1
Bi(1 - B) :5?1‘1'3?24‘3?3—3?- (52)

(2
So, I am almost done now, but I still need either to determine the values of the anisotropic
grain correction terms ﬁ, or to find some way of avoiding the necessity of doing so.

In principle, this can be done experimentally by actually performing a test on the porous
sample that applies the same pressure inside and outside. Then, measurements of the change
in strain in the three orthogonal directions ¢ = 1,2, 3 would provide direct measures of the
quantities ?? needed. So this approach is one that is experimentally feasible.

An alternative that I have not considered so far would be to perform shear tests by
applying nonzero deviatoric stress changes (Skempton, 1954; Lockner and Stanchits, 2002).
The undrained fluid pressure is given by py = Bp. = B(—0y,), where the mean stress is
om = (011 + 022 + 033)/3. But, if the oy;’s are not uniform, then there are also deviatoric
stresses present, due to the nonuniformity of the principal stresses.

Triaxial testing geometry

One common example of this type of measurement uses triaxial testing [see Lockner and
Stanchits (2002)], where a two-sided confining stress is defined as 092 = 033, and then the
deviatoric stress is determined by

Odev = (011 — 033) /2. (53)

In this situation, the general equation relating undrained pressure to the confining stresses
is given by:

1
_pf = BO’m + 2 <A - 3> BO'dev, (54)

where the only new symbol is the first coefficient A of Skempton (1954).

TABLE 5. Data for the principal stiffness coefficients ¢;; for i,j = 1,2, 3, as well as ca4, of
hexagonal minerals: cadmium (Cd), HsO ice, S-quartz (SiO2), titanium (Ti), and
zirconium (Zr). All data from Simmons and Wang (1971) [entry numbers: 52473, 52563,
52643, 52726, and 52798, respectively]|, but re-expressed in units of GPa.
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Stiffness | Cadmium (Cd) | HoO Ice | f-Quartz | Titanium (Ti) | Zirconium (Zr)
11 115.30 13.85 116.6 163.9 137.0
c33 51.20 14.99 110.4 181.6 160.7
c12 39.24 7.07 16.7 91.3 75.6
c13 40.22 5.81 32.8 68.9 65.4
Ca4 20.40 3.19 36.1 47.2 30.1

TABLE 6. Data for various measures of bulk modulus K (Voigt, Reuss, and three
partial-sum moduli) for hexagonal minerals: cadmium (Cd), H2O ice, 8-quartz (SiO2),
titanium (Ti), and zirconium (Zr). All data from Simmons and Wang (1971) [see TABLE
5], while the expressions in the main text were used for all the computations. All moduli
in units of GPa.

Modulus | Cadmium (Cd) | H2O Ice | f-Quartz | Titanium (Ti) | Zirconium (Zr)
Ky 57.89 8.90 06.47 107.51 94.17
Kpr 48.61 8.90 56.37 107.50 94.02

K1 =Ky 143.07 8.94 53.97 109.00 89.58
K3 20.95 8.82 61.86 104.63 104.36

It is not difficult to show that, in terms of our previous definitions for the triaxial testing
geometry, the coefficient A is given precisely by the ratio

_ B
B+ P+ P

For an isotropic system, A = 1/3, so this contribution always vanishes in (54). This fact
explains why I did not encounter this coefficient before in the analysis. Note that there is
no assumption here that the poroelastic system itself is necessarily transversely isotropic.
Only the prescribed equality of the two applied transverse stresses, o9o and o33, is assumed.
Then, the formula (54) follows directly from the equations already presented.

A (55)

Non-triaxial testing geometries

Clearly, it would also be natural to introduce other measures of the 3; coefficients as well,
especially if the measurements are not being constrained to the triaxial testing configuration.
So I might imagine that three such coefficients could be measured according to:

—pf =B Um+ZAi(0ii_am) s (56)

where

Ai = /BZ ’

B1+ B2+ B3

for ¢ = 1,2,3. In general, no more than two of these A; coefficients can be independent
since ) ;4 53 A; = 1. But, for general testing configurations, there could be two useful and

(57)
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distinct measurements to be gathered from deviatoric response testing, although only one
was available in the triaxial testing configuration.

In order to be able to deduce the values of the 3;’s from the A;’s, I need to know the
value of the sum (1 + B2 + B3 = vB. I also needed to know the value of B to determine
any of the A;’s, but the value of v is harder to determine independently. The values of K}
and the total K7, are both usually easier to determine, so it is likely enough information is
available to compute the §; sum this way:

I
Kg  Kg

Pr+fetfs=——p" =18 (58)

If the §; sum has been computed using (58), then clearly I also have

1 1
KE ~ KT
= A ——=7 ]
: ( £ ) (59

Once I have computed the (3;’s, I also find (if I want to, although it is not usually critical
information) the values of the partial sums of the grain Reuss modulus:

1
e = si1 + si9 + 853 — Bi(1 = B). (60)

)

This additional information is therefore available if needed for some other reason such as
determining how well-stirred the particles composing a given granular medium might be.

Deducing anisotropic drained constants from undrained for very hetero-
geneous porous media

At this point I have determined a data processing scheme that would provide all the drained
constants for a poroelasticity system from measurements of the undrained constants. In the
example of the preceding subsection, I needed to broaden the meaning of the undrained set
of constants to include the Skempton A; coefficients, which were not needed in earlier parts
of the paper. But they could nevertheless be computed from the information found earlier,
since I did show how to compute all the §;’s directly, and these coefficients provide just the
information that I would need for determining these values from (57).

In realistic data collection situations, especially those involving field data, my previous
assumptions concerning the nature and orientations of the constituent grains of the granular
porous medium may sometimes — perhaps most times — be too idealized. Nevertheless, it
is the case that the equations of poroelasticity never become any more complex than those
shown here. What does change is the interpretation of the directional grain moduli. In the
worst case scenario, equation (60) needs to be replaced by an equation of the same form,
namely:

3K = si1 + sip + si3 — Bi(1 = B). (61)
Measurements are exactly as before, but the interpretation of the resulting constant esti-
mator K becomes that of an effective medium bulk modulus, i.e., one that is (or at least
could be) dependent on the directions i = 1,2, 3 of measurement. Effective medium theories
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for random polycrystals generally assume [see Berryman (2005)] that the anisotropic grains
are perfectly randomly oriented. Of course, this may not be true in practice. But to do a
better job of predicting the outcome of experiments in situations where grain orientations
are not perfectly random, I need information about these deviations from perfect random-
ness. In the present context, the information would come in the form of these measured
constants K. Some effort could then be expended in showing how such moduli might arise
if the constituents’ nature and volume fractions are known. But in the absence of such
knowledge, these constants are sufficient to analyze other results of most experiments of
interest in poroelasicity.

To provide different ideas about how important the anisotropy, and the random orien-
tation of the constituents might be in a few cases, TABLES 1 and 2 show some quantitative
examples based on results of Berryman (2005) and Ranganathan and Ostoja-Starzewski
(2008a,b). TABLES 3 and 4, respectively, provide input data for the types of orthorhombic
solids (Musgrave, 2003), and the results for the Voigt, Reuss, and directional measures of
bulk moduli for these particular materials. Note the significant finding that the directional
moduli do not have to stay within the values set by the Voigt and Reuss estimators.

Tables 5-9 show similar results for selected data taken from the compendium assembled
by Simmons and Wang (1971).

TABLE 7. Data for the principal stiffness coefficients ¢;; for 4, j = 1,2,3 and c44 of cubic
symmetry minerals: aluminum (Al), copper (Cu), magnesia (MgO), and spinel
(MgAl2Oy). All data from Simmons and Wang (1971) [entry numbers: 10089, 10385,
10902, and 11877, respectively|, but re-expressed in units of GPa.

Stiffness | Aluminum (Al) | Copper (Cu) | Magnesia (MgO) | Spinel (MgAlyOy4)
c11 107.30 170.98 297.08 298.57
€12 60.80 123.99 95.36 153.72
Ca4 28.30 75.45 156.13 157.58

TABLE 8. Data for various measures of bulk modulus K (Voigt, Reuss, and three
partial-sum moduli) for cubic symmetry minerals: aluminum (Al), copper (Cu), magnesia
(MgO), and spinel (MgAl,Oy4). All data from Simmons and Wang (1971) [see TABLE 7],
while the expressions in the main text were used for all the computations. All moduli in
units of GPa. Clearly, all the pertinent bulk moduli for each material are the same (i.e.,
Ky = Kg = K1 = K9 = K3, even though these cubic symmetry minerals are not isotropic.

Bulk Modulus Al
Ky=Kr=...|76.3

Cu
139.65

MgO
162.6

MgAlg 04
202.00

SUMMARY AND CONCLUSIONS

There have been a great many experiments done on poroelastic systems through the years,
and many attempts to measure complete poroelastic data sets. The work summarized here
is designed to make this process easier by removing the need (whenever possible) for tedious
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fitting routines that have traditionally been used to find the pertinent drained constants for
the measured fluid-saturated and undrained systems. It is of some real scientific importance
to have methods like those treated here, because it is a well-known fact that the presence
of the pore-fluid can alter the nature of the points of contact between neighboring grains,
and therefore alter the values of the “drained” constants that were sought here and found
via the methods developed for this purpose. Different values of the “drained” constants
might be obtained if all the fluid is physically drained out of the system, so it is effectively
“dry” rather than merely “drained” (i.e., in the sense of pore-fluid having the capability of
moving in and out of the boundaries as would happen in the absence of jacketing material).
In the case of a fully dry system, the grain-to-grain contacts may act very differently than
they do when saturated with certain fluids. At the very least, it could be important to
check experimentally whether these constants are different or not in a variety of systems,
and the present analysis will permit such studies to move forward.

One especially interesting aspect of the analysis presented is that in no case did the
solution of any of the problems treated involve any analysis more complicated than solving
a linear equation. There are no quadratic equations solved in this paper, and none that
needed to be solved. The hardest calculation in the paper is the implicit inversion of a
3 x 3 matrix when the real data are poroelastic stiffnesses, rather than compliances. [Note:
Matrix inversion requires only the calculation of various determinants, but not the solution
of any quadratic or cubic equations. These additional difficulties can be avoided unless 1
also want or need to find the eigenvalues of the matrix. But this step is unnecessary in the
work described here.] This situation does occur in practice whenever the elastic/poroelastic
data are obtained using wave propagation methods. Then, the actual data have the form
v = y/¢/p, where v is a wave speed, c is a stiffness or combination of stiffnesses, and p is
the inertial density. A complete set of the stiffnesses for the principal stresses and strains is
needed for the analysis because I require compliance data, and to obtain a complete set of
compliance data from stiffness data, I also need a complete set of the corresponding stiffness
data. All the elements of the undrained 3 x 3 compliance matrix for the principal stresses
and strains must be known in order to proceed with the described analysis.

TABLE 9. Reuss (R) and Voigt (V) shear moduli of various common hexagonal and cubic
materials (Simmons and Wang, 1971): cadmium, -quartz, titanium, zirconium,
aluminum, copper, magnesia, and spinel. Units of shear modulus G are GPa. All the
formulas needed to compute the various effective moduli from the stiffness coefficients are
given in Berryman (2005). The anisotropy parameter A = 52—" + % — 6 [from
Ranganathan and Ostoja-Starzewski (2008a,b)|.
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Material | Symmetry Gr Gy Gv/Gr A
Cd Hexagonal 22.1 26.4 1.197 1.174
SiO9 Hexagonal 3.48 3.55 1.025 0.125
Ti Hexagonal 34.1 44.8 1.31 0.154
VAN Hexagonal 32.54 33.40 1.03 0.132
Al Cubic 26.04 26.28 1.009 0.045
Cu Cubic 40.04 54.67 1.365 1.825
MgO Cubic 128.06 | 134.02 1.047 0.235
MgAl,Oy Cubic 107.17 | 123.52 1.152 0.76

The analysis has been restricted to systems having orthotropic poroelastic symmetry or
higher. Lower symmetry systems might also be studied, but I purposely avoided them here
because for such systems it is harder to know for sure from experimental data when you
have determined the true axes of symmetry. Also, in such cases of orthotropic symmetry or
higher, the system of equations to be studied is substantially reduced because there is no
coupling of the fluid effects to the shear components associated with the strains ess, e31, €11,
or the the stresses ga93, 031, 012. Shear effects are not ignored altogether however, as there
are well-known shearing mechanisms in poroelastic media associated with the Skempton
(1954) coefficient A [also see Lockner and Stanchits (2002)]. These effects were studied here
in some detail, and were found to be very useful in accomplishing our main goals, since
they provided a necessary mechanism for measuring some otherwise difficult to measure
off-diagonal terms in the poroelastic equations.

I conclude that this analysis has been successful in solving the problem of obtaining
drained constants from undrained constants in all the cases considered. The chosen set
of cases (orthotropic or higher symmetry) is not very restrictive from a practical point of
view, as the great majority of poroelastic systems studied in practice usually have hexagonal
(transversely isotropic) symmetry or higher, and therefore are all explicitly included within
the range of the present analyses.
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