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ABSTRACT

I pose the seismic imaging problem as an inverse problem and present a regular-
ized inversion scheme that tries to overcome three main practical issues with the
standard least-squares migration /inversion (LSI) approach, i.e., the high compu-
tational cost, the operator mismatch, and the poorly constrained solution due
to a limited surface acquisition geometry. I show that the computational cost is
considerably reduced by formulating the LSI problem in a target-oriented fashion
and computing a truncated Hessian operator using the phase-encoding method.
The second and third issues are mitigated by introducing a non-quadratic regu-
larization operator that imposes sparseness to the model parameters. Numerical
examples on the Marmousi model show that the sparseness constraint has the
potential to effectively reduce the null space and produce an image with high
resolution, but it also has the risk of over-penalizing weak reflections.

INTRODUCTION

Migration is an important and robust tool for imaging subsurface structures using re-
flection seismic data. However, migration operator is only the adjoint of the forward
Born modeling operator (Lailly, 1983), which produces reliable structural information
of the subsurface (assuming an accurate background velocity is known), but blurs the
image because of the non-unitary nature of the Born modeling operator. To deblur
the migrated image and correct the effects of limited acquisition geometry, complex
overburden and bandlimited wavefields, the imaging problem can be treated as an in-
verse problem, which, instead of using the adjoint operator, uses the pseudo-inverse of
the Born modeling operator to optimally reconstruct the reflectivity. This inversion-
based imaging mehtod is also widely known as least-squares migration (Nemeth et al.,
1999; Kuhl and Sacchi, 2003; Clapp, 2005; Valenciano, 2008).

The standard least-squares migration/inversion (LSI) approach tries to minimize
an objective function defined in the data space, which compares the mismatch between
the modeled and the observed primaries (Nemeth et al., 1999; Kuhl and Sacchi, 2003;
Clapp, 2005). The objective function is then minimized with a gradient-based opti-
mization solver, which iterates until an acceptable image is obtained. However, the
data-space inversion scheme lacks flexibility and cannot be implemented in a target-
oriented fashion. Full-domain migration/demigration has to be carried out within
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each iteration; and the optimization converges slowly without a proper precondi-
tioner. Therefore, the data-space inversion scheme is computationally challenging for
large-scale applications.

One way to reduce the computational cost is by solving the LSI problem in a
target-oriented fashion (Yu et al., 2006; Valenciano, 2008). This can be achieved
by minimizing an objective function defined in the model space, instead of the data
space. The target-oriented model-space formulation allows us to invert only areas
of particular interest, such as subsalt regions, where potential reservoirs are located
and migration often fails to provide reliable images. Solving the LSI in the model
space requires explicitly computing the Hessian, the normal operator of the forward
Born modeling operator. The full Hessian, however, is expensive to compute without
certain approximations. Fortunately, as demonstrated by Valenciano (2008) and Tang
and Biondi (2009), for a typical conventional acquisition geometry (shot records do not
interfer), the Hessian matrix is sparse and diagonally dominant for most areas. Thus
a truncated Hessian with a limited number of off-diagonal elements (the number is
usually very small) can be used to approximate the exact Hessian for inverse filtering.

The truncated Hessian can be computed by storing the Green’s functions (Va-
lenciano, 2008), which, however, may bring considerable computational issues (e.g.
disk storage, I/O and etc.), because the Green’s functions can be huge for practical
applications, especially in 3-D. To reduce the computational overburden, this paper
computes the Hessian using the phase-encoding method (Tang, 2008b). As demon-
strated by Tang (2008b) and Tang (2008a), computing the phase-encoded Hessian
does not require storing any Green’s functions and it is also more efficient: the cost
for computing the receiver-side randomly phase-encoded Hessian is about one shot-
profile migration, and if a mixed simultaneous phase-encoding strategy is used, the
cost is about one plane-wave source migration.

Besides the computational cost, two main issues, i.e., the operator mismatch and
the underdetermined nature of the seismic inverse problem, make the practical appli-
cation of LSI less effective. The first issue often arises when our modeling operator is
not sufficient to predict the physics of the data, for example, anisotropy or elasticity
presents in the data but is not accurately modeled by our numerical operators. This
can cause data-inconsistency problems. The second issue is due to the limited surface
seismic acquisition geometry, which makes the inversion have an infinite number of
solutions that fit the observed data equally well. Regularization is therefore important
to stabilize the inversion and make it converge to geologically reasonable solutions.
In this paper, I exploit the application of a non-quadratic regularization operator
that imposes sparsness to the model space (Sacchi and Ulrych, 1995; Ulrych et al.,
2001). The model-space sparsity is achieved by minimizing the model residual in the
{1 or Cauchy norm, whose distribution is longer-tailed than the Gaussian distribution
(the ¢ norm), hence it penalizes weak energy and leads to spiky solutions (Amund-
sen, 1991). The application of the sparseness constraint to seismic imaging has also
been reported by Tang (2006) and Wang and Sacchi (2007), who use it to regularize
prestack image gathers. In this paper, however, I use it to regularize the prestack
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image (zero subsurface offset) to enhance the resolution of the inverted reflectivity. I
compare the one-way wave-equation inversion results on the Marmousi model regular-
ized using the sparseness constraint with those regularized using a standard /5 norm
damping. The experiments have been carried out on data sets synthesized using both
one-way wave-equation Born modeling and two-way acoustic wave-equation finite-
difference modeling. The first case represent the ideal scenario, where our modeling
operator (one-way wave-equation propagator for this case) matches all the physics
in the data. I show that both inversion schemes work well under this situation, and
sparseness constrained inversion can offer slightly higher resolution. The second case
is much more challenging for both schemes, because our modeling operator can not
model all the complexities present in the data (e.g., amplitudes, multiples and etc.).
My experiments show that under this difficult situation, the sparseness-constrained
approach provides us a better inversion result for the Marmousi model, which sug-
gests the importance of accurate model covariance (or the a priori information) for
the LSI problem.

This paper is organized as follows: [ first briefly review the theory of target-
oriented LSI and phase-encoded Hessian, then I discuss the sparseness constraint
which minimizes the model residual in the Cauchy norm. Finally I apply the regu-
larized inversion scheme to the Marmousi model.

TARGET-ORIENTED LEAST-SQUARES MIGRATION

Within limits of the Born approximation of the acoustic wave equation, the seismic
data can be modeled with a linear operator as follows

d = Lm, (1)

where d is the modeled data, L is the Born modeling operator and m denotes the
reflectivity of the subsurface (a perturbed quantity from the background velocity).
The simplest way is to use the adjoint of the Born modeling operator to image the
reflectivity m as follows:

mmig == L/dobsv (2)

where the superscript denotes the conjugate transpose and the subscript o5 denotes
observed data. However, migration produces unreliable images in areas of poor illu-
mination. To get an optimally reconstructed image, we can invert equation 1 in the
least-squares sense. The least-squares soltuion of equation 1 can be formally written
as follows

m = H_lmmig, (3)

where H = L'L is the Hessian operator. Equation 3 has only symbolic meaning,
because the Hessian is often singular and its inverse is not easy to obtain directly. A

SEP-158



Tang 4 Regularized inversion

more practical method is to reconstruct the reflectivity m through iterative inverse
filtering by minimizing a model-space objective function defined as follows:

J(m) = [[Hm — mug|f3, (4)

where || - ||2 denotes the f5 norm. Each component of the Hessian matrix H can be
computed with the following equation, which is obtained by evaluating the operator
L'L (Plessix and Mulder, 2004; Valenciano, 2008):

Hexy) = S0t S @) PG %, 0) Gy, X0, w)

X Zw(xr,xS)G(x,xr,w)G'(y,Xr,w), (5)

where w is the angular frequency, and fs(w) is the source function; G(x,x,,w) and
G(x,%,,w) denote Green’s functions connecting the source location x5 = (s, ys,0)
and receiver location x, = (z,,¥,,0) to the image point x, respectively. We have
similar definitions for G(y, xs,w) and G(y, x,, w), except that they define the Green’s
functions connecting the source and receiver locations to another image point y in the
subsurface. Throughout this paper, we assume the Green’s functions are computed
by means of one-way wavefield extrapolation (Claerbout, 1985; Stoffa et al., 1990;
Ristow and Riihl, 1994). But Green’s functions obatined with other methods, such as
the ray-based approach, the two-way wave-equation-based approah and etc., can also
be used under this framework. The weighting factor w(xs, X,) denotes the acquisition
mask matrix (Tang, 2008a) defined as follows:

1 if x, is within the recording
w(Xy, Xs) = range of a shot at x;; (6)
0 otherwise .

When x = y, we obtain the diagonal elements of the Hessian; when x # y, we
obtain the off-diagonal elements. A target-oriented truncated Hessian is obtained by
computing the Hessian for x’s that are within the target zone and a small number of
y’s that are close to each x (Valenciano, 2008).

HESSIAN BY PHASE ENCODING

The truncated Hessian operator can be computed by using equation 5, but direct
implementation of equation 5 requires storing a huge number of Green’s functions
(especially in 3-D), which may bring computational challenges for large-scale applica-
tions. An alternative and also more efficient way is to compute the Hessian using the
so-called phase-encoding method (Tang, 2008b,a), where equation 5 is structured into
a similar form as that of the wave-equation migration, except for a modified boundary
condition for the receiver wavefield and a modified imaging condition which correlates
four wavefields instead of two. Doing so makes storing Green’s functions unnecessary,
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and the cost for computing a target-orineted wave-equation Hessian becomes compa-
rable to one migration.

As further discussed by Tang (2008a), the phase-encoded Hessian is equivalent
to the imaging Hessian in the generalized source and receiver domain, a transformed
domian that is obtained by linear combination of the encoded sources and receivers.
Different phase-encoded Hessian therefore can be obtained through different encoding
strategies: if the encoding is performed in the source domain, we get the source-side
encoded Hessian; if the encoding is performed in the receiver domain, we get the
receiver-side encoded Hessian; if the encoding is performed in both source and re-
ceiver domain, we get the source- and receiver-side simultaneously encoded Hessian.
One shortcoming of the encoding method, however, is that it also introduces unde-
sired crosstalk artifacts, which may affect the convergence of the model-space based
inversion (Tang, 2008b). The crosstalk artifacts can be effectively suppressed by care-
fully choosing the phase-encoding functions. As demonstrated by Tang (2008b,a),
plane-wave-phase encoding or random-phase encoding or a combination of the two
can effectively attenuate the crosstalk.

Figure 1 compares diagonal parts of the exact Hessian (Figure 1(a)) obtained using
equation 5 and the phase-encoded Hessians (Figure 1(b) for the receiver-side randomly
phase-encoded Hessian and Figure 1(c) for the simultaneously phase-encoded Hessian
with a mixed encoding strategy) for a simple model with a constant velocity of 2000
m/s. The acquisition geometry consists of 201 shots from —1000 m to 1000 m with a
10 m sampling and 201 receivers also spanning from —1000 m to 1000 m with a 10 m
sampling. Figure 2 compares the off-diagonal elements (a row of the truncted Hessian
matrix) for image point at x = 0 m, z = 800 m. The size of the filter is 21 x 21 in z
and z directions. The comparisons show that besides lower computational cost, the
phase-encoded Hessians are good approximations to the exact truncated Hessian.

REGULARIZATION WITH SPARSENESS
CONSTRAINTS

Inverting the linear system defined by equation 4 is difficult, because it is underde-
termined due to the incomplete subsurface illumination caused by the limited surface
acquisition and complex overburden. Another difficulty arises when our Born mod-
eling operator L is not sufficient to model all the complexities in the observed data
d,,s. For example, the commonly used one-way wave-equation propagator is based
on acoustic assumption and cannot handle waves beyond 90 degrees; its amplitude
is also not accurate for wide angles propagations (Zhang et al., 2005). The operator
mismatch can make the inversion unstable. Of course, adding more data and using
more accurate modeling operators can always help, but a more cost effective way
would be introducing regularization operators that impose the a prior: information
to stabilize the inversion and make it converge to a geologically reasonable solution.
A widely used regularization is the fs-norm damping, which minimizes the energy of
the model parameters by introducing a secondary objective function, and the overal
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Figure 1: The diagonal part of the Hessian for a constant-velocity model. (a) The
exact Hessian; (b) the receiver-side randomly phase-encoded Hessian and (c) the
simultaneously phase-encoded Hessian with a mixed phase encoding which combines
both random and plane-wave encoding functions. [CR]
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Figure 2: The off-diagonal elements of the Hessian for a image point (a row of the
Hessian). (a) The exact Hessian; (b) the receiver-side randomly phase-encoded Hes-
sian and (c) the simultaneously phase-encoded Hessian with a mixed phase encoding
which combines both random and plane-wave encoding functions. [CR]
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objective function to minimize becomes
J(m) = |[Hm — myg||3 + €| [ml]3, (7)

where € is a trade-off parameter that controls the strength of regularization. The
ls-norm damping assumes the statistic of the reflectivity has a Gaussian distribution,
which often leads to a relatively smooth solution. If we assume that the reflectivity is
made up of spikes (Oldenburg et al., 1981), then the short-tailed Gaussian distribution
assumption becomes unappropriate. To obtain a spiky or sparse solution, a long-
tailed distribution such as exponential (the ¢; norm) or Cauchy (the Cauchy norm)
distribution should be used (Sacchi and Ulrych, 1995). The objective function with
a regularization in the Cauchy norm reads

J(m) = ||Hm — my|[; + eS(m), (8)

where S(m) is a non-quadratic regularization function defined as follows:
S(m) =) log(1 +m*(x)/o?), (9)

in which o2 is a scalar parameter of the Cauchy distribution that controls the spar-
sity of the model. The objective function 8 can be minimized under ¢, norm with
the iterative reweighted least-squares (IRLS) technique (Darche, 1989; Nichols, 1994;
Scales and Smith, 1994; Guitton, 2000), which equivalently minimizes the following
non-linear objective function:

J(m) = ||Hm — mu|[; + €||Qml[3, (10)

where Q is a model dependent diagonal operator defined as follows:

. 1
Q = diag ( = mQ(X)/02> ) (11)

The detailed implementation of IRLS can be found in Darche (1989); Nichols (1994);
Scales and Smith (1994); Guitton (2000).

NUMERICAL EXAMPLES

I test both regularized target-oriented inversion schemes (equation 7 and 8) on the
Marmousi model. Two data sets are synthesized: the first one is generated using one-
way wave-equation Born modeling, while the second one is generated using two-way
acoustic wave-equation finite-difference modeling. Figure 3(a) shows the stratigraphic
velocity model used for the two-way wave-equation modeling. Figure 3(b) and Figure
3(c) show the corresponding background velocity model (the low frequency component
of Figure 3(a)) and the reflectivity model (the high frequency component of Figure
3(a)) for the one-way wave-equation Born modeling. For both data sets, I model
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251 shots ranging from 4000 m to 9000 m with a 20 m sampling. The receiver
spread is fixed for all shots and spans from 4000 m to 9000 m with a 10 m sampling.
Figure 4 compares the modeled shot gathers located at 6500 m. Note the amplitude
differences between both data. Also note that some complexities present in two-way
finite-difference modeled data are not modeled using the one-way Born modeling.

The target zone selected for inversion tests is outlined with a small box in Figure
3(a), a close-up look is also shown in Figure 5(a). The target zone is where the
reservoir locates. The target-oriented Hessian is computed using the receiver-side
random-phase encoding (Tang, 2008b,a). The smooth background velocity model
(Figure 3(b)) and the Fourier finite-difference (FFD) one-way extrapolator (Ristow
and Riihl, 1994) are used for migrating both one-way and two-way data and also
for the Hessian computation. Figure 5(b) illustrates the diagonal elements of the
phase-encoded Hessian for the target area (the amplitude is normalized). Note the
uneven illumination due to the limited acquisition geometry and complex velocity
model. Figure 6 shows the truncated local Hessian filters for three different image
points (three rows of the truncted Hessian). The size of the filter is 31 x 31 in z
and z directions, which seems to be big enough to capture most of the energy in the
Hessian matrix.

Figure 7 shows the inversion results on the one-way wave-equation Born-modeled
data. This example represents the ideal case for one-way wave-equation inversion,
since our modeling operator can ”explain” all the physics present in the ”observed”
data (Figure 4(a)). As expected, migration produces a blurred image (Figure 7(b));
the regularized inversion schemes optimally deblur the migrated image, and the re-
flectivity is better recovered (Figure 7(c) and Figure 7(d)). Note that both inver-
sion schemes enhance the spatial resolution. Also note that regularization with the
sparseness constraint produces slightly higher resolution than regularization with the
standard fs-norm damping and Figure 7(d) is closer to the true reflectivity shown in
Figure 8(a). This suggests that the sparseness constraint better predicts the model
covariance, so that it more effectively reduces the null space and provides more accu-
rate inversion result.

More interesting and also more instructive examples are shown in Figure 8, where
both regularized inversion schemes are applied to the data synthesized using the two-
way wave-equation finite-difference modeling (Figure 4(b)). In this case, the one-way
wave-equation migrated image (Figure 8(b)) is much noisier than the correspond-
ing result using the one-way Born data (Figure 7(b)); the amplitudes are also more
distorted. This phenomenon is due to the operator mismatch, where the internal
multiples and wide angle propagations cannot be modeled by the one-way Born mod-
eling operator. Consequently, they contribute to the artifacts shown in Figure 8(b).
The operator mismatch also influences the inversion results, as shown in Figure 8(c)
and Figure 8(d). The inverted images are noisier and have more artifacts compared
to the results obtained on the one-way Born data. But noticeable improvement on
resolution over migrated image (Figure 8(b)) can still be identified. Note that inver-
sion regularized with the sparseness constraint seems to provide a less noisy image
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Figure 3: The Marmousi model. Panel (a) is the stratigraphic velocity model used
for two-way wave-equation finite-difference modeling. Panels (b) and (c) are the

background velocity model and reflectivity model used for one-way wave-equation
Born modeling. [ER]
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Figure 4: Comparison between shots synthesized using (a) one-way wave-equation
Born modeling and (b) two-way wave-equation finite-difference modeling. [CR]

with slightly higher spatial resolution than the inverted image regularized with the
lo-norm damping. This example suggests that when we have operator mismatch is-
sues for inverse problems, it is important to add regularization operators that more
accurately predict the model covariance. In this particular example, although pro-
moting sparsity may not be the best regularization, it does better predicts the model
covariance than the fs-norm damping, hence it produces a better result even when
our operator is not able to fully explain the observed data.

DISCUSSION

This paper presents a sparseness constrained LSI scheme that promotes sparsity of
the reflectivity. This is a reasonable assumption if the reflectivity is indeed spiky;
however, if the reflectivity changes smoothly, the sparseness constraint may lead to
a biased solution. The parameters o and e that control the strength of sparsity and
the amount of regularization should also be chosen with extreme care. Because by
promoting sparsity, we run the risk of penalizing true reflections that have very weak
energy, over-regularization may lead to too-sparse solutions, forfeiting the ability to
image weak reflections.

Recent study in curvelet (Kumar and Herrmann, 2008) and seislet (Fomel, 2006)
transforms show that seismic images tend to have a sparse representation in these new
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Figure 5: (a) The stratigraphic velocity model for the target zone. (b) The diagonal
of the Hessian for the target zone. [CR]
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Figure 7: Target-orineted inversion of the one-way wave-equation Born-modeled data.
(a) The true reflectivity, (b) migration, (c) inversion regularized with ¢ norm damping
(equation 7) and (d) inversion regularized with the sparseness constraint (equation

8). [CR]
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Figure 8: Target-orineted inversion of the two-way wave-equation finite-difference
modeled data. (a) The true reflectivity, (b) migration, (c) inversion regularized with
{5 norm damping (equation 7) and (d) inversion regularized with the sparseness con-
straint (equation 8). [CR]
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domains, where a few number of coefficients are sufficient to describe images with com-
plex structures. This feature makes these new domains good candidates for adding
sparseness constraints. Therefore, promoting sparsity in either curvelet or seislet do-
main may potentially avoid the issues discussed before and lead to geologically more
reasonable solutions. This remains a research area for further investigation.

CONCLUSIONS

I have presented a regularized least-squares inversion scheme to image the reflectivity.
This inversion scheme allows us to perform inversion in a target-oriented fashion, and
the total cost is about two migrations (one for computing the migrated image, the
other for computing the phase-encoded Hessian). Examples on the Marmousi model
show that regularization that promotes sparsity in the image domain help to reduce
the null space and to mitigate the effects of operator mismatch. Inversion with the
sparseness constraint can lead to a better solution with higher resolution than that
regularized with the standard ¢s-norm damping.
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