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ABSTRACT

There is a wide range of uncertainties present in seismic data. Limited subsurface
illumination is also common, specially in areas with salt structures. These short-
comings are only a few of many different reasons that makes seismic tomography
an under-determined problem with a large null space. We can use additional
information to reduce the uncertainty and constrain this large null space. The
additional information, also known as co-located soft (secondary) data, can be
the result of integrating a non-seismic data from the same subsurface area. A
measure of structural similarity between the two given data fields can create a
link between the different types of data. We use cross-gradient functions to in-
corporate this structural information, given by secondary data, into the inverse
problem as a constraint.

INTRODUCTION

Seismic data contain a wide range of uncertainties which directly affects the quality
of seismic images. Previous studies have tried to extract more information from raw
seismic data to reduce the uncertainty in the seismic-imaging problem (Yilmaz, 2001;
Aki and Richards, 2002). Since velocity analysis plays a fundamental role in seismic
imaging, uncertainties in velocities lead to significant inaccuracies in seismic images.
Without an accurate velocity estimate, seismic reflectors are misplaced, the image is
unfocused, and seismic images can easily mislead earth scientists (Claerbout, 1999;
Clapp, 2001). Defining a reliable velocity model for seismic imaging is a difficult
task, especially when sharp lateral and vertical velocity variations are present. More-
over, velocity estimation becomes even more challenging when seismic data are noisy
(Clapp, 2001).

In areas with significant lateral velocity variations, reflection tomography meth-
ods, where traveltimes are mapped to slowness, are often more effective than con-
ventional velocity-estimation methods based on measurements of stacking velocities
(Biondi, 1990; Clapp, 2001). However, reflection tomography may also fail to con-
verge to a geologically reasonable velocity estimation when the wavefield propagation
is complex.

Unfortunately, the reflection tomography problem is ill-posed and under-determined.
Furthermore, it may not converge to a realistic velocity model without a priori infor-
mation, e.g., regularization constraints and other types of geophysical properties, in
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addition to seismic data (Clapp, 2001). Better velocity estimation can be achieved by
integrating co-located soft data, such as non-seismic geological data, in the reflection
tomography problem.

Lack of an analytical relationship between different measured geological properties
limits our ability to use co-located soft data. Besides the conventional probabilistic
relations, similarity-measurement tools can be used to enforce the structural infor-
mation contained in soft data into seismic velocity estimates. Based on these tools,
differences in two images are classified as structural differences and non-structural
differences. Since gradient fields are a good choice for geometrical (structural) com-
parisons, the cross-gradient function is one useful similarity-measurement tool. This is
true because the variations of geophysical properties can be described by a magnitude
and a direction (Gallardo and Meju, 2004, 2007).

Here we use the cross-gradient function to integrate a given set of soft data—the
resistivity field measured by magnetotelluric (MT) sounding in our case—into the
reflection tomography problem. This integration requires consideration of differences
in frequency in seismic and resistivity data. In the following sections we study the
behavior of cross-gradient functions in different cases and then give an overview of
how an understanding of these differences can be used to improve velocity estimates
given by seismic tomography.

THE CROSS-GRADIENT FUNCTION: A STRUCTURAL
SIMILARITY MEASURE

Integration of soft data into the seismic tomography problem can reduce model un-
certainty and result in a better velocity estimation, especially in areas with complex
structure. Different geophysical methods probs the same structures in the Earth’s
subsurface. Among the techniques for integrating different types of geological data,
structural similarity-measurement tools may be a good choice for our tomography
problem. The cross-gradient function is one tool that measures the structural simi-
larity between any two fields. Following Gallardo and Meju (2004), we can define the
cross-gradient function for the tomography problem as

g = ∇r×∇s, (1)

where r and s can represent any two model parameters. In our case, they represent
resistivity and slowness, respectively. Zero values of the cross-gradient function cor-
respond to points where spatial changes in both geophysical properties, i.e., ∇r and
∇s, align. However, the function is also zero where the magnitude of spatial varia-
tions of either field is negligible, e.g., where either property is smooth. Note that the
cross-gradient function is a non-linear function of r and s if both are unknowns. In a
2-D problem, g simplifies to a scalar function at each point, given by

g =
∂s

∂x

∂r

∂z
− ∂s

∂z

∂r

∂x
, (2)
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where the model parameters are given in the x − z plane. To compute the cross-
gradient function, we can further simplify it by using first-order forward-differences
approximations of the first derivative operators.

Figures 1(a) and 1(b) show the smooth Marmousi synthetic 2-D velocity model
(Versteeg and Grau, 1991) and its cross-gradient with itself, respectively. The cross-
gradient of a field with itself is called the auto-gradient hereafter. Note that the
auto-gradient of a field should be zero everywhere; however, since the figures are
prepared with a first-order linear approximation of the cross-gradient function, it is
not zero, especially in areas with sharp edges.

Although we expect different types of geophysical methods to result in similar
structural maps, in practice each method maps the subsurface through different fil-
ters and frequency contents. Typical frequencies in magnetotelluric data are much
lower than those of seismic data (Kaufman and Keller, 1981). This difference in the
frequency content of two fields may affect how the cross-gradient represents the struc-
tural similarity of two fields. To investigate the effect of different spatial frequency
content, we prepared Figure 1, in which the cross-gradient of the Marmousi velocity
model and a smooth version of it is computed. In Figure 1(d), we have increased the
smoothing factor. This increase is equivalent to a lower cut-off spatial frequency for a
lowpass filter. Note that because of the relatively sharp edges in the original velocity
model, the cross-gradients in Figures 1(c) and 1(d) seem to include some structure
as well as higher amplitudes as compared with Figure 1(b). However, this synthetic
example is an extreme case of complexity and sharp edges. As shown by the results
for the Pillow velocity model in Figure 2, in simpler cases of subsurface structure,
the cross-gradient with a smooth version of the velocity model leads to an acceptable
similarity indicator. The amplitude may be improved by using a higher-order lin-
ear approximation of the cross-gradient computation. These figures in general may
imply that the cross-gradient function can be used as a constraint for joint data inver-
sion problems or to integrate a priori information from other fields into the seismic
tomography problem.

REFLECTION TOMOGRAPHY

By definition, tomography is an inverse problem, in which a field is reconstructed from
its known linear path integrals, i.e., projections (Clayton, 1984; Iyer and Hirahara,
1993). Tomography can be represented by a matrix operator T, which integrates
slowness along the raypath. The tomography problem can then be stated as

t = T s, (3)

where t and s are traveltime and slowness vector, respectively (Clapp, 2001). The
tomography operator is a function of the model parameters, since the raypaths depend
on the velocity field. Consequently, the tomography problem is non-linear. A common
technique to overcome this non-linearity is to iteratively linearize the operator around
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(a) (b)

(c) (d)

Figure 1: Frequency sensitivity of the cross-gradient function: (a) The Marmousi
velocity model; (b) its auto-gradient. Cross-gradient values of the Marmousi velocity
model and its (c) smooth and (d) very smooth copies. [ER]
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(a) (b)

(c) (d)

Figure 2: Frequency sensitivity of the cross-gradient function: (a) The Pillow velocity
model; (b) its auto-gradient. Cross-gradient values of the Pillow velocity model and
its (c) smooth and (d) very smooth copies. [ER]
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an a priori estimation of the slowness field s0 (Biondi, 1990; Etgen, 1990; Clapp, 2001).
The linearization of the tomography problem by using a Taylor expansion is given by

t ≈ Ts0 +
∂T

∂s

∣∣
s=s0

∆s. (4)

Here, ∆s = s − s0 represents the update in the slowness field with respect to the a
priori slowness estimation, s0. Equation 4 can be simplified as

∆t = t−Ts0 ≈ TL∆s, (5)

where TL = ∂T
∂s

∣∣
s=s0

is a linear approximation of T. A second, but not lesser, difficulty
arises because the locations of reflection points are unknown and are a function of
the velocity field (van Trier, 1990; Stork, 1992).

Clapp (2001) attempts to resolve some of the difficulties caused by the non-
linearity of the seismic tomography problem by introducing a new tomography oper-
ator in the tau domain and by using steering filters. In addition to geological models,
other types of geophysical data can also be extremely important for yielding improved
velocity estimates. In the following section, we show how the cross-gradient function
can be used to add constraints to the seismic tomography problem in order to decrease
the uncertainties in the estimated velocity model.

APPLICATION OF THE CROSS-GRADIENT
FUNCTION IN SEISMIC TOMOGRAPHY

Figure 3 shows a velocity map and corresponding resistivity map of a synthetic 2-D
model. That includes a water velocity of about 1.5 km

s
at the top and a semi-circular

fault in the middle of the ocean bottom. There are also laterally smooth velocity
anomalies in the model. The resistivity profile and velocity profile are connected
using the Archie/time-average cross-property relation (Carcione et al., 2007) with
arbitrary parameter values.

We use the resistivity map as soft data to constrain the tomography problem with
the cross-gradient function. In this case, we can write the cross-gradient function
given in equation 2 as a linear operator G on the slowness field, s0 + ∆s. We can
then extend the linearized tomography problem by employing G as an additional
constraint. The objective function, P(∆s), of this extended problem becomes

P(∆s) = ||∆t−TL∆s||2 + ε2
1 ||G(s0 + ∆s)||2, (6)

where ε1 is a problem-specific weight factor to regularize the tomography problem
(Clapp, 2001).

Figure 4 shows the initial velocity and the estimated velocities found by solving the
tomography problem both with steering filters and the cross-gradient constraint. The
results show that steering filters yield a good result for low frequency features such as
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(a) (b)

Figure 3: Synthetic sinusoidal model with (a) two velocity anomalies and correspond-
ing (b) resistivity model. [ER]

smooth lateral velocity anomalies; however, it ignores high-frequency structures of the
velocity model. On the other hand, the cross-gradient functions are able to provide
better estimates for high-frequency features of the velocity model, such as sharp
salt boundaries and faults. Steering filters assume a priori knowledge of the model
parameters, while the cross-gradient function uses the co-located soft data field to
build this information. The combination of these two method may be an optimal tool
for addressing the velocity estimation problem in more general subsurface structures.

CONCLUSIONS AND FUTURE WORK

We have reviewed the issues involved in solving a typical seismic tomography problem
and how we can address some of them by introduction of additional information. We
also discussed our motivations for using the cross-gradient function to incorporate this
additional information. The preliminary sensitivity analysis on two synthetic velocity
models shows that the cross-gradient functions are a potential tool to integrate differ-
ent types of geophysical data into the tomography problem. Finally, the comparison
between estimated velocities by use of steering filters and cross-gradients functions
suggest that we may use these two types of constraints to resolve more general cases
of velocity models, including sharp boundaries and smooth anomalies.

This method may lead to improved subsurface interpretations in regions mapped
using more than one geophysical method. Figures 5(a) and 5(b) show a CMP gather of
seismic data from a marine field dataset and co-located inverted MT resistivity data,
respectively. We hope to improve the velocity estimations given by the seismic data
itself by including the co-located smooth resistivity map in the tomography problem.
Note that the frequency contents of seismic and resistivity data are different, and the
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(a) (b)

(c)

Figure 4: Velocity estimates by seismic tomography: Initial velocity estimate (a) and
estimated velocity (b) with steering filers and (c) with cross-gradient constraint on
soft-data. [CR]
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resistivity field provides only a low frequency estimation of the subsurface structure.
However, we hope to enforce a reasonable geological structure on the output of the
seismic tomography problem by using this smooth image as the constraint.

(a) (b)

Figure 5: Field data provided by WesternGeco company: (a) a seismic CMP gather
from field data and (b) The inverted resistivity map from the MT survey. [NR]

This method can be extended to seismic tomography constrained by training im-
ages, where we can also aim for different realizations of the velocity model by altering
the co-located data or training image.
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