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ABSTRACT

The theoretical foundation of a variant on effective medium theories for elastic
constants of composites is presented and discussed. The connection between this
approach and the methods of Zeller and Dederichs, Korringa, and Gubernatis and
Krumhansl is elucidated. A review of the known relationships between the various
effective medium theories and rigorous bounding methods for elastic constants is
also provided.

INTRODUCTION

In a series of papers [Berryman (1979, 1980a,b)], a variant on effective medium the-
ories for elastic composites was developed by the author. In this paper, I will review
the derivation of the effective medium formulas for the elastic constants of composites
while elucidating the relationships between my results and the results from effective
medium theories proposed by others. These results are then compared to known
rigorous bounds on the effective elastic constants.

The general background for theories of elastic composites with special emphasis
on earth sciences applications is provided in the review articles by Watt et al. (1976)
and Berryman (1995). Another review of effective medium theories with an emphasis
on connections to general applied physics applications is given by Elliott et al. (1974).
Related work by Willis (1977, 1981) is also especially useful for some of the cases not
considered here, including anisotropic media and polycrystalline composites.

EFFECTIVE ELASTIC CONSTANTS

Mal and Knopoff (1967) derived an integral equation for the scattered displacement
field from a single elastic scatterer. Let Ωi symbolize the volume of the region oc-
cupied by a single inclusion i. Let the incident field be ~u0(~x) exp(−iωt) and let
~u(~x) exp(−iωt) and ~v(~x) exp(−iωt) be the total field outside and inside the inclusion
volume such that

~u(~x) = ~u0(~x) + ~us(~x) for ~x 6∈ Ωi,
~v(~x) = ~u0(~x) + ~vs(~x) for ~x ∈ Ωi.

(1)

The scattered fields are ~us and ~vs. Both ~u(~x) and ~u0(~x) satisfy the same equation:

cm
`npq

∂2up

∂xn∂xq

+ ρmω2u` = 0 (2)
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outside the inclusion, while ~v(~x) satisfies

ci
`npq

∂2vp

∂xn∂xq

+ ρiω
2v` = 0 (3)

inside the inclusion. The indices `,n,p,q take the values 1, 2, 3 for the three spatial
dimensions, and the Einstein summation convention applies in Equations (2) and (3),
and also throughout this paper. The elastic tensor for the matrix and inclusion are
respectively:

cm
`npq = λmδ`nδpq + µm (δ`pδnq + δnpδ`q) , (4)

ci
`npq = λiδ`nδpq + µi (δ`pδnq + δnpδ`q) ≡ cm

`npq + ∆ci
`npq, (5)

and ρm and ρi(≡ ρm + ∆ρi) are the respective densities.

Green’s function for a point source in an infinite, isotropic, homogeneous elastic
medium of the matrix material is given by

gpq(~x, ~ζ) =
1

4πρmω2

[
s2 exp (isr)

r
δpq −

∂2

∂xp∂xq

(
exp (ikr)

r
− exp (isr)

r

)]
, (6)

where r = |~x − ~ζ|, k = ω[ρm/(λm + 2µm)]1/2, and s = ω[ρm/µm]1/2 — with k and s
being, respectively, the magnitudes of the wavevectors for compressional and shear
waves in the matrix. Given the form of gpq, Mal and Knopoff (1967) then derive an
integral equation for ~u(~x). Since the derivation follows standard lines of argument, I
will not repeat it here. The result is

u`(~x) = u0
`(~x) +

∫
Ωi

d~ζ

[
∆ρiω

2vn(~ζ)−∆ci
njpqεpq

∂

∂ζj

]
g`n(~x, ~ζ). (7)

Equation (7) is an exact integral equation for the displacement field in the region
exterior to the scatterer in terms of the displacement and strain fields inside the
inclusion volume Ωi.

To evaluate the integral (7), estimates of the interior displacement and strain fields
are required. Considering the first Born approximation from quantum scattering
theory suggests the estimates for wave speed and strain at ~ζ ∈ Ωi:

~v(~ζ) ' ~u0(~ζ), (8)

and
εpq(~ζ) ' ε0

pq(
~ζ). (9)

By Equations (8) and (9), I mean to approximate ~v and ε by the values ~u0 and ε0 would

have achieved at position ~ζ if the matrix contained no scatterers. For scatterers with
small volumes, it follows from (7) that ~us(~x) and its derivatives are small quantities for
~x outside of Ωi. Since the displacement is continuous across the boundary, it follows
that Equation (8) will be a good approximation to ~v(~ζ). However, this argument
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fails for Equation (9), because the strains are not continuous across the boundary.
Equation (9) should therefore be replaced by the formula:

εpq = Tpqrsε
0
rs, (10)

where T is Wu’s tensor [Wu (1966)], relating εpq for an arbitrary ellipsoidal inclusion
to the uniform strain at infinity ε0

pq. Now, if the wavelength of the incident waves is
large compared to the size of the ellipsoid (i.e., a/λ̄ << 1, where λ̄ is the wavelength),
then the fields both near the ellipsoid and inside scatterer volume Ωi will be essentially
static and uniform [Eshelby (1957)]. Thus, to the lowest order of approximation, it
is valid to make the substitutions (8) and (10). When the ellipsoid is centered at ζi,
it follows easily that

us
`(~x) = Ωi

[
∆ρiω

2u0
n(~ζi)g`n(~x, ~ζi)−

(
∆λiTpprsδnj + 2∆uiTnjrs

)
ε0
rsg`n,j(~x, ~ζi)

]
, (11)

where the symmetry properties of T have been used in simplifying the expression.
A comma preceding a subscript indicates a derivative with respect to the as-labelled
component.

Equation (11) gives the first order estimate of the scattered wave from an ellip-
soidal inclusion whose principal axes are aligned with the coordinate axes. When the
ellipsoid is oriented arbitrarily with respect to the coordinate axes, Equation (11)
must be changed by replacing Tpqrs everywhere with

Upqrs = `pα`qβ`rγ`sδTαβγδ, (12)

where `αβ are the appropriate direction cosines. For homogeneous, isotropic com-
posites with randomly oriented ellipsoidal inclusions, the general form of the average
tensor as given by Wu (1966) is

Ūpqrs =
1

3
(P −Q)δpqδrs +

1

2
Q(δprδqs + δpsδqr), (13)

where

P =
1

3
Tppqq and Q =

1

5
(Tpqpq − Tppqq) . (14)

Finally, suppose N inclusions are contained in a small volume of radius a centered
at ~ζ0. Assume that the effects of multiple scattering may be neglected at sufficiently
low frequencies (i.e., long wavelengths appropriate for seismology) to the lowest order.
Then, to the same degree of approximation used in Equation (11) (i.e., a/λ̄ << 1),
the scattered wave has the form:

〈us
`(~x)〉m '

N∑
i=1

Ωi

[
∆ρiω

2u0
n(~ζ0)g`n(~x, ~ζ0)−

(
∆λiŪmi

pprsδnj + 2∆µiŪmi
njrs

)
ε0
rsg`n,j(~x, ~ζ0)

]
,

(15)
where the superscripts m and i again refer to matrix and inclusion properties, respec-
tively. Note especially that distinct superscripts i must be used in Equation (15) to
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specify both the inclusion material itself, and also the shape of each distinct type of
inclusion.

To apply this thought experiment to the analytical problem of estimating elastic
constants, consider replacing the true composite sphere with a sphere composed of
matrix material identical to the imbedding material and of ellipsoidal inclusions of the
same materials as those in the true composite, and also in the same proportions. Then,
if multiple scattering effects may be (and are) neglected, the theoretical expression
which determines the elastic constants is

〈us
`(~x)〉∗ = 0, (16)

where the left hand side is given by Equation (15) with matrix-type m = ∗. Equation
(16) states simply that the net (overall) scattering — due to many scatterers – in the
self-consistently determined medium vanishes to lowest order.

If the volume fraction of the i-th component is defined by fi = Ωi/
∑N

j=1 Ωj, then
Equation (16) implies the following formulas:

N∑
i=1

fi(ρi − ρ∗) = 0, (17)

N∑
i=1

fi(Ki −K∗)P ∗i = 0, (18)

and
N∑

i=1

fi(µi − µ∗)Q∗i = 0. (19)

Equation (17) states that the effective density ρ∗ is just the volume average density
(which is what one might reasonably expect, but nevertheless is not always true
for effective medium theories). Equations (18) and (19) provide implicit formulas
for K∗ and µ∗. Such implicit formulas are typically solved numerically by iteration
[Berryman (1980b)]. This step is usually necessary because the factors P ∗i and Q∗i

are themselves both typically functions of both the unknown quantities K∗ and µ∗.
Experience has shown that such iterative methods often converge in a stable fashion,
and usually after a small number of iterations (typically 10 or less).

The derivation given and final results attained here are very similar to meth-
ods discussed by Elliott et al. (1974) and Gubernatis and Krumhansl (1975). I will
therefore refer to the resulting effective medium method as the “coherent potential
approximation” (or CPA), as is typically done in the physics literature, since the early
work of Soven (1967). Equations (18) and (19) were also obtained independently by
Korringa et al. (1979), while using an entirely different method. In the following
sections, I will compare the results obtained from this effective medium theory to the
known rigorous bounds on elastic constants and also to the results of other effective
medium theories.
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Berryman 5 Elastic composites theory

RIGOROUS BOUNDS ON EFFECTIVE MODULI

In their review article, Watt et al. (1976) discuss various rigorous bounds on the
effective moduli of composites. For example, the well-known Voigt (arthimetic) and
Reuss (harmonic) averages are, respectively, rigorous [Hill (1952)] upper and lower
bounds for both K∗ and µ∗. Generally tighter bounds have also been given by Hashin
and Shtrikman (1961, 1962, 1963).

Still tighter bounds have been obtained in principle by Beran and Molyneux (1966)
for the bulk modulus and by McCoy (1970) for the shear modulus. However, the re-
sulting formulas depend on three-point spatial correlation functions for the composite
and are therefore considerably more difficult to evaluate than the expressions for the
Hashin-Shtrikman [Hashin and Shtrikman (1961, 1962, 1963)] bounds, which depend
only on the material constants and volume fractions. Miller (1969b,a) evaluated the
bounds of Beran and Molyneux (1966) by treating an isotropic homogeneous distri-
bution of statistically independent cells. Silnutzer (1972) used the same approach to
simplify the bounds of McCoy (1970) for cell materials. Furthermore, Milton (1981)
has shown that the bounds of Beran and Molyneux (1966) and McCoy (1970) can
be simplified somewhat even if the composite is not a cell material. Nevertheless,
the bounds which are most easily evaluated are still the Hashin-Shtrikman [Hashin
and Shtrikman (1961, 1962, 1963)] (HS) bounds, the Beran-Molyneux-Miller (BMM)
bounds, and the McCoy-Silnutzer (MS) bounds. I will compare these bounds to the
estimates obtained from the coherent potential approximation (CPA), the specific
effective medium theory being stressed here.

To aid in the following comparisons, it is convenient to introduce two functions:

Λ(x) =

(
N∑

i=1

fi

Ki + 4x/3

)−1

− 4

3
x, (20)

Γ(y) =

(
N∑

i=1

fi

µi + y

)−1

− y, (21)

together with a third function that is needed in conjunction with Γ:

F (x, z) =
x

6

(
9z + 8x

z + 2x

)
. (22)

It has been shown previously [Berryman (1980b, 1995)] that Λ(x) and Γ(y) are mono-
tonically increasing functions of their real arguments. Similarly, I find that

∂F

∂z
=

5x2

3(z + 2x)2
≥ 0 (23)

and
∂F

∂x
=

9z2 + 16xz + 16x2

6(z + 2x)2
≥ 0 if x ≥ 0, & z ≥ 0. (24)
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So, when both arguments of F (x, z) are non-negative (which will soon be shown to
be the case in these applications), it follows that F is a monotonically increasing
function of both arguments.

Now, if I define the minimum and maximum moduli among all the constitutents
by

K+ = max (K1, . . . , KN), K− = min (K1, . . . , KN),
µ+ = max (µ1, . . . , µN), µ− = min (µ1, . . . , µN),

(25)

then the Hashin-Shtrikman bounds are also given in general by

K±
HS = Λ (µ±) (26)

and
µ±HS = Γ [F (µ±, K±)] . (27)

[Note that the only combinations considered on the right-hand side of (27) are those
having both pluses or both minuses – no mixing of the subscripts.]

The Beran-Molyneux-Miller bounds and the McCoy-Silnutzer bounds are known
for two-phase composites (i.e., N = 2). These bounds can be written in succinct form
using the notation of Milton (1981). By defining two geometric parameters ζ1 = 1−ζ2

and η1 = 1− η2, and two related averages [analogous to the volume fraction weighted
average 〈M〉 = f1M1 + f2M2] of any modulus M by 〈M〉ζ = ζ1M1 + ζ2M2, and
〈M〉η = η1M1 + η2M2, then the bounds can be written very concisely as:

K+
BMM = Λ

(
〈µ〉ζ

)
, (28)

K−
BMM = Λ

(
〈1/µ〉−1

ζ

)
, (29)

µ+
MS = Γ(Θ/6), (30)

and
µ−MS = Γ(Ξ−1/6), (31)

where

Θ =
[
10 〈µ〉2 〈K〉ζ + 5 〈µ〉 〈2K + 3µ〉 〈µ〉ζ + 〈3K + µ〉2 〈µ〉η

]
/ 〈K + 2µ〉2 (32)

and

Ξ =

10 〈K〉2
〈

1

K

〉
ζ
+ 5 〈µ〉 〈2K + 3µ〉

〈
1

µ

〉
ζ

+ 〈3K + µ〉2
〈

1

µ

〉
η

 / 〈9K + 8µ〉2 .

(33)
For symmetric cell materials, it is known that ζ1 = η1 = f1 for spherical cells, ζ1 =
η1 = f2 for disks, while ζ1 = (3f1 + f2)/4, and η1 = (5f1 + f2)/6 for needles.

It is particularly simple to compare these bounds with the results of effective
medium theory when the inclusions are assumed to be spherical in shape. Then, the
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estimates of the moduli are given by the self-consistent formulas (which are mutually
interdependent):

K∗ = Λ(µ∗) (34)

and
µ∗ = Γ [F (µ∗, K∗)] . (35)

Furthermore, the bounds (28)–(30) simplify in this case and are given by

K+
BMM = Λ (〈µ〉) , (36)

K+
BMM = Λ

(
〈1/µ〉−1

)
, (37)

and
µ+

MS = Γ [F (< µ >,< K >)] . (38)

From the monotonicity properties of the functions (20)–(22), from elementary argu-
ments relating the estimates to the Voigt and Reuss averages, and also from the fact
that all the arguments of these functions depend on quantities composed of elastic
constants averaged using positive measures such as volume fractions and the related
quantities for various cell-material shapes, I find for the bulk modulus that

Λ(µ−) ≤ Λ
(
〈1/µ〉−1

)
≤ Λ(µ∗) = K∗ ≤ Λ (〈µ〉) ≤ Λ(µ+), (39)

or equivalently that

K−
HS ≤ K−

BMM ≤ K∗ ≤ K+
BMM ≤ K+

HS. (40)

Similarly, by making use of Γ(y) from (21), it follows for the shear modulus that

µ−HS ≤ µ∗ ≤ µ+
MS ≤ µ+

HS. (41)

The detailed argument leading to Equation (39) is a little involved: First, I must
show that K∗, µ∗ are bounded by the Hashin-Shtrikman bounds [Berryman (1980a)].
Then, since the Hashin-Shtrikman bounds are themselves bounded by the Voigt and
Reuss bounds, Equation (39) follows from

Λ(〈1/µ〉−1) ≤ Λ(µ−HS) ≤ Λ(µ∗) ≤ Λ(µ+
HS) ≤ Λ(〈µ〉). (42)

The arguments just given are valid only for the case of spherical inclusions. The
author knows of no general argument relating the effective medium results to the
rigorous bounds for arbitrary inclusion shapes. However, as will be observed in the
following Figures, numerical examples illustrate the effective medium estimates always
lying between the bounds.

Typical results are presented in Figures 1–3. The values of the constituents’
moduli were chosen to be: K1 = 44.0 GPa, µ1 = 37.0 GPa, K2 = 14.0 GPa, and
µ2 = 10.0 GPa. The values of K2 and µ2 were chosen as a compromise between two
extremes: (a) If K2 and µ2 are too close to K1 and µ1, then the bounds are too close
together to be distinguishable on the plots. (b) If K2 and µ2 are both chosen to be
zero, the iteration to the effective medium theory results does not converge for the
case of disk-like inclusions [Berryman (1980b)], although all the other cases converge
without difficulties. I find in all cases considered that the effective medium theory
results lie between the rigorous bounds, as stated above.
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Figure 1: Estimates of the effective bulk (a) and shear (b) moduli of elastic composites
with constituents K1 = 44.0 GPa, µ1 = 37.0 GPa, K2 = 14.0 GPa, and µ2 = 10.0
GPa as the volume fraction of type-2 increases. The curves are respectively the CPA
(or coherent potential approximation: a self-consistent estimator) — which is the
black solid line, the Beran-Molyneux-Miller bounds for the bulk modulus and the
McCoy-Silnutzer bounds for the shear modulus — which are the red dashed lines,
and the Hashin-Shtrikman bounds — which are the blue dot-dashed lines. Inclusions
are treated as having spherical shape. NR
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Figure 2: Estimates of the effective bulk (a) and shear (b) moduli of elastic composites
with constituents K1 = 44.0 GPa, µ1 = 37.0 GPa, K2 = 14.0 GPa, and µ2 = 10.0
GPa as the volume fraction of type-2 increases. The curves are respectively the CPA
(or coherent potential approximation: a self-consistent estimator) — which is the
black solid line, the Beran-Molyneux-Miller bounds for the bulk modulus and the
McCoy-Silnutzer bounds for the shear modulus — which are the red dashed lines,
and the Hashin-Shtrikman bounds — which are the blue dot-dashed lines. Inclusions
are treated here as having needle-like shape. NR
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Figure 3: Estimates of the effective bulk (a) and shear (b) moduli of elastic composites
with constituents K1 = 44.0 GPa, µ1 = 37.0 GPa, K2 = 14.0 GPa, and µ2 = 10.0
GPa as the volume fraction of type-2 increases. The curves are respectively the CPA
(or coherent potential approximation: a self-consistent estimator) — which is the
black solid line, the Beran-Molyneux-Miller bounds for the bulk modulus and the
McCoy-Silnutzer bounds for the shear modulus — which are the red dashed lines,
and the Hashin-Shtrikman bounds — which are the blue dot-dashed lines. Inclusions
are treated here as having disk-like shape. NR
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OTHER EFFECTIVE MEDIUM THEORIES

A great variety of effective medium theories exist for studies of the elastic properties of
composites. Of these theories, the scattering theory presented by Zeller and Dederichs
(1973), Korringa (1973), and Gubernatis and Krumhansl (1975) have the most in
common with the scattering-theory approach presented here. However, the present
approach appears to be unique among the self-consistent scattering-theory variety,
being dynamic (i.e., frequency dependent), while all the others are based on static
or quasi-static derivations. This difference becomes a very useful advantage if we
want to generalize the approach to finite (nonzero) frequencies, as is required for
viscoelastic media. The bounding arguments presented here do not carry over directly
to the frequency dependent case, but they actually can be generalized — as shown
by Gibianksy and Milton (1993), Milton and Berryman (1997), and Gibiansky et al.
(1999).

Another class of effective medium theories studied by Hill (1965), Budiansky
(1965), Wu (1966), Walpole (1969), and Boucher (1974) does not yield the same
results as the present one, except for the case of spherical inclusions. It has been
shown elsewhere [Berryman (1980b)] how the derivation of the approach of Hill, Bu-
diansky, and others can be kinds of symmetrized to yield the symmetrical results
as presented here that I prefer. Since the CPA class of effective medium theories
gives results equivalent to the Hashin-Shtrikman [Hashin and Shtrikman (1961, 1962,
1963)] bounds when the inclusions are disk-shaped, I conclude that these results are
preferred – since they do satisfy these bounding constraints, while the alternatives do
not. The numerical results show general satisfaction of the bounds.

To elucidate somewhat further the relationship between the static and dynamic
derivations of the effective medium results, I will outline the static derivation next.
The integral equations for the static strain field are given by

εij(~x) = ε0
ij(~x) +

∫
d3x′Gijkl(~x, ~x′)∆cklmn(~x′)εmn(~x′), (43)

where Green’s function is

Gijkl(~x, ~x′) =
1

2

(
g0

ik,jl + g0
jk,il

)
, (44)

with the Kelvin solution given by

gpq(~x, ~x′) =
1

4πµm

[
δpq

r
− 1

4(1− νm)

∂2r

∂xp∂xq

]
, (45)

where r = |~x− ~x′| and µm and νm are, respectively, the shear modulus and Poisson’s
ratio of the matrix material. Equation (43) may be rewritten formally as

ε = ε0 + G∆cε, (46)

where G is now an integral operator defined by

Gf =
∫

d3x′G(~x, ~x′)f(~x′). (47)
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Iterating Equation (46), I obtain the well-known Born series

ε = ε0 + G∆cε0 + G∆cG∆cε0 + . . . , (48)

and then summing the Born series formally yields

ε = (I + Gt) ε0 = (I −G∆c)−1 ε0, (49)

where the so-called t-matrix is defined by

t = ∆c (I −G∆c)−1 = ∆c (I + Gt) . (50)

Taking the ensemble average of Equation (49), I have

〈ε〉 = (I + G 〈t〉) ε0 =
〈
(I −G∆c)−1

〉
ε0. (51)

For a single scatterer, Equation (49) is equivalent to Equation (10). Therefore, it is
worth noting that Wu’s (1966) tensor T is formally related to the t-matrix by

T = I + Gt = (I −G∆c)−1 . (52)

Equation (51) is now in a convenient form for use in determining the effective
elastic tensor c∗ of a composite defined by

〈σ〉 = 〈c ε〉 ≡ c∗ 〈ε〉 , (53)

where the averages in Equation (53) are again ensemble averages over possible com-
posites having similar physical and statistical properties. Using the standard defini-
tion c = cm + ∆c, I find that

〈c ε〉 = cm 〈ε〉+ 〈∆c ε〉 = cm 〈ε〉+ 〈t〉 ε0. (54)

From Equation (54), it follows easily that the effective elastic tensor is given by

c∗ = cm + 〈t〉 (I + G 〈t〉)−1 . (55)

The choice of matrix elastic tensor cm is still completely free since the decomposition
c = cm + ∆c is not unique. Thus, I am free to choose, for example, cm = c∗ (i.e., the
matrix material has now exactly the properties of the equivalent composite material),
which implies:

〈t〉 ≡ 0. (56)

Equation (56) is an implicit formula determining the effective elastic tensor c∗, and
says that the effective scattering t-matrix averages to zero.

In principle, Equation (56) provides an exact solution for the effective moduli.
However, the total t-matrix itself is generally too difficult to calculate. It turns out to
be more reasonable and more effective [Velicky et al. (1968)] to rearrange the terms
of the total t-matrix into a series of terms with repeated scattering from individual
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scatterers (ti). Then, by setting the ensemble average of the individual t matrices to
zero

〈ti〉 =
N∑

i=1

fi∆ci (I −G∆ci)
−1 = 0, (57)

and neglecting terms corresponding to fluctuations in the scattered wave [Velicky
et al. (1968)], a tractable approximation for the estimate of the elastic moduli is
obtained.

When the constituents and the composite as a whole are all relatively homogeneous
and isotropic, the tensor Equation (57) reduces to two coupled equations:

N∑
i=1

fi(Ki −K∗)P ∗i = 0, (58)

and
N∑

i=1

fi(µi − µ∗)Q∗i = 0, (59)

where Equations (13), (14), and (52) were used to simplify Equation (57). Note that
Equations (58) and (59) are identical to Equations (18) and (19), thereby establishing
the equivalence of these two approaches in the isotropic case.

SUMMARY AND CONCLUSIONS

I conclude that my preferred choice of effective medium theory (the CPA) satisfies all
the known constraints on a viable theory: (a) it gives correct values and slopes for both
large and small volume fractions of inclusions; (b) numerical evidence indicates that
the results always satisfy the Hashin-Shtrikman bounds, the Beran-Molyneux-Miller
bounds, and the McCoy-Silnutzer bounds; (c) the theory is also known [Berryman
(1980b)] to reproduce Hill’s exact result [Hill (1963)] for composites with uniform
shear modulus — which fact is a fairly simple exercise to check, so that the reader
might find it instructive to carry this through.

The single-scatterer theory is designed to minimize multiple scattering effects while
yielding formulas that are relatively easy to use. Nevertheless, the theory is not ex-
act, and some potentially significant effects have been neglected. The neglected terms
become more important for propagation of higher frequency elastic waves. But it is
important to note that bounding methods and formulas are also much harder to im-
plement rigorously for the frequency dependent (viscoelastic) case. This fact is surely
one reason that the theory is seldom applied at significantly higher frequencies than
typical seismic frequencies, or in regions of very much higher viscosity, and wave
dissipation and dispersion. So, it is expected that, for small ranges of frequency —
and especially those that are pertinent to exploration seismology — will naturally
be included in the range of useful applications since the seismic band is fairly nar-
row. Then the viscoelastic effects can typically be treated without great additional
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difficulty. Some future efforts should nevertheless be directed towards extending this
effective medium theory to scattering from clusters of inclusions at finite frequency
— thereby including within the expanded theory more of the important scattering
effects discussed (but then specifically neglected, and therefore not treated in any
detail) here.
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