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ABSTRACT

We propose a joint inversion method, based on linear least-squares wave-equation
inversion, for imaging incomplete time-lapse seismic data sets. Such data sets
can arise from presence of production facilities or intentional sparse sampling.
These data sets generate undesirable artifacts that degrade the quality of time-
lapse seismic images, making them unreliable indicators of production-related
changes in reservoir properties. To solve this problem, we pose time-lapse imaging
as a joint linear inverse problem that utilizes concatenations of target-oriented
approximations to the least-squares imaging Hessian. Using a subset of the 2D
Marmousi model, we show that the proposed method gives reliable time-lapse
seismic images from incomplete seismic data sets.

INTRODUCTION

There is a wide range of published work on the most important aspects of time-
lapse seismic imaging. Some of these works include studies of seismic properties
of reservoir fluids (Batzle and Wang, 1992), processing and practical applications
(Rickett and Lumley, 2001; Calvert, 2005), and successful case studies (Lefeuvre
et al., 2003; Whitcombe et al., 2004; Zou et al., 2006). Because of many successful
applications, time-lapse seismic imaging is now an integral part of many reservoir
management projects.

A recurring problem in many field time-lapse seismic applications is the presence
(and sometimes changing locations) of production and development facilities. Such
facilities prevent perfect geometry repetition for different surveys and can pose a
major challenge when they are directly located above producing reservoirs. In order
to circumvent this problem, it is common practice to undershoot the facilities using
two or more boats. However, the undershoot approach does not work in all situations,
mainly because the shot/receiver offset distributions cannot be perfectly matched.

Incomplete time-lapse seismic data sets also arise from intentional subsampling
of seismic data sets. Such regularly (Calvert and Wills, 2003; Smit et al., 2006) or
randomly (Arogunmati and Harris, 2007) subsampled data sets reduce the overall
acquisition cost requirement for multiple seismic surveys. Successful field application
of regularly sub-sampled time-lapse data sets has been demonstrated by previous
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authors (Calvert and Wills, 2003; Smit et al., 2006). Although regularly sampled
data sets removes unnecessary redundancy in time-lapse data sets and can sufficiently
sample low frequency spatial changes in reservoir properties, high frequency changes
will likely not be captured. Acquiring seismic data sets randomly can ensure that all
parts of the evolving reservoir are sampled, but with different densities/folds for any
given survey. Randomly sampled data sets can be interpolated and then processed
as full-volume data sets (Arogunmati and Harris, 2007), or they can be directly used
to reconstruct the reservoir using compressive sampling (Candes and Romberg, 2007;
Candes and Wakin, 2008) principles.

We propose a joint inversion method, based on an iterative least-squares inversion
of the linearized wave-equation, for direct imaging of randomly sparse/incomplete
time-lapse seismic data sets. The method utilizes a system of non-stationary filters
derived from an explicitly computed target-oriented approximation (Valenciano, 2008)
to the linear least-squares wave-equation Hessian. A joint inversion scheme enables
incorporation of structural constraints (e.g., reservoir location and geometry) and
temporal constraints (e.g., smooth temporal changes) in time-lapse image estimation.
The proposed method, regularized joint inversion of multiple images (RJMI), and
related methods have been applied to other time-lapse seismic imaging problems
(Ajo-Franklin et al., 2005; Ayeni and Biondi, 2008; Ayeni et al., 2009).

We assume that the background baseline velocity model is known and that it
changes slowly between surveys. Large velocity changes and geomechanical shifts
can be handled by including an event alignment step prior to or during inversion.
Integration of geomechanical shifts into the joint inversion formulation is ongoing
and will be discussed elsewhere. A solution of the joint inversion problem using a
robust (reweighted least-squares) L1-framework is also ongoing.

In this paper, using matrix-vector notations, we first review linear wave-equation
modeling, iterative least-squares migration/inversion, and the RJMI method. Then,
using a subset of the 2D Marmousi model (Versteeg, 1994), we show that RJMI gives
good quality time-lapse images from incomplete seismic data sets.

Least-squares inversion of time-lapse seismic data sets

Within limits of the Born approximation of the linearized acoustic wave equation,
synthetic seismic data set d is obtained by the action of a modeling operator L on
the earth reflectivity m:

d = Lm. (1)

Given two data sets (baseline and monitor), acquired over an evolving earth model
at times 0 and 1 respectively, we can write

d0 = L0m0,
d1 = L1m1,

(2)
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where m0 and m1 are the baseline and monitor reflectivities, and d0 and d1 are the
data sets modeled by L0 and L1.

Applying the adjoint operators L̄T
0 and L̄T

1 to d0 and d1 respectively, we obtain
the migrated baseline m̃0 and monitor m̃1 images:

m̃0 = L̄T
0 d0,

m̃1 = L̄T
1 d1,

(3)

where L̄T
i denotes conjugate transpose of Li. The raw time-lapse image ∆m̃ is the

difference between the migrated images:

∆m̃ = m̃1 − m̃0. (4)

Because incomplete seismic data sets leads to high non-repeatability, m̃0 and m̃1

must be cross-equalized before ∆m̃ is computed. The high level of non-repeatability
makes it difficult to adapt existing cross-equalization methods (Rickett and Lumley,
2001; Calvert, 2005; Hall, 2006) to randomly sampled time-lapse seismic data sets.
The RJMI method takes the data acquisition geometry and sampling into account
and hence can correct for the non-repeatability of the data sets.

We define two quadratic cost functions for the modeling experiments (equation 2):

S(m0) = ‖L0m0 − d0‖2
2,

S(m1) = ‖L1m1 − d1‖2
2,

(5)

which, when minimized, give the least-squares solutions m̂0 and m̂1, where

m̂0 = (L̄T
0 L0)

†L̄T
0 d0,

m̂1 = (L̄T
1 L1)

†L̄T
1 d1,

(6)

and (·)† denotes approximate inverse.

Because seismic inversion is ill-posed, model regularization is often required to en-
sure stability and convergence to a geologically consistent solution. For many seismic
monitoring objectives, the known geology and reservoir architecture provide useful
regularization information. Including baseline and monitor regularization operators
(R0 and R1 respectively) in the cost functions gives

S(m0) = ‖L0m0 − d0‖2
2 + ε2

0‖R0m0‖2,
S(m1) = ‖L1m1 − d1‖2

2 + ε2
1‖R1m1‖2,

(7)

which have the solutions

m̂0 = (L̄T
0 L0 + ε2

0R
T
0 R0)

†L̄T
0 d0,

m̂1 = (L̄T
1 L1 + ε2

1R
T
1 R1)

†L̄T
1 d1.

(8)

where εi is a regularization parameter that determines the strength of the regular-
ization relative to the data fitting goal. Although there is a wide range of suggested
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methods for selecting εi, in most practical applications, the final choice of the param-
eter is subjective. Unless otherwise stated, we use a fixed, heuristically determined,
data-dependent regularization parameter given by

εi =
max|di|

50
. (9)

Estimating m̂0 or m̂1 by minimizing equation 7 is the so-called data-space least-
squares migration/inversion method (Clapp, 2005).

Substituting equation 3 into equation 8, and re-arranging the terms, we get

[H0 + R00] m̂0 = m̃0,
[H1 + R11] m̂1 = m̃1,

(10)

where Hi = L̄T
i Li is the Hessian, and Rii = ε2

i R
T
i Ri is the regularization term.

Equation 10 can be solved using iterative inverse filtering leading to the so-called
model-space least-squares migration/inversion method (Valenciano, 2008). We sum-
marize linearized (Born) wave-equation data modeling and the least-squares Hessian
derivation in Appendix A. Throughout this paper, our discussion of the Hessian refers
to its target-oriented approximation defined in equation A-5.

An inverted time-lapse image, ∆m̂, can be obtained as the difference between the
two images, m̂0 and m̂1:

∆m̂ = m̂1 − m̂0. (11)

In this paper, we refer to the method of computing the time-lapse image using equa-
tion 11 as separate inversion.

Joint inversion of multiple images

In order to solve a single joint inversion problem in which the baseline and monitor
images are simultaneously estimated, we combine the two expressions in equation 2
to get [

d0

d1

]
=

[
L0 0
0 L1

] [
m0

m1

]
, (12)

which can be solved by minimizing the cost function

S(m0,m1) =

∣∣∣∣∣∣∣∣[ L0 0
0 L1

] [
m0

m1

]
−

[
d0

d1

]∣∣∣∣∣∣∣∣2
2

, (13)

to obtain the solution[
m̂0

m̂1

]
=

[
L̄T

0 L0 0
0 L̄T

1 L1

]†[
L̄T

0 0
0 L̄T

1

][
d0

d1

]
, (14)

where † is the pseudo refers to the pseudo-inverse.
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The RJMI method differs from separate inversion, because it enables inclusion
of both spatial regularization (as in separate inversion) and temporal regularization
(e.g., Tikhonov) so that the cost function becomes

S(m0,m1) =

∣∣∣∣∣∣∣∣[ L0 0
0 L1

] [
m0

m1

]
−

[
d0

d1

]∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣[ ε0R0 0
0 ε1R1

] [
m0

m1

]∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣[ −ζ0Λ0 ζ1Λ1

] [
m0

m1

]∣∣∣∣∣∣∣∣2 ,

(15)
where Λi is the temporal regularization, and ζi is a relative temporal regularization
parameter that determines the strength of the temporal constraint. Similar formula-
tions have been applied to seismic tomography (Ajo-Franklin et al., 2005) and medical
imaging problems (Zhang et al., 2005). However, for our problem, a direct minimiza-
tion of equation 15 with an iterative solver is computationally expensive:

cost ∝ 2 × Nsurv × Niter × Cmig, (16)

where Nsurv is the number of data sets, Niter is the number of iterations, and Cmig

is the cost of on migration. Although it is possible to reduce the computational cost
by encoding the data sets (Ayeni et al., 2009), conventional single-record shot-profile
implementation is too expensive for practical applications. Because several iterations
are usually required to reach a useful solution, and because inversion is usually re-
peated several times to fine-tune parameters, the overall cost of this scheme makes it
impractical. One advantage of the RJMI method is that modifications can be made
to inversion parameters and the inversion repeated at several orders of magnitude
more cheaply than iterative least-squares data-space migration/inversion. This cost
reduction comes because the migration and modeling (demigration) operations are
replaced by a single sparse-matrix convolution.

Minimizing equation 15 leads to the solutions m̂0 and m̂1:[
m̂0

m̂1

]
=

([
L̄T

0 L0 0
0 L̄T

1 L1

]
+

[
RT

0 R0 0
0 RT

1 R1

]
+

[
Λ

′T
0 Λ0 −Λ

′T
0 Λ1

−Λ
′T
1 Λ0 Λ

′T
1 Λ1

])† [
m̃0

m̃1

]
,

(17)
which can be obtained via iterative recursive filtering:([

H0 0
0 H1

]
+

[
R00 0
0 R11

]
+

[
Λ00 −Λ01

−Λ10 Λ11

]) [
m̂0

m̂1

]
=

[
m̃0

m̃1

]
, (18)

where
Rij = εiR

′
iεjRj

Λij = ζiΛ
′
iζjΛj

. (19)

Following the same procedure, equation 18 can be directly extended to an arbi-
trary number of surveys (Ayeni and Biondi, 2008). Note that it is unnecessary to
explicitly form the Hessian operators in equations 18 because they are composed of
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simple combinations of H0 to HN for N surveys. Also, Rij and Λij are not explicitly
computed, but instead, the regularization operators Ri and Λi (and their adjoints)
are applied at each inversion step. Depending on the problem size, computational
domain and available a priori information, the spatial and temporal regularization
operators can be applied over several dimensions (e.g., stacked-image, subsurface off-
set, subsurface scattering-angles, etc.). We have implemented these operators for any
arbitrary number of surveys using sparse convolution operators. Unless otherwise
stated, equation 19 is solved with a conjugate gradient algorithm.

NUMERICAL EXAMPLES

We consider two incomplete synthetic time-lapse seismic examples aimed at imaging
seismic amplitude changes using incomplete time-lapse seismic data sets. Both ex-
amples are based on a modified section of the Marmousi model (Figure 1) with the
target reservoir located at a shallower depth than the original Marmousi reservoir. In
both examples, we neglect geomechanical changes above the reservoir.

In both cases, the baseline data set consists of 111 surface shots spaced at 80 m
and 551 receivers spaced at 16 m. In the first example, the monitor data sets were
modeled with gaps in data created by obstructions along the survey line (Figure 2).
The monitor data sets in the second example consist of randomly sampled shot and
receiver axis (Figure 3). We avoid a multiple attenuation requirement by using a Born
single-scattering modeling algorithm. We migrated the data sets with the oneway
wave-equation, using 184 frequencies and computed the target-oriented Hessian with
72 frequencies.

We compare the results from migration, normalization with the Hessian diagonal,
separate, and joint inversion for the target area in Figure 1. Normalization with
the Hessian diagonal is one implementation of the so-called true-amplitude migration
(Gray, 1997). In both examples, the same spatial regularization parameters were used
for the separately and jointly inverted results. Where applicable, the regularization
operators are Laplacian in x-direction and first-order gradient in time.

Undershoot problem

This example demonstrates the undershoot problem , where obstructions caused by
latter development facilities prevent complete recording of monitor data sets. Here,
we consider an obstruction with changes in its location and size (Figure 2) for the three
monitor data sets. This is a common scenario in seismic monitoring applications where
the construction, addition and alteration of production facilities create obstructions.
In each monitor survey, neither shot nor receivers were located within the undershoot
area (Figure 2).

Migrated images of the target area for all four data sets are shown in Figure 4(a),
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Figure 1: Modified section of the Marmousi velocity model showing the reservoir
location. The gray box shows the target area.[ER]

(a) (b)

(c) (d)

Figure 2: Surface shot-geophone coverage maps for the (a) baseline and (b)-(d) moni-
tor surveys. White indicates locations with shot-receiver coverage whereas black gaps
indicate the undershoot positions. The gray box indicates the surface location of the
target area in both this Figure and also in Figure 3.[ER]
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(a) (b)

(c) (d)

Figure 3: Surface shot-geophone coverage maps for the (a) baseline and (b)-(d) mon-
itor surveys. White indicates locations with shot-receiver coverage whereas black
indicates no coverage.[ER]
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and the corresponding Hessian diagonals (so-called illumination) in Figures 4(b).
Figure 4(c) shows the cumulative time-lapse image of the target area obtained from
the full data sets, and Figure 4(d) shows the illumination ratio between monitor
and baseline data sets. The migrated, normalized, separately and jointly inverted
time-lapse images are shown in Figure 5. Note that time-lapse images obtained from
joint inversion [Figure 5(d)] contain fewer artifacts relative to those from migration,
normalization and separate invertion [Figures 5(a) to 5(c)].

Sparse data problem

This example demonstrates a particular sparse time-lapse seismic monitoring problem
(Arogunmati and Harris, 2007), where sparse randomly-sampled monitor data sets
are acquired at a fraction of the cost of the full survey. Here, we consider a full
baseline data set and three randomly sampled monitor surveys each constituting
only 25 percent—at 50 per cent source and receiver sampling—of the full data set
(Figure 3).

Migrated images of the target area are shown in Figure 6(a), and the corresponding
Hessian diagonals in Figure 6(b). Figure 6(c) shows the cumulative time-lapse images
of the target area obtained from the full data sets, and Figure 6(d) the illumination
ratio between monitor and baseline data sets. The migrated, normalized, separately
and jointly inverted time-lapse images are shown in Figure 7. Note that the migrated
and normalized time-lapse images [Figures 7(a) and 7(b)] show no resemblance to
the full data results [Figure 6(c)]. Also, note that time-lapse images obtained from
joint inversion [Figure 7(d)] contain fewer artifacts than those from separate invertion
[Figure 7(c)].

DISCUSSION

From the numerical examples, we see that incomplete time-lapse seismic data-sets
degrade time-lapse images [Figures 5(a) and 7(a)]. This image degradation is expected
because the migration does not compensate for the resulting geometry (and hence
illumination) differences in the migrated images (Figures 4(a) and 6(a)).

Normalization with the Hessian diagonal is insufficient to adequately attenuate un-
dershoot artifacts [Figure 5(b)] and is markedly insufficient in the sparse data example
[Figure 7(b)]. Although it is possible that specialized regularization methods can at-
tenuate some of these artifacts, we suspect that most conventional cross-equalization
methods will be inadequate.

Although separate inversion improves the quality of the time-lapse images rela-
tive to migration and normalization, several relatively high-amplitude artifacts persist
[Figures 5(c) and 7(c)]. The high-amplitude artifacts in Figures 5(c) and 7(c) result
from a mismatch of residual artifacts from the independent inversion of the data sets.
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(a) (b)

(c) (d)

Figure 4: (a) Migrated (i) baseline and (ii)-(iv) monitor images. (b) Hessian di-
agonal corresponding to images in (a). (c) Cumulative time-lapse images from full
baseline and monitor shot-receiver coverage [Figure 2(a)]. (d) Illumination-ratio for
each monitor survey [Figures b(ii)-(iv)] relative to the baseline [Figure b(i)].[CR]
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(a) (b)

(c) (d)

Figure 5: Cumulative time-lapse images at four production stages (with increasing
production from top to bottom) obtained from (a) migration, (b) Hessian-diagonal
illumination correction, (c) separate inversion, and (d) RJMI. Compare these results
to those from the full data sets [Figure 4(c)].[CR]
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(a) (b)

(c) (d)

Figure 6: (a) Migrated (i) baseline and (ii)-(iv) monitor images. (b) Hessian di-
agonal corresponding to images in (a). (c) Cumulative time-lapse images from full
baseline and monitor shot-receiver coverage [Figure 2(a)]. (d) Illumination-ratio for
each monitor survey [Figures b(ii)-(iv)] relative to the baseline [Figure b(i)].[CR]
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(a) (b)

(c) (d)

Figure 7: Cumulative time-lapse images at four production stages (with increasing
production from top to bottom) obtained from (a) migration, (b) Hessian-diagonal
illumination correction, (c) separate inversion, and (d) RJMI. Compare these results
to those from the full data sets [Figure 6(c)].[CR]
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Recall that the target-oriented approximation captures limited information contained
in a poorly-conditioned full Hessian matrix. Although the spatial regularization im-
proves the conditioning of the problem, residual artifacts in final results from each
inversion differ and do not tend to cancel out.

In the undershoot example, joint inversion of all the data sets (using the RJMI
method), improves the time-lapse image quality substantially [Figure 7(d)]. The
improvement in the time-lapse images obtained via RJMI vs. separate inversion
result from an inclusion of temporal constraints in the RJMI inversion. There is also
significant reduction in artifacts in the RJMI sparse data results [Figure 7(d)] relative
to separate inversion [Figure 7(c)]. However, in this sparse data example, there are
still several residual artifacts in joint inversion results. These artifacts can be further
attenuated using stronger regularization (at the cost of the data-fitting) or choosing
a more robust minimization (e.g., L1-minimization by iterative re-weighting).

CONCLUSIONS

We have demonstrated a target-oriented joint inversion method, based an iterative
least-squares migration/inversion, for imaging incomplete time-lapse seismic data
sets. By posing time-lapse imaging as a joint inversion problem, the RJMI method
attenuates uncorrected artifacts caused by gaps in the monitor acquisition geometries.
We considered an undershoot problem, where obstructions prevent perfect repetition
of acquisition geometries for different surveys and a sparse time-lapse data problem,
where a random fraction of the monitor data sets are recorded. In both numerical
examples, we showed that joint inversion (within the RJMI framework) produces
time-lapse images of the best quality relative to migration, normalization with the
Hessian diagonal and separate inversion. We recognize that both the separate and
joint inversion results can be improved with stronger spatial regularization, but it
is arguable that such an approach will introduce too much unjustifiable bias into
the inversion. Significant progress made in the field of compressive imaging (Can-
des and Romberg, 2007) provides a possible pathway for better image recovery from
incomplete time-lapse seismic data.
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APPENDIX A

LINEAR LEAST-SQUARES MODELING/INVERSION

From the Born approximation of the linearized acoustic wave equation, the synthetic
seismic data ds recorded by a receiver at xr due to a shot at xs is given by

ds(xs,xr, ω) = ω2
∑
x

fs(ω)G(xs,x, ω)G(x,xr, ω)m(x), (A-1)

where ω is frequency, m(x) is reflectivity at image points x, fs(ω) is source waveform,
and G(xs,x, ω) and G(x,xr, ω) are Green’s functions from xs to x and from x to xr

respectively.

Taking the true recorded data at xr to be dt, the quadratic cost function is given
by

S(m) = ‖ds(xs,xr, ω) − dt(xs,xr, ω)‖2
2. (A-2)

As shown by previous authors (Plessix and Mulder, 2004; Valenciano, 2008), the
gradient g(x) of this cost function (summed over all frequencies, sources and receivers)
with respect to reflectivity is the real part of

g(x) =
∑

w

ω2
∑
xs

∑
xr

fs(ω)G(xs,x, ω)G(x,xr, ω)
(
ds − dt

)
, (A-3)

and the Hessian (second derivatives) is the real part of

H (x,x′) =
∑

w

ω4
∑
xs

|f (s)|2G(xs,x, ω)Ḡ(xs,x
′, ω)

∑
xr

G(x,xr, ω)Ḡ(x′,xr, ω),(A-4)

where x′ denotes all image points and Ḡ is the complex conjugate of G. Plessix and
Mulder (2004) and Valenciano (2008) discuss this derivation in detail.
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Target-oriented Hessian

The large computational cost of full Hessian (equation A-4) makes explicit computa-
tion impractical. Previous authors (Shin et al., 2001; Rickett, 2003; Guitton, 2004;
Plessix and Mulder, 2004; Valenciano, 2008; Symes, 2008) have discussed possible
approximations that reduce the computational cost or remove the need for explicit
computation of the full Hessian.

Because reservoirs are limited in extent, the region of interest is usually smaller
than the full image space, therefore, the Hessian can be explicitly computed for that
region. For our problem, we follow the target-oriented approximation (Valenciano,
2008) to the Hessian, which for a target region xT is

H (xT,xT+ax) =
∑

w

ω4
∑
xs

|f (s)|2G(xs,xT, ω)Ḡ(xs,xT+ax , ω)∑
xr

G(xT,xr, ω)Ḡ(xT+ax ,xr, ω), (A-5)

where xT+ax represents a small region around each point within xT. For any image
point, H (xT,xT+ax) represents a row of a sparse Hessian matrix H whose non-zero
components are defined by ax. The term, ax, which can be estimated as a function
of the decrease in amplitude of the Hessian diagonal, defines the filter-size around
each image point. Valenciano (2008) discusses the target-oriented Hessian in detail
and reviews the computational savings from this approximation.
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