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ABSTRACT

Correlating ambient seismic noise can yield the inter-station Green’s function,
but only if the energy that is excited by seismic background sources is sufficiently
equipartitioned after averaging over all sources. If this requirement is not ful-
filled, the reconstructed Green’s function is imperfect. Secondary scattering can
mitigate the directivity of the primary wave field emitted by the sources. To
extract and utilize secondary scattering for Green’s function reconstruction, we
introduce a second correlation using an auxiliary station. We investigate the
kinematics of the reconstructed Green’s functions to understand the role of the
positions of source, scatterer and auxiliary stations. Iterated correlations can
use secondary scattering to mitigate the directivity in the background seismic
wave field. In general, there will be additional spurious events in the retrieved
Green’s functions. Averaging the results of several sources and using a network of
randomly distributed auxiliary stations can minimize these spurious events with
respect to the correct events in the retrieved Green’s functions.

INTRODUCTION

It has long been known that correlations of seismic background noise recorded at
two stations can yield the Green’s function between the two stations (Aki, 1957;
Claerbout, 1968; Lobkis and Weaver, 2001; Wapenaar, 2004), hereafter referred to
as the estimated Green’s function (EGF). A variety of proofs exist for this relation,
including many based upon diffusivity of the wave fields (Weaver and Lobkis, 2001;
Roux et al., 2005; Sánchez-Sesma et al., 2006; Sánchez-Sesma and Campillo, 2006),
stationary-phase analysis (Schuster et al., 2004; Snieder, 2004; Snieder et al., 2006),
and propagation invariants and reciprocity theorems (Claerbout, 1976; Weaver and
Lobkis, 2004; Wapenaar, 2004; Wapenaar and Fokkema, 2006; van Manen et al.,
2005). In general, these proofs require energy equipartitioning in the background
seismic field; i.e., the energy flow must be equal in all directions. It is generally
assumed that energy equipartitioning should be obtained after averaging over sources
that excite the background field (Snieder et al., 2007). If the background noise field
does not satisfy this condition, we expect the field correlations to recover imperfect
EGFs (Malcolm et al., 2004; Paul et al., 2005).

Recently it has been argued that multiple scattering by random inhomogeneities
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can excite a secondary wave field that satisfies the assumption of equipartitioning,
even if the primary wave field does not (Stehly et al., 2008). It is also known that
correlation of coda waves can yield the Green’s function (Snieder, 2004; Malcolm
et al., 2004; Paul et al., 2005; de Ridder, 2008). Stehly et al. (2008) describes a way
to use the coda waves of background noise to improve the quality of EGFs (Stehly
et al., 2008). Garnier and Papanicolaou (2009) give a proof for this procedure to
enhance Green’s function estimation in random media based upon stationary-phase
analysis of the four leading terms in the higher order correlation.

This paper discusses the problems associated with Green’s function retrieval in di-
rectional wave fields. Then we proceed to briefly repeat the stationary-phase analysis
of Garnier and Papanicolaou (2009) in the case of a wave field excited by one source in
a homogeneous medium with the addition of one scatterer. The kinematics of the four
leading terms are investigated using correlation gathers of auxiliary station position
and source positions. Our examples show the basic procedure for reconstructing a
Green’s function by iterated correlations and provides a physical understanding of the
elementary requirements for the positions of sources, random inhomogeneities, and
auxiliary stations. This study has implications for seismic exploration using ambient
seismic noise for different acquisition geometries, as in a network of stations only on
the surface recording the ambient field above a reservoir, or a borehole survey with
stations both down-hole and on the surface.

CONVENTIONAL VERSUS ITERATIVE
INTERFEROMETRY

Conventional seismic interferometry (SI) retrieves the Green’s function between two
stations by correlating, C(2), records of an ambient field, in which the energy is
equipartitioned, recorded at both stations. It is generally assumed that energy
equipartitioning should be obtained after averaging over sources that excite the back-
ground field (Snieder et al., 2007). Sources located at stationary phases are neces-
sary to retrieve high-quality EGFs. For example, the stationary-phase region of the
Green’s function between stations A and B in Figure 1(a) is located on a ray path
from station B extending to and beyond station A [gray shading on left side of Figure
1(a)]. Correlating responses from these sources recorded at A and B will retrieve a
high-quality EGF. However, because the sources in Figure 5(b) are not located in the
stationary-phase region, correlating responses from these sources recorded at A and
B will retrieve a low-quality EGF.

Some proposed methods to compensate for anisotropic illuminations include: (a)
Beam forming and weighting (Stork and Cole, 2007) or τ −p filtering (Ruigrok et al.,
2008) the data for different directionality components. (b) Estimating a radiation
pattern by autocorrelating the down-going wave field and correcting by deconvolution
(van der Neut et al., 2008; van der Neut and Bakulin, 2008). (c) Multidimensional
deconvolution after the identification of individual responses (Wapenaar et al., 2008).
Finally (d), Stehly et al. (2008) propose a novel procedure to improve EGFs by using
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Figure 1: Source positions for respectively (a) high-quality and (b) poor quality
Green’s function estimation by conventional SI. Stationary-phase regions are indicated
by gray areas. [NR]

scatterers positioned at the stationary-phase positions that act as secondary Huygens’
sources, as illustrated in Figure 2. Their method requires three steps: First, the
recordings at two main stations are correlated with a network of auxiliary stations.
Each correlation yields an EGF. Second, each EGF is muted for times prior to an
estimated arrival time. Third, a correlation, C3, is evaluated between the muted EGF
pairs estimated for each auxiliary station. That correlation is subsequently averaged
across the network of auxiliary stations.

Figure 2: Illustration of how scat-
terers acting as secondary Huy-
gens’ sources can illuminate sta-
tions A and B from a stationary-
phase region, while the primary
sources are located outside the
stationary-phase regions. [NR]
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GREEN’S FUNCTION RETRIEVAL BY CORRELATION

We define the temporal correlation function between two time signals FA(t) and FB(t)
measured at stations A and B as

C
(2)
B,A(t) =

∫ ∞

−∞
FB(τ + t)FA(τ)dτ =

1

2π

∫ ∞

−∞
FB(ω)F ∗

A(ω) exp {iωt} dω, (1)

where ω denotes angular frequency. The right-hand side of equation 1 shows that
through the inverse Fourier transformation of equation A-3, a correlation integral in
the time domain is a direct product in the frequency domain. We can retrieve the
Green’s function between two stations A and B by independently measuring responses
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of sources positioned on a boundary surrounding the two stations, and summing the
correlation between the measurements at the two stations. This property can be
expressed as1 (Wapenaar and Fokkema, 2006):

G(xB,xA, ω)−G∗(xA,xB, ω) = −2iω

c0

∮
∂D

G(xB,xs, ω)G∗(xA,xs, ω)dxs, (2)

where xA, xB and xs denote positions of stations A and B and the sources respectively.

We investigate the terms within this this integral for a medium containing a
scatterer. The Green’s function under the Born approximation in a scattering medium
is composed of two terms:

G(x,xs, ω) = G0(x,xs, ω) + G1(x,xs, ω), (3)

where G0 is the contribution of the direct wave, and G1 is the contribution of the
scattered wave. In the Born approximation, the contribution of the scatterer is in-
cluded to order α. The correlation product between measurements made at stations
A and B therefore is composed of 22 = 4 terms

C
(2)
B,A(ω) = G0(xB,xs, ω)G∗

0(xA,xs, ω) + G0(xB,xs, ω)G∗
1(xA,xs, ω) +

G1(xB,xs, ω)G∗
0(xA,xs, ω) + G1(xB,xs, ω)G∗

1(xA,xs, ω), (4)

which will be referred to as 4.1, 4.2, 4.3 and 4.4 respectively. The second and third

Figure 3: Geometry for the eval-
uation of C

(2)
B,A in a homogeneous

medium containing one scatterer.
For three source positions, a, b
and c, two ray paths are shown for
stationary phases; see text. [ER]

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

X position − [m]

Y
 p

os
iti

on
 −

 [m
]

φ

s(φ)
b

terms are of order α, and the fourth term is of order α2. Therefore, we should exclude
the fourth term when we evaluate the right-hand side of equation 2 and compare it to
the left-hand side of equation 2. See Snieder et al. (2008) for a more general discussion

1We employ a different definition of the Green’s function with respect to equation 31 of Wapenaar
and Fokkema (2006), G′ = ρ

iωG, where ρ is density.
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Figure 4: a) Correlogram displaying correlations of source responses measured at
stations A and B for sources as a function of position angle. b) Comparison of
retrieved and true Green’s functions. [ER]

of the fourth term for exact Green’s functions (without Born approximation). We

denote the integration of C
(2)
B,A over the source coordinate and multiplication by the

phase-modifying factor as follows:

C̃
(2)
B,A(ω) = −2iω

c0

∮
∂D

C
(2)
B,A(ω)dxs, (5)

where C
(2)
B,A(ω) is an implicit function of source position xs, according to equation 4.

STATIONARY-PHASE ANALYSIS OF CONVENTIONAL
INTERFEROMETRY

The phase of the correlation under the integral on the right-hand side of equation
2 changes rapidly as a function of source position. The dominant contribution to
the integral comes from points at which the phase is stationary. Physically these
positions correspond to source points from where the ray paths to both stations
align. To analyze the stationary phases in the presence of a scatterer, we consider a
homogeneous medium and study the time-domain expression of equation 2 using the
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first three terms in C
(2)
B,A of equation 4:

G(xB,xA, t)−G(xA,xB,−t) = (6)

C̃
(2)
B,A(t) = −

∫ ∞

−∞

2iω

2πc0

∮
∂D

a0(xB,xs, ω)a∗0(xA,xs, ω)exp {iΩ1} +

a0(xB,xs, ω)a∗1(xA,xs, ω)exp {iΩ2} +

a1(xB,xs, ω)a∗0(xA,xs, ω)exp {iΩ3} dxsdω,

where a0 and a1 are amplitude factors. The rapid phases, Ω1 = Ω1(xs,xA,xB, ω),
Ω2(xs,xA,xB, ω) and Ω3(xs,xA,xB, ω), of the three terms are found using equations
A-6 and A-11:

Ω1 = ω
[
t− c−1

0 {|xB − xs| − |xA − xs|}
]
, (7)

Ω2 = ω
[
t− c−1

0 {|xB − xs| − |xA − xc| − |xc − xs|}
]
, (8)

Ω3 = ω
[
t− c−1

0 {|xB − xc|+ |xc − xs| − |xA − xs|}
]
, (9)

where xc is the position of the scatterer.

We analyze these rapid phases using the stationary-phase method, keeping xA and
xB fixed and varying xs. According to the stationary-phase method, the dominant
contribution comes from stationary phases where

∂ωΩ = 0 and ∇xsΩ = 0. (10)

From the rapid phase, Ω1, of the first term in equation 6, we find stationary points
for which

t = c−1
0 {|xB − xs| − |xA − xs|} and ∇xs |xB − xs| = ∇xs |xA − xs|. (11)

The second condition requires the points xA and xB to be aligned along a line issuing
from xs. When the stations and source are aligned as xs → xA → xB, the first
condition gives t = c−1

0 {|xB − xA|}. When the stations and source are aligned as
xs → xB → xA, the first condition gives t = −c−1

0 {|xB − xA|}.

From rapid phase Ω2 of the second terms in equation 6, we find stationary points
for which

t = c−1
0 {|xB − xs| − |xA − xc| − |xc − xs|} and ∇xs |xB − xs| = ∇xs |xc − xs|. (12)

The second condition requires the points xB and xc to be on a line issuing from
xs. When station B, as well as the scatterer and sources are aligned as xs →
xB → xc, then |xc − xs| = |xc − xB| + |xB − xs|, and the first condition states
that t = −c−1

0 {|xB − xc|+ |xc − xA|}. When station B, the scatterer and the source
are aligned as xs → xc → xB, then |xB − xs| = |xc − xs| + |xB − xc|, and the first
condition states that t = c−1

0 {|xB − xc| − |xA − xc|}.



De Ridder and Papanicolaou 7 Kinematics in C3

From rapid phase Ω3 of the second terms in equation 6, we find stationary points
for which

t = c−1
0 {|xB − xc|+ |xc − xs| − |xA − xs|} and ∇xs |xA − xs| = ∇xs |xc − xs|. (13)

The second condition requires the points xA and xc to be on a line issuing from xs.
When station A, as well as the scatterer and sources are aligned as xs → xA →
xc, then |xc − xs| = |xc − xA| + |xA − xs|, and the first condition states that t =
c−1
0 {|xB − xc|+ |xc − xA|}. When station A, the scatterer and sources are aligned as

xs → xc → xA, then |xA−xs| = |xA−xc|+|xc−xs|, and the first condition states that
t = c−1

0 {|xB − xc| − |xA − xc|}. For a more extensive treatment of stationary-phase
positions in conventional interferometry, see Schuster et al. (2004); Snieder (2004);
Snieder et al. (2006) and Garnier and Papanicolaou (2009).

EXAMPLE OF GREEN’S FUNCTION RETRIEVAL BY
CONVENTIONAL INTERFEROMETRY

To aid interpretation of iterated interferometry in later sections, we study the kine-
matics of conventional interferometry for a medium containing a scatterer. The back-
ground velocity is c0 = 2000 m/s. Stations A and B are positioned 200 m distant
from each other, and the scatterer is positioned 125 m above and in between the
stations. The stations and scatterer are surrounded by 512 sources on a circle with a
radius of 800 m, centered between the two stations; see Figure 3.

We simulate the measurements at stations A and B using the single-scatterer
Born approximation (see appendix equation A-11). We assume all sources emit a
zero-phase Ricker wavelet, s(t) (see appendix equation A-8). For each source location
separately, the responses recorded at stations A and B are cross-correlated, and their
contribution to the integral on the right-hand side of equation 2 is shown as a function
of angle in the correlogram in Figure 4(a).

The correlogram contains three events labeled 1, 2 and 3. These correspond to
the first three terms respectively in the correlation product in equation 4. Term 1
is associated with the direct event between stations A and B. It has two stationary
points at angles of φ = 0 and φ = π radians, where the stations and source are aligned
on a line as xs → xB → xA and xs → xA → xB, respectively. For all other angles, the
correlation peak resides at a lag that is smaller than the actual travel time between
the stations. The second and third terms correspond to correlations of recorded events
that are either scattered at A and direct at B or vice versa. Both events have two
stationary phases. Event 2, for example, has a stationary phase for a source positioned
close to φ = 3/4π where xs → xc → xB, and at approximately φ = 4/3π where
xs → xB → xc. The total correlogram is summed over all angles and multiplied by a
factor−2iω

c0
, according to equation 5, to match the asymmetrized true Green’s function

on the left-hand side of equation 2. The asymmetrized Green’s function is multiplied
with the auto-correlation of the Ricker wavelet to match the source function after
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correlations. Although the calculation matches before normalization, the Green’s
functions are normalized to have a peak value of 1. The comparison between the
retrieved result (dashed green line) found by evaluating the right-hand side of equation
2 and the directly modeled result (solid blue curve) found by computing the left-hand
side of equation 2 is shown in Figure 4(b), they match exactly.

Three contributions of stationary angles are isolated from all other source con-
tributions and compared to the fully retrieved result. These stationary angles have
events arriving with the correct travel time but incorrect phase. They also have events
with incorrect travel times. However the contribution from a source positioned close
to φ = 4/3π radians seems to have an event with a travel time approximately cor-
responding to the acausal direct event. It is non-stationary and associated with the
acausal scattered events as can be seen in Figure 4(a).

GREEN’S FUNCTION RETRIEVAL BY ITERATED
CORRELATIONS

In the absence of complete source coverage, we can make use of the scattering prop-
erties of the medium to mitigate the directivity of the wave field. The iterated corre-
lation between stations B and A is defined using auxiliary station X as follows:

C
(3)
B,A(t) =

∫ ∞

−∞
C

(2)
B,X(τ ′ + t)C

(2)
A,X(τ ′)dτ ′

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
FB(τ + τ ′ + t)FX(τ)FX(s)FA(s + τ ′)dsdτdτ ′

=
1

2π

∫ ∞

−∞
FB(ω)F ∗

X(ω)FX(ω)F ∗
A(ω) exp {iωt} dω (14)

The Green’s function in the Born approximation for a scattering medium is com-
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posed of two terms; C
(3)
B,A therefore contains 24 = 16 terms

C
(3)
B,A = G0(xB,xs, ω)G∗

0(xX ,xs, ω)G∗
0(xA,xs, ω)G0(xX ,xs, ω) + (15.1) (15)

G0(xB,xs, ω)G∗
0(xX ,xs, ω)G∗

0(xA,xs, ω)G1(xX ,xs, ω) + (15.2)

G0(xB,xs, ω)G∗
0(xX ,xs, ω)G∗

1(xA,xs, ω)G0(xX ,xs, ω) + (15.3)

G0(xB,xs, ω)G∗
0(xX ,xs, ω)G∗

1(xA,xs, ω)G1(xX ,xs, ω) + (15.4)

G0(xB,xs, ω)G∗
1(xX ,xs, ω)G∗

0(xA,xs, ω)G0(xX ,xs, ω) + (15.5)

G0(xB,xs, ω)G∗
1(xX ,xs, ω)G∗

0(xA,xs, ω)G1(xX ,xs, ω) + (15.6)

G0(xB,xs, ω)G∗
1(xX ,xs, ω)G∗

1(xA,xs, ω)G0(xX ,xs, ω) + (15.7)

G0(xB,xs, ω)G∗
1(xX ,xs, ω)G∗

1(xA,xs, ω)G1(xX ,xs, ω) + (15.8)

G1(xB,xs, ω)G∗
0(xX ,xs, ω)G∗

0(xA,xs, ω)G0(xX ,xs, ω) + (15.9)

G1(xB,xs, ω)G∗
0(xX ,xs, ω)G∗

0(xA,xs, ω)G1(xX ,xs, ω) + (15.10)

G1(xB,xs, ω)G∗
0(xX ,xs, ω)G∗

1(xA,xs, ω)G0(xX ,xs, ω) + (15.11)

G1(xB,xs, ω)G∗
0(xX ,xs, ω)G∗

1(xA,xs, ω)G1(xX ,xs, ω) + (15.12)

G1(xB,xs, ω)G∗
1(xX ,xs, ω)G∗

0(xA,xs, ω)G0(xX ,xs, ω) + (15.13)

G1(xB,xs, ω)G∗
1(xX ,xs, ω)G∗

0(xA,xs, ω)G1(xX ,xs, ω) + (15.14)

G1(xB,xs, ω)G∗
1(xX ,xs, ω)G∗

1(xA,xs, ω)G0(xX ,xs, ω) + (15.15)

G1(xB,xs, ω)G∗
1(xX ,xs, ω)G∗

1(xA,xs, ω)G1(xX ,xs, ω). (15.16)

Three groups of terms can be distinguished; group 1 includes terms 15.1, 15.2, 15.3,
15.4, 15.5, 15.9 and 15.13, which are terms correlating with the dominant contribution
in C(2); G0G

∗
0. Group 2 contains the terms of interest in this paper; 15.6, 15.7, 15.10

and 15.11; see the stationary-phase analysis below. The third group contains events
that are of order α3 and includes terms 15.8, 15.12, 15.14, 15.15 and 15.16. The
leading term in C(2) contributes to a spurious term, because the source is not located
at a stationary angle of the event between stations A and B. To exclude the terms of
group 1, we remove the dominant term after forming C

(2)
B,X and C

(2)
A,X . This is done by

muting the correlation in the time domain to suppress all times smaller than τcoda:

C
(3)
B,A(t) =

∫ τ ′
coda,∞

−∞,−τ ′
coda

∫ ∞

−∞

∫ ∞

−∞
FB(τ + τ ′ + t)FX(τ)FX(s)FA(s + τ ′)dsdτdτ ′ (16)

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
β(τ ′)FB(τ + τ ′ + t)FX(τ)FX(s)FA(s + τ ′)dsdτdτ ′, (17)

where τcoda is defined as an estimated traveltime between the main stations and the
auxiliary stations, β(τ) is a muting function that is zero for β(τ) = 0 for τ : [−τcoda :
τcoda] and otherwise β(τ) = 1.

We learned from Figure 3 that the dominant term always arrives within that time
window. We average the iterated correlations over a network of A auxiliary stations
and include a phase-modifying term,

C̃
(3)
B,A(ω) =

2c0

iωA

A∑
a=1

C
(3)
B,A(ω), (18)
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where C̃
(3)
B,A(ω) is an implicit function of auxiliary-station position xX,a, according to

equation 15. The phase-modifying proportionality factor is chosen such that the ω2

c20

factor in the Born approximation (see equation A-10) is matched to the −2iω
c0

factor
in conventional interferometry (equation 2).

STATIONARY PHASES IN ITERATED CORRELATIONS

We proceed by studying the stationary phases of terms 15.6, 15.7, 15.10 and 15.11
in the iterated correlation. All terms correspond to particular combinations of ray
paths.

Figure 5 shows for each term a graphical illustration of the combination of ray
paths. Ray paths towards the source are subtracted from the ray paths emitting from
the source, as in the correlation process (a convolution of one Green’s function with
the time reverse of another Green’s function). The time domain of equation 15,

Sources
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Figure 5: Geometrical interpretation of the correlations in terms 15.6, 15.7, 15.10 and
15.11 respectively in a) b) c) and d). [NR]
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including only the terms of group 2, is given as

C̃
(3)
B,A(t) =

∫ ∞

−∞

2c0

2πiωA

A∑
a=1

(19)

a0(xB,xs, ω)a∗1(xX,a,xs, ω)a∗0(xA,xs, ω)a1(xX,a,xs, ω)exp {iΩ1} +

a0(xB,xs, ω)a∗1(xX,a,xs, ω)a∗1(xA,xs, ω)a0(xX,a,xs, ω)exp {iΩ2} +

a1(xB,xs, ω)a∗0(xX,a,xs, ω)a∗0(xA,xs, ω)a1(xX,a,xs, ω)exp {iΩ3} +

a1(xB,xs, ω)a∗0(xX,a,xs, ω)a∗1(xA,xs, ω)a0(xX,a,xs, ω)exp {iΩ4} dxxdω,

where a0 and a1 are amplitude factors. The rapid phases, Ω1, Ω2, Ω3 and Ω4 are
found using equations A-6 and A-11; for a particular auxiliary station xX , we find

Ω1 = ω
[
t− c−1

0 {|xB − xs| − |xA − xs|}
]
, (20)

Ω2 = ω
[
t− c−1

0 {|xB − xs| − |xX − xc| − 2|xc − xs| − |xA − xc|+ |xX − xs|}
]
, (21)

Ω3 = ω
[
t− c−1

0 {|xB − xc|+ 2|xc − xs| − |xX − xs| − |xA − xs|+ |xX − xc|}
]
, (22)

Ω4 = ω
[
t− c−1

0 {|xB − xc| − |xA − xc|}
]
. (23)

We analyze these rapid phases using the stationary-phase method, keeping xA and
xB fixed and varying xX , xc and xs. According to the stationary-phase method, the
dominant contribution to the integral and sum in equation 19 comes from positions
of xX , xc and xs where

∂ωΩ = 0, ∇xsΩ = 0, ∇xX
Ω = 0 and ∇xcΩ = 0 (24)

From the rapid phase, Ω1, of the first term in equation 19 we find stationary points
for which

t = c−1
0 {|xB − xs| − |xA − xs|} , (25)

∇xs |xB − xs| = ∇xs |xA − xs|, (26)

∇xX
|xB − xs| = ∇xX

|xA − xs|, (27)

∇xc |xB − xs| = ∇xc|xA − xs|. (28)

Conditions 27 and 28 are always satisfied. Condition 26 requires the stations to be on
a line and the source to be on a line issuing from xs. When the stations and source
are aligned as xs → xA → xB, condition 25 gives t = c−1

0 |xB−xA|. When the stations
and source are aligned as xs → xB → xA, the first condition gives t = −c−1

0 |xB−xA|.

From the rapid phase, Ω2, of the first term in equation 19 we find stationary points
for which

t = c−1
0 {|xB − xs| − |xX − xc| − 2|xc − xs| − |xA − xc|+ |xX − xs|} , (29)

∇xs {|xB − xs| − |xc − xs|} = ∇xs {|xc − xs| − |xX − xs|} , (30)

∇xX
|xX − xc| = ∇xX

|xX − xs|, (31)

−∇xc {|xc − xs|+ |xX − xc|} = ∇xc {|xA − xc|+ |xc − xs|} . (32)
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Condition 30 requires that station B, auxiliary station, the scatterer are on a line
issuing from the source. Condition 31 requires that the auxiliary station and the
scatterer are on a line issuing from the source. Condition 32 requires that station A,
an auxiliary station and a scatterer are on a line issuing from the source. In short,
stations A and B, an auxiliary station, and the scatterer all align on a line issuing
from the source. When these are aligned as xs → xc → xX → xA → xB, then
|xX − xs| = |xX − xc| + |xc − xs|, |xc − xs| + |xA − xc| = |xA − xs|, and condition
29 gives t = c−1

0 |xB − xA|. When stations A and B are reversed, condition 29 gives
t = −c−1

0 |xB − xA|.

The rapid phase, Ω3, of the third term in equation 19 is similar to the rapid phase,
Ω2, of the second term in equation 19. If stations A, B, an auxiliary station, and the
scatterer are located on a line issuing from the source, aligned as xs → xc → xX →
xA → xB, the dominant contribution resides at t = c−1

0 |xB − xA|. When stations A
and B are interchanged, the dominant contribution of the third term in equation 19
resides at t = −c−1

0 |xB−xA|. Last we analyze the rapid phase, Ω4, of the fourth term
in equation 19, and we find stationary points for which

t = c−1
0 {|xB − xc| − |xA − xc|} , (33)

∇xs |xB − xc| = ∇xs |xA − xc|, (34)

∇xX
|xB − xc| = ∇xX

|xA − xc|, (35)

∇xc |xB − xc| = ∇xc|xA − xc|. (36)

Conditions 34 and 35 are always satisfied. Condition 36 is satisfied when the scatterer
lies on a line through stations A and B. When stations A, B and the scatterer are
aligned as xc → xA → xB, condition 33 gives t = c−1

0 |xB − xA|. When stations A, B
and the scatterer align as xc → xB → xA, condition 33 gives t = −c−1

0 |xB − xA|.

EXAMPLE OF GREEN’S FUNCTION ITERATED
CORRELATION

We next study how forming C
(3)
B,A of a wave field excited by a single source can

improve the retrieved Green’s function in the presence of an auxiliary scatterer. We
study a geometry where the main stations are located 200 m distant from each other
(see Figure 6). We use 512 auxiliary stations located on a circle with radius 300 m
centered between the two main stations. The source is located at s′, with a distance
of 800 m from the center and at an angle of φ = 3/4π radians. There is a scatterer
positioned at a distance of 550 m from the center at an angle of φ = π radians. We
omit the terms of group 3 in equation 15, because their contribution is at least of
order α weaker than those in group 2. C(2) is evaluated between stations A or B
and all the auxiliary stations X, yielding C

(2)
A,X and C

(2)
B,X ; the obtained correlograms

are shown in Figures 7(a) and 7(b). We evaluate C
(3)
B,A for each auxiliary station,

including all terms of groups 1 and 2, and compile the result in a correlogram shown
in Figure 8(a).
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Figure 6: Experiment geometry
for the evaluation of C

(3)
B,A. [ER]
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The contribution of each term is labeled according to the numbering of equation
15. We sum C

(3)
B,A over the auxiliary stations, according to equation 18, to obtain the

retrieved signal in Figure 8(b). We compare this signal to the true result, convolved
with the square of the autocorrelation of the wavelet S(ω), and the result retrieved

by correlating stations B and A directly (C
(2)
B,A) weighted by −iωS(ω). It is clear

that the dominant contribution in C
(3)
B,A, without muting C

(2)
A,X and C

(2)
B,X , does not

correspond to the direct event between the stations A and B. If we assume we can
perfectly mute only the dominant term 4.1 from C

(2)
A,X and C

(2)
B,X , this would leave the

terms of group 2.

A correlogram of their contributions to C
(3)
B,A is shown in Figure 9(a), summing

this panel and multiplying with a phase-modifying according to equation 18, leads to
the signal in Figure 9(b). We now see that there is a dominant term coinciding with
the causal direct event between stations A and B in the true result; this event comes
from term 15.11.

ITERATED CORRELATION AFTER MUTING

The terms in group 2 cannot uniquely be separated from those of groups 1. Time-
domain muting of C

(2)
B,X and C

(2)
B,X can exclude the leading order event 4.1, but would

also exclude parts of terms 4.2 and 4.3. The black lines in Figures 7(a) and 7(b)
indicate the travel time of an event between station A or B and each auxiliary station.
The dominant term in C(2) will always reside in this window, see Figure 4(a). We now
mute each C(2) according to these limits to obtain the two correlograms in Figures
10(a) and 10(b).

The C
(3)
B,A is evaluated for each auxiliary station to obtain the correlogram in
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Figure 7: a) Correlogram for correlations between station A and all auxiliary stations
as a function of auxiliary station-position angle. Black lines indicates traveltime
of a wave from station A to each auxiliary station. b) Correlogram for correlations
between station B and all auxiliary stations as a function of auxiliary station-position
angle. Black line indicates traveltime of a wave from station or B to each auxiliary
station. [ER]
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Figure 8: a) Correlogram of C
(3)
B,A for each auxiliary station, including all 11 terms

in groups 1 and 2 of equation 15. b) Correlogram of C
(3)
B,A for each auxiliary station,

including only the 4 terms from groups 2 of equation 15. [ER]
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Figure 9: a) Comparison of reconstructed Green’s function with the true result, after
summation of all 11 terms of groups 1 and 2 over auxiliary station. b) Comparison of
reconstructed Green’s function with true result, after summation of 4 terms of group
2 over auxiliary station. [ER]

Figure 11(a), this panel is summed and multiplied with a phase-modifying according
to equation 18 to retrieve the signal in Figure 11(b).

The resulting signal resembles the true result slightly better than evaluating the
terms of equation 15 group 2 without muting; the spurious event arriving at t = .8s
is slightly smaller. This is because, for the present geometry, the auxiliary stations
where the spurious event is absent, would have contributed more strongly to the
spurious event without muting before evaluating C

(3)
B,A. (The geometrical spreading

factors vary for the contribution of each auxiliary station.)

ITERATED CORRELATION DEPENDANCE ON
SOURCE POSITION

For the geometry in Figure 6, the source, stations A and B, auxiliary stations and
scatterer are not aligned at a stationary phase of terms 15.6, 15.7 and 15.10. We
will investigate the retrieved result of evaluating C

(3)
B,A after muting C

(2)
A,X and C

(2)
B,X ,

and summing over all auxiliary stations and multiplying with the phase-modifying
factor as in equation 18. The sources are positioned on a circle with radius 800 m
centered between stations A and B in the geometry described as before; see Figure
6. Evaluating C

(3)
B,A and summation over the auxiliary stations for terms 15.6 15.7,

15.10 and 15.11, and then evaluating equation 18 for each source contribution gives
the correlogram in Figure 12(a).
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Figure 10: Muted C
(2)
A,X in a) and C

(2)
B,X in b). These are the input for the evaluation

of C
(3)
B,A. [ER]
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Figure 11: a) Correlogram of C
(3)
B,A evaluated after muting C(2), as a function of each

auxiliary station-position angle φ. b) Comparison of retrieved Green’s function with

the true result, after summation of C
(3)
B,A over all auxiliary stations. [ER]
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This correlogram confirms that when the source, stations A and B, an auxiliary
station, and the scatterer are aligned, each term has a stationary phase. We also see
how term 15.11 is stationary with respect to source postion. The behavior of term
15.6 is similar to that of the leading term in C

(2)
B,A; see Figure 4(a). This can be

expected from the constraint on t in condition 25, which is equal to condition 11 on t
for C

(2)
B,A. We can expect that when we time-average the C

(3)
B,A of multiple sources at

different angular positions, term 15.6 interferes destructively.

Figure 12(a) also tells us that terms 15.7 and 15.10 are also non-stationary with
respect to source position. However, the arrival time of non-stationary positions is
dependent upon scatterer position (see condition 29); this implies that in a medium
with randomly positioned scatterers, terms 15.7 and 15.10 would interfere destruc-
tively. Last we investigate whether muting C(2) before evaluating C

(3)
B,A can work for

the source postions located at stationary phases for terms 15.6 15.7 and 15.10; see
Figure 12(b). We see how muting the C

(2)
A,X and C

(2)
B,X for source positions at and

close to φ = π radians also would remove the energy associated with the scatterer.
This is expected, because the scatterer is directly behind the source as seen from both
stations A and B; thus the contribution arrives simultaneously with the direct event
from the source.
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Figure 12: a) Gather showing time-domain equivalents of 15.6, 15.7, 15.10 and 15.11
after summing over auxiliary stations as a function of source position angle φ. b)
Gather of |C̃3

B,A(t)| as a function of source position angle φ. [ER]

CONCLUSIONS

Using Green’s functions under the Born approximation in a homogeneous medium
with one scatterer, we show that C

(3)
B,A constitutes 16 terms, that can be divided

into 3 groups. The leading-order terms, group 1, are associated with the correlation
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of the direct waves recorded at the stations from a source that is generally not at
a stationary-phase position. Thus evaluating C

(3)
B,A directly does not improve the

Green’s function estimation. Instead we can remove the terms in group 1 from C
(3)
B,A

by muting C
(2)
A,X and C

(2)
B,X . Group 2 contains the 4 leading-order terms in C

(3)
B,A after

muting C
(2)
B,X and C

(2)
B,X . A stationary-phase ananysis of the 4 terms tells us that the

scatterer must be aligned on ray paths between two stations, outside the station span.

Term 15.6 is non-stationary for all source postitions not aligned with the scatterer
and stations A and B. The non-stationarity is a function only of source position,
not of auxiliary-station position. When we evaluate an ensemble average of multiple
sources from different locations, term 15.6 will, in general, interfere destructively.
Terms 15.7 and 15.10 are stationary when the source aligns with the scatterer, an
auxiliary station and stations A and B. The non-stationarity is a function of source
position and of auxiliary-station position. We can exploit this fact by using a network
of auxiliary stations positioned randomly, such that if the source position is not at the
stationary phase, the contribution from different auxiliary stations stack incoherently.
Only term 15.11 remains stationary no matter where the source or auxiliary stations
are positioned, so that any stacking of C

(3)
B,A over auxiliary stations will enhance the

contribution of this term.

An additional problem for the utilization of terms 15.6, 15.7 and 15.10 for the im-
provement of Green’s function reconstruction is that for the source position for which
these terms have stationary contributions at the correct traveltime, the contribution
becomes indistinguishable from the leading-order contribution in C

(2)
A,X and C

(2)
B,X that

must be removed. This means that stacking is the key to enhancing the contribution
of term 15.11 and diminishing the contributions of terms 15.6, 15.7 and 15.10 to the
EGF from C

(3)
B,A.

APPENDIX

WAVE EQUATION AND GREEN’S FUNCTION

We study the wave equation in an acoustic, linear, isotropic, time-invariant, source-
less, constant-density medium. The familiar wave equation for pressure P = P (x, t)
is

∂2
i P − c−2∂2

t P = 0, (A-1)

where Einstein’s summation convention is applied to lower-case subscripts; for 2D
they are summed over 1 and 2. Temporal and spatial derivatives are denoted ∂t and
∂i respectively, where the subscripts denote time and spatial directions respectively.
Under the constant-density assumption, the characteristic wave velocity c = c(x)
fully determines the medium.
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Fourier Transformations

The temporal Fourier transformation pairs of a time-domain function F (t) and frequency-
domain function F (ω) are defined as

F (ω) =

∫ −∞

∞
F (t) exp (−iωt) dt, (A-2)

F (t) =
1

2π

∫ −∞

∞
F (ω) exp (iωt) dω, (A-3)

the particular Fourier-domain of the function F is specified by the argument only.

Frequency-domain Green’s function in homogeneous media

Using the forward Fourier transformation equation A-2, the wave equation for pressure
in a homogeneous medium with c(x) = c0 is written in the frequency-domain as

∂2
i P +

ω2

c2
0

P = 0. (A-4)

The frequency-domain Green’s function G = G(x,xs, ω) is defined by introducing
an impulsive point source acting at t = 0 and x = xs on the right-hand side of
equation A-4 as follows:

∂2
i G +

ω2

c2
0

G = −δ(x− xs). (A-5)

The Green’s function solution for two-dimensional space, under the far field approx-
imation can be obtained as

G(x,xs, ω) =
1√

8πωc−1
0 |x− xs|

exp
(
−i

[
ωc−1

0 |x− xs|+
π

4

])
. (A-6)

A source function is easily included by multiplication with the frequency-domain
source function. A measurement, PA(ω), at a station located at xA of a source at xs

emitting a source function s(ω) is obtained as follows:

PA = G(xA,xs, ω)s(ω). (A-7)

The sources in this paper are simulated emitting zero-phase Ricker wavelets with
center frequency ω0. The frequency-domain expression used is

s(ω) =
2 ω2

√
π ω3

0

exp

(
−ω2

ω2
0

)
. (A-8)
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Green’s function in the Born Approximation

We are interested in the Green’s function in an inhomogeneous medium. We assume
the velocity can be split into a background velocity c0 and a perturbation α(x) as
c−2(x) = c−2

0 [1 + α(x)]. Assuming the perturbation is confined inside some finite
domain Ds, the Green’s function in the Born approximation can now be computed
in terms of a Green’s function computed in the background, G0, medium as

G(x,xs, ω) = G0(x,xs, ω) + G1(x,xs, ω), with (A-9)

G1(x,xs, ω) =

∮
Ds

G0(x,x′, ω)
ω2

c2
0

α(x′)G0(x
′,xs, ω)dx′. (A-10)

The Green’s function in the background medium is computed using equation A-5
with c = c0. When the medium consists of a homogeneous background with a series
of N scatters positioned at xc,1,xc,2,xc,3...xc,N with strength α1, α2, α3, ...αN , then

α(x) =
N∑

i=1

δ(x − xc,i)αi. Hence the Green’s function G1 in equation A-10 can be

written as

G1(x,xs, ω) =
N∑

i=1

G0(x,xc,i, ω)
ω2

c2
0

αiG0(xc,i,xs, ω). (A-11)
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