next up previous [pdf]

Next: Bibliography Up: Wave equation and Green's Previous: Frequency-domain Green's function in

Green's function in the Born Approximation

We are interested in the Green's function in an inhomogeneous medium. We assume the velocity can be split into a background velocity $ c_0$ and a perturbation $ \alpha(\mathbf{x})$ as $ c^{-2}(\mathbf{x}) = c^{-2}_0\left[ 1+ \alpha(\mathbf{x})\right]$. Assuming the perturbation is confined inside some finite domain $ \mathbf{D}_s$, the Green's function in the Born approximation can now be computed in terms of a Green's function computed in the background, $ G_0$, medium as
$\displaystyle G(\mathbf{x},\mathbf{x}_s,\omega)$ $\displaystyle =$ $\displaystyle G_0(\mathbf{x},\mathbf{x}_s,\omega) + G_1(\mathbf{x},\mathbf{x}_s,\omega),\hspace{.5cm} \mathrm{with}$ (70)
$\displaystyle G_1(\mathbf{x},\mathbf{x}_s,\omega)$ $\displaystyle =$ $\displaystyle \oint_ {\mathbf{D}_s} G_0(\mathbf{x},\mathbf{x}',\omega) \frac{\o...
...\alpha(\mathbf{x}') G_0(\mathbf{x}',\mathbf{x}_s,\omega) \mathrm{d}\mathbf{x}'.$ (71)

The Green's function in the background medium is computed using equation A-5 with $ c=c_0$. When the medium consists of a homogeneous background with a series of $ N$ scatters positioned at $ \mathbf{x}_{c,1}, \mathbf{x}_{c,2},\mathbf{x}_{c,3} ... \mathbf{x}_{c,N}$ with strength $ \alpha_1, \alpha_2, \alpha_3, ... \alpha_N$, then $ \alpha(\mathbf{x}) = \displaystyle\sum_{i=1}^{N}\delta(\mathbf{x}-\mathbf{x}_{c,i})\alpha_i$. Hence the Green's function $ G_1$ in equation A-10 can be written as

$\displaystyle G_1(\mathbf{x},\mathbf{x}_s,\omega) = \displaystyle\sum_{i=1}^{N}...
...mega) \frac{\omega^2}{c_0^2}\alpha_i G_0(\mathbf{x}_{c,i},\mathbf{x}_s,\omega).$ (72)


next up previous [pdf]

Next: Bibliography Up: Wave equation and Green's Previous: Frequency-domain Green's function in

2009-05-05