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ABSTRACT

In this report, I outline the implementation and preliminary benchmarking of
a parallelized program to perform reverse time migration (RTM) seismic imag-
ing using the Nvidia CUDA platform for scientific computing, accelerated by a
general purpose graphics processing unit (GPGPU). This novel software archi-
tecture allows access to the massively parallel computational capabilities of a
high performance GPU system, which is used instead of a conventional computer
architecture because of its high throughput of numeric capabilities.

The key aspects of this research concern the hardware setup for an optimized
GPGPU computer system, and investigations into coarse-grained, algorithm-level
parallelism. I also perform some analysis at the level of the numerical solver for
the Finite-Difference Time Domain (FDTD) wave propagation kernel. This paper
demonstrates that the GPGPU platform is very effective at accelerating RTM,
and this will lead to more advanced processing for better imaging results.

INTRODUCTION

Reverse time migration (RTM) is often used for seismic imaging, as it has prefer-
able numerical and physical properties compared to competing algorithms, and thus
generates better images (Zhang and Sun, 2009). These benefits come at a high com-
putational cost, so research effort is required to make RTM a more economically
competitive method for seismic imaging. This is the motivation for GPGPU paral-
lelism of RTM.

The processing flow for imaging a seismic survey can be parallelized in many tiers.
This multi-tiered parallelism has been noted in earlier computer architecture research
for seismic imaging (Bording, 1996). This hierarchical parallelism is particularly
prominent in RTM, and it provides opportunities for significant performance increase
throughout the algorithm. A modern GPGPU platform, such as the Nvidia S1070, is
uniquely capable of mirroring this tiered algorithm structure, because its architecture
is similarly structured with both coarse-grain and fine-grain parallel capabilities.

At the highest level of abstraction, a data set can be divided into spatially sepa-
rate regions of independent data (shot profiles). This is a Single Program, Multiple
Data (SPMD) approach, and due to low data dependency, interprocess communi-
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cation is generally not needed. This can directly map to a hardware multi-GPU
implementation.

At each data subset, the migration can be further parallelized at a finer granu-
larity. There are three potential stages for parallelism in the RTM algorithm, but
there is a severe data dependency limitation. The imaging condition requires the
computed results of both the forward wavefield, pr, and the reverse wavefield, pg,
for each time step. Unfortunately, because the two wavefields are computed in op-
posite time directions, performing the imaging condition usually requires computing
the complete wavefield pr, writing it to disk, and reading its precomputed values for
image condition correlation as soon as that time step is available from the reverse
time wavefield. This data dependency is a major obstacle to parallelism at this stage,
and constrains performance.

At the finest level of parallelism, the individual wavefield propagation steps can
reduce the compational load by taking advantage of vectorization, floating-point math
optimizations, and numerical reorganization. The imaging condition can also benefit
from parallelization, because it is essentially a large 2D or 3D correlation. This is
easily vectorizable, and is especially suitable for a GPU, which was originally designed
as a large vector-computer.

Clearly, the GPGPU platform provides multi-tiered parallelism capability that
matches the RTM structural design. The encouraging preliminary results seem to
confirm that the GPGPU platform is well suited to RTM optimization, and suggest
that further optimization can continue to yield dramatic execution time improve-
ments. This will allow more advanced processing with correspondingly better sub-
surface image results.

CUDA PROGRAMMING METHODOLOGY

Nvidia’s novel technology, “Compute Unified Device Architecture” (CUDA) is a
software interface and compiler technology for general purpose GPU programming
(Nvidia, 2008). The CUDA technology includes a software interface, a utility toolkit,
and a compiler suite designed to allow hardware access to the massive parallel capa-
bilities of the modern GPU, without requiring the programmer to construct logical
operations as graphical instructions. The latest release of CUDA, version 2.1, exposes
certain features only available in the Tesla T10 GPU series. Below, all specifications
are given based on the capabilities of the T10 GPU using CUDA 2.1 software. For
easy reference, Table 1 summarizes the terminology and acronyms that apply to the
software and hardware tiers. An acronym-guide is also provided in Table 2 in the
Appendix.

CUDA programs have two parts: “host” code, which will run on the main com-
puter’'s CPU(s); and “device” code, which is compiled and linked with the Nvidia
driver to run on the GPU device. Most device code is a “kernel,” the basic functional
design block for parallelized device code. Kernels are prepared and dispatched by
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Software Model Hardware Model
Element Maximum Physical Unit #
512 threads per block Scalar Processor (SP) or
Thread Arranged in 3D block not Streaming Core 8
exceeding Each ¢
512X 512X 64 in < z,y, 2 > thac 1 Ci’ret_ CRECULES — Oe
and 512 total read at a time
SP Pipeline
War Each 32 threads are stati- | A full warp (32 threads) 16
arp cally assigned to a warp executes in 4 clock cycles
(pipelined 4-deep across 8
cores)
Arranged in 2D grid not
exceeding Streaming Multiprocessor
Block (SM) 30
65535 x 65535 in < z,y >
GPU
Kernel Grid | roblem or simulation rep- Only one kernel is running 4

resentation

on the GPU at a time
(More are possible, but this
is complicated).

Table 1: CUDA software and hardware mapping. This table briefly summarizes the

CUDA software architecture and its implementation on a T10 GPU.
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host code. When the kernel is dispatched, the host code specifies parallelism param-
eters, and the kernel is assigned to independent threads which are mapped to device
hardware for parallel execution.

The coarsest kernel parallelism is the “block,” which contains several copies of
threads running the same code. Each block structure maps to a hardware multipro-
cessor. Blocks subdivide a large problem into manageable units which will execute
independently. It should be noted that inter-block synchronization and communica-
tion is difficult without using expensive global memory space or coarse barriers. Inside
each block there are up to 512 threads, organized into sub-groups or “warps”: these
groups of up to 32 threads. At this level of parallelism, shared memory and thread
synchronization is very cheap, and specific hardware instructions exist for thread syn-
chronization. As of CUDA 1.3, available on the Tesla T10, synchronization “voting”
can be used to enable single-cycle inter-thread control. As an extra performance
boost, threads which are running the same instructions are optimized with “Single
Instruction, Multiple Thread” (SIMT) hardware, sharing the Instruction Fetch (IF)
and Decode (DEC) logic and efficiently pipelining operations. If conditional program
control flow requires different instructions, the threads must then serialize some of
these pipeline stages. Peak performance is achieved when all conditional control-flow
is identical for threads in a single warp. In the case of Finite Difference Time Domain
(FDTD) wave propagation code, it is generally possible to have all threads operating
in SIMT mode. The boundary conditions at the edges of thread blocks, and at the
edges of the simulation space, are currently the only exceptions to this SIMT mode.

HARDWARE PLATFORM

During this research, testing was performed on an HP ProLiant with an attached
Tesla S1070 GPGPU rack-mounted blade server. This unique platform implements
the CUDA 2.1 software specification, with hardware Compute Capability 1.3 GPU
acceleration (Nvidia, 2008). The S1070 provides four Tesla T10 GPUs, which provide
vector-style parallelism for general purpose computing.

The basic architecture consists of a “Host System,” using regular CPUs and
running a standard Linux operating system. Attached is the “Device,” a 1U rack-
mounted GPGPU accelerator which provides the parallelism discussed in earlier sec-
tions. The CUDA technology uses the terms “host” and “device” to refer to the
various hardware and software abstractions that apply to either CPU or GPU sys-
tems. Although the S1070 has four GPUs, it is considered one “device”; and similarly,
there is one “host,” although it has 8 CPU cores in this system. Below is a summary
of the system specifications:

Host: HP ProLiant DL360 G5 (HP ProLiant series, 2009) (HP ProLiant
DL360G5 Overview, 2009)

e 2x Quad-Core Intel Xeon E5430 @ 2.66 GHz
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e 6144 KB L2 Cache (per core)

e [.2 Cache Block size: 64 B

e 32 GB main memory

e 1333MHz Front Side Bus

e PCl-e #1: 8x pipes @ 250MB/s each
e PCl-e #2: 8x pipes @ 250MB/s each

e Gigabit Ethernet connection to SEP Intranet

Device: Nvidia Tesla S1070 Computing System (S1070 Product Informa-
tion, 2009)

e 4x T10 GPU @ 1.44GHz

e 30 Streaming Multiprocessors (SM) per GPU
e 8 Scalar Processor (SP) cores per SM

e 32 threads per warp

e 16K 32-bit registers per block

e 16KB Shared Memory per block

e 4GB addressable main memory per GPU

e Memory controller interconnect for data transfer to host and other GPU address
spaces

e Concurrent Copy & Execution feature: “Direct Memory Access” (DMA) style
asynchronous transfer available on T10 GPUs

e Programmable in CUDA

The S1070 is a very recently released commercial platform specifically tailored for
high-performance scientific computing. Nvidia recommends using it only with certain
host hardware environments. The system installation procedure is explained in the
appendix, along with solutions to difficulties that may be encountered.

The final system environment runs CENTOS 5.2 for x86_64 and using the Nvidia
Tesla Driver (Linux x86_64 - 177.70.11). Two Host Interconnect Cards (HIC)
are installed and configured in the ProLiant. Both cards are connected to the S1070
unit via two PCl-e cables. This setup produces a reliable and functional system for
GPGPU computational acceleration.
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HP ProLiant DL360 G5 Nvidia Tesla s1070
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32GB

Figure 1: Schematic representation of the Host-Device (CPU-GPU) interconnection
and memory structure. The compartmental memory structure on the Device side
is problematic for multi-GPU programs, because it severely restricts shared memory
methods. Much of my recent implementation efforts address this issue. [NR]

EVALUATION METRICS

There are many ways to compare and evaluate parallelization schemes for RTM. Be-
cause the GPGPU approach is so novel, it is difficult to perform direct comparison
with other parallelization schemes for Reverse Time Migration. Other hardware plat-
forms do not provide the same software abstractions. Many of the GPGPU metrics
thus have no direct comparable equivalent on alternative systems. Of course, key
performance metrics are directly comparable to serial or parallel CPU RTM imple-
mentations. These include:

e Total execution time

e Cost ($) per FLOPS

e FLOPS per Watt

Other internal performance metrics of my implementation can be compared to
academic and industrial research progress in high-performance GPGPU wave propa-

gation. Wave propagation has been previously implemented in Finite Difference Time
Domain (FDTD) for nearly identical hardware (Micikeviciuis, 2008); the forward- and
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/

Figure 2: Rack mount view of the SEP Tesla system. At the top is the S1070 1U
4xGPU GPGPU Computing Appliance. Below is the HP ProLiant Xeon 64 bit, 8
core (2xSMP, 4xCMP) system, tesla0.stanford.edu which runs the host operating
system. [NR]

reverse-wavefield computation performance can be directly compared to such an im-
plementation. FDTD performance measurements include:

e Maximum computational grid size

e Block subdivision size

e Wavefield grid points per second

e Numerical order of spatial derivatives

One goal of SEPs investigations into various parallelization technologies is to sub-
jectively evaluate the feasibility for future performance, ease of development, and
maintainability of code. Technologies like the CUDA/GPGPU approach are com-
pared subjectively to other systems, such as the SiCortex SC072 “Desktop Cluster”
as well as conventional multicore and multi-node CPU parallelization. The follow-

ing metrics can be roughly estimated for each technology, noting that there is some
ambiguity in direct comparisons across widely varying exotic architectures:

e Cost ($) per FLOPS
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FLOPS per Watt

FLOP operations needed for complete migration

Execution time for complete migration

Accuracy of the wave propagation operator

As I am not trained as an interpretational geologist, subjective assessment of the
image quality is difficult for me. Nonetheless, it has been widely established in in-
dustrial contexts that the correct implementation of RTM yields better images for
decision-making and analysis. Certain computational architectures can enhance this
effect by enabling higher-accuracy RTM, (e.g. using higher-order wavefield opera-
tors). By providing very cheap floating-point math, the GPGPU approach enables
more operations per data point, allowing more accurate wave modeling with minimal
execution time overhead. The overall speedup that a GPGPU implementation can
provide can allow additional iterations as part of larger inversion problems, increasing
the accuracy of these processes. The result is a subjectively better migrated image.

Finally, it is worth noting the benefits of GPGPU parallelization from a soft-
ware engineering and code-maintenance standpoint. CUDA is designed to be simple,
consisting of a set of extensions to standard C programming. The programming envi-
ronment is easy to learn for most programmers. The code is systematically separated
into host setup code and device parallelization code; and CUDA can interoperate
with C or C++4, allowing functional- or object-oriented system design, as the situa-
tion requires.

IMPLEMENTATION

I developed a wave propagation kernel, implemented in CUDA, for use in forward-
and reverse-time wave propagation. I also implemented a simple correlation imaging
condition. Due to time constraints, I was not able to implement a more advanced
imaging condition with true-amplitude correction, noise-removal, and angle-gather
decomposition.

For the purposes of this report, I will focus on single-GPU kernels. I made signif-
icant progress towards multi-GPU asynchronous parallelization, but this code is not
yet ready to provide benchmark results. The eventual goal is to perform the forward-
wave, reverse-wave, and imaging condition subroutines on independent GPUs. How-
ever, preliminary benchmark results cast doubt on whether that approach will de-
crease total execution time, because the bottleneck appears to be host-device transfer
time rather than computational limitations.

Implementation of an eighth-order spatial derivative added negligible computa-
tional overhead to the problem, as compared to the naive second-order wave operator.
This suggests that other more sophisticated time-stepping methods, such as Arbitrary
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Difference Precise Integration (ADPI) wave solvers (Lei Jia and Guo, 2008), may also
have negligible computational overhead. Such methods will enable coarser time-steps
without the numerical stability limitations that are inherent in FDTD approaches.
Thus the use of those methods may reduce overall execution time.

Figure 3: Schematic view of the multi-GPU algorithm for coarse-grained parallelism.
The intent is to perform the overall RT'M process with separate stages executing in
parallel on independently controlled GPUs. This coarse parallelism can help pipeline
the process and hide the memory transfer time. My current implementation and
benchmark-code does not yet implement this strategy. [NR]

The expansion of the solver to a full 3D model space will require significant extra
programming. The code base for the 2D model is intended to be extensible, and the
CUDA framework allows block indexing to subdivide a computational space into 3 di-
mensions, assigning an (X,Y,Z) coordinate to each block and each thread. Because of
time constraints, I did not complete the full 3D modeling for benchmark comparison.

In the current iteration, the host code does not perform significant parallelism.
Earlier efforts used pthread parallelism on the host CPUs for data preprocessing
while the input loaded from disk, but the time saved by this workload parallelism
was negligible compared to the overall execution time.

The result of my implementation is a propagation program, wavepropO, and an
imaging program, imgcorr0, written in CUDA. These are piped together with a set of
Unix shell scripts to manage the overall RTM sequence for forward and reverse-time
propagation with an imaging condition.

Future implementations will seek to integrate these programs into one tool with
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several CUDA kernels, but the overlying data-dependence issue must be solved theo-
retically before the processes can be entirely converted to a streaming methodology.
For trivial-sized problems, the entire computational result of forward and backward
wave propagation can remain in graphics device memory for use, but this approach
has inherent problem-size limitations. Other methods of eliminating the costly host-
device transfers have been proposed (Clapp, 2009). Such methods eliminate the
bottleneck by preserving the wavefield state in GPU memory at the final timestep,
and backward-propagating to recompute the wavefield at arbitrary time. This takes
advantage of the cheap and fast wave propagation kernel. Another approach is the
effective pipelining of the RTM process to allow arbitrary-sized input data sets. Fi-
nally, a major area of continuing work is the complete linking of CUDA research
code with the standard SEP1lib programming environment and toolkit. This will be
extremely beneficial from the standpoint of code portability and interoperability with
other research areas.

PERFORMANCE AND BENCHMARK SUMMARY

For the sake of simplicity and consistency, I tested my RTM code on synthetic data.
I used a simple subsurface velocity model with a few reflecting layers. This same
velocity model has been used by other SEP students and researchers, and although it
does not represent the complex subsurface behavior of a real earth model, it provides
sufficient complexity to evaluate the correct functionality of the RTM implementa-
tion. My current work to integrate SEP1ib with the GPGPU environment will enable
benchmarking and testing on more standard data, eventually including field recorded
data sets. This will be an important step to verify and compare GPGPU performance
to more traditional paralellism schemes.

Unless otherwise noted, the benchmark results I report were computed on a two
dimensional wavefield space, with grid size 1,000 x 1,000.

GPU execution time is shown in Figure 5 for a 1,000,000 point grid, (1,000 x 1,000
2D computational space). It is compared to a serial implementation of RTM on the
CPU. Due to time constraints, I was not able to compare the GPGPU parallelization
to other parallel RTM versions.

Evidently, GPU parallelization has a dramatic effect on the total execution time,
reducing it by a factor of more than 10x. With 240x as many cores, however, this
is sublinear parallelization. Closer profiling of the CUDA algorithm execution time
revealed the computational breakdown shown in Figure 6. This profiling was accom-
plished using timer variables compiled in the device code, as standard code profilers
have difficulty working with the GPGPU environment. Most of the bottleneck is
clearly the memory transfers between host and device, which are required for the
imaging condition. The primary focus of further research is to work around this
limitation: first, by optimizing the memory transfers as much as possible; and more
importantly, by developing numerical schemes that can perform the imaging step
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Figure 4: Preliminary RTM image results on a synthetic data set with a few simple
horizontal reflectors. This test verified functionality of my preliminary RTM imple-
mentation on the GPGPU system. Wave diffraction is visible at the corners, probably
due to the unrealistic, abrupt end of the layers in this synthetic model. [NR]

Total Execution Time
400
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200 -

100 -

. I

CPU (serial) GPU (240 Core)

Figure 5: Total execution time for RTM imaging, comparing serial implementation
on CPU (executed on the ProLiant Xeon host), compared to a single GPU CUDA
parallelization. [NR]
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without as much expensive transfer overhead.

Cross Correlation Disk Access (Host)
0.25 2.183
1% 8%

Reverse Wave Propagation
0.067
0%

Forward Wave Propagation
0.067
0%

Memory Transfer
26.869
91%

Execution Time (seconds)

Figure 6: Breakdown of program execution time for the CUDA implementation. Very
little time is spent executing numerical processing code (wave propagation or imaging
condition). The vast majority of time is spent in host-device memory transfer over the
PClI-e bus (between the ProLiant CPU system and the Nvidia Tesla S1070). [NR]

CONCLUSION

The dramatic speedup of the computational kernel provides strong motivation for
continued work in GPGPU parallelism. Benchmark results suggest that the most
important area to tackle is Host-Device (PCl-e) bus bandwidth, which accounts for
90% of the total system utilization time.

At present, my implementation does not have any tasks for the high-performing
Xeon processors on the host. These CPUs are suitable for performing a lot of useful
work, such as data post-processing or visualization. An alternative architecture could
tightly couple CPU and GPU processes to maximize system utilization.

Another suggested research area is the implementation of compression during
transfer. Velocity models, which contain large quantities of redundant data, could
easily be compressed; seismic records will probably not compress well with a lossless
algorithm such as GZIP (LZ77) because they do not contain the same amount of
redundancy as velocity models. In future work, I will quantify these compression
ratios for real data sets, which will help validate the utility of compressed Host-Device
communication.
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The system-level transition towards exotic computing platforms is always an en-
gineering tradeoff. The performance benefits of such an environment must be suffi-
ciently high to offset the development and maintenance cost with the new system. The
GPGPU platform and its CUDA programming environment is sufficiently familiar to
a geophysical programmer and exposes massive parallel capability in a straightforward
way. The immediate performance boost is evident from the preliminary benchmarks
presented in this report. Significant further optimizations can be realized in future
work via more analysis and refinement of this GPGPU approach.

APPENDIX
Tesla S1070 system setup

This section details the procedure to install and configure the hardware for the Tesla

S1070 GPGPU system.

During my early work, I configured the ProLiant system to run Ubuntu 8.10 and
Nvidia 180.22 drivers. This required recompiling Nvidia Debian kernel modules (.ko
files). The recompiled modules successfully connected to the S1070 system, but incor-
rectly identified it as an Nvidia C1060. Downgrading the operating system to Ubuntu
8.04 enabled the modules to correctly connect and recognize the Nvidia S1070, but
also produced an unstable system, which occasionally crashed. Following advice from
Nvidia, I switched the ProLiant operating system to CENTOS and had significantly
more success. However, the Nvidia 180.22 drivers have not been fully tested on the
1U rack-mount S1070 systems with four GPUs. There were several system hang-ups
and unexpected, non-repeatable crashes. It should be noted that the GPGPU driver
for the 1U Tesla system interferes with some automatic configuration of the Linux
operating system (specifically graphic configuration for X11). This happens because
the S1070 appears to X11 to be a video accelerator and display driver even though it
cannot be connected to a physical display monitor.

Another potential configuration problem arises from the presence of two Host In-
terconnects on the S1070 1U unit. The Nvidia documentation mentions that these
interconnects allow the S1070 to optionally connect to two separate host CPU sys-
tems. However, even though only one host is used in our system, we found that
both interconnects should be used because Connecting and configuring only one card
results in access to only 2 out of the 4 available Tesla T10 GPUs on the S1070 1U
server. Using both interconnects allows access to all four GPUs, and also doubles the
PCI-e bandwidth available to the S1070 memory controller.

The final system environment runs CENTOS 5.2 for x86_64 and using the Nvidia
Tesla Driver (Linux x86 64 - 177.70.11). Two Host Interconnect Cards (HIC)
are installed and configured in the ProLiant. Both cards are connected to the S1070
unit via two PCl-e cables. This setup produces a reliable and functional system for
GPGPU computational acceleration. Much difficulty can be avoided by using exactly
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these system and driver versions.

Acronyms Quick Reference

CUDA  Compute Unified Device Architecture

FDTD  Finite Difference, Time Domain (wave simulation)
GPU Graphics processing unit

GPGPU  General purpose graphics processing unit

RTM Reverse Time Migration

SEP Stanford Exploration Project
SM Streaming Multiprocessor
SP Streaming Processor

SPMD Single program, multiple data
Table 2: Quick reference for CUDA acronyms.
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