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ABSTRACT

We present a joint inversion method, based on iterative least-squares migration,
for imaging simultaneous source time-lapse seismic data sets. Non-repeatable
shot and receiver positions introduce undesirable artifacts into time-lapse seismic
images. We conjecture that when data sets are acquired with several simultane-
ously shooting sources, additional artifacts will result from relative shot-timing
non-repeatability. These artifacts can be attenuated by joint inversion of such
data sets without any need for initial separation. Preconditioning with non-
stationary dip filters and with temporal smoothness constraints ensures stability
and geologically consistent time-lapse images. Results from a modified Marmousi
2D model show that the proposed method yields reliable time-lapse images.

INTRODUCTION

Time-lapse (4D) seismic is an established technology for monitoring hydrocarbon
reservoirs. It is central to most field development and management plans, and many
successful applications have been published (Whitcombe et al., 2004; Zou et al., 2006).
However, in many time-lapse seismic applications, inaccuracies in replication of ac-
quisition geometries for different surveys (non-repeatability) is a recurring problem.
Although modern acquisition techniques can improve repeatability of shot-receiver
positions, field conditions usually prevent perfect repeatability.

Recently, several authors have suggested acquisition with multiple simultaneously
shooting seismic sources. Although, not a new technology (Womack et al., 1990;
Beasley et al., 1998), modern acquisition and imaging techniques now make simulta-
neous source (or blended) acquisition both appealing and practical. Some advantages
of this acquisition method include:

• Improved shot-sampling: reduces shot-interpolation requirements in conven-
tional narrow-azimuth data.

• Lower acquisition cost: enables acquisition of several azimuths in 3D wide-
azimuth data sets at lower cost.

• Longer offsets and full-azimuth: enables better imaging and improved AVO in-
formation.

SEP–138



Ayeni et al. 2 Inversion of encoded time-lapse data

• Shorter acquisition time-window: makes acquisition practical where operational,
climatic, political or other uncontrollable factors could have prevented it.

Different processing schemes have been proposed for simultaneous source data
sets. Most of these schemes rely on separation of the data sets into different shot
components before standard processing (Hampson et al., 2008; Spitz et al., 2008).
Processing schemes that require no separation have also been suggested (Berkhout
et al., 2008; Tang and Biondi, 2009). However, there has been little discussion on the
implications of this acquisition technique for time-lapse seismic.

We introduce the term relative shot-timing non-repeatability to describe a poten-
tial source of artifacts in simultaneous source time-lapse seismic data sets. Because
current simultaneous source acquisition designs generally rely on randomized shot-
timings, it will be difficult to accurately reproduce the relative shot-receiver posi-
tions and at the same time maintain the relative shot-timing for different surveys.
Shot-receiver non-repeatability, together with the predicted relative shot-timing non-
repeatability, will lead to strong degradation of time-lapse seismic images. Because
of the complexity introduced by non-repeatability of both shot-receiver positions and
relative shot-timing, conventional cross-equalization methods for time-lapse seismic
data sets will fail. Therefore, we explore least-squares inversion methods of such data
sets.

Iterative data-space linear least-squares migration/inversion can improve struc-
tural and amplitude information in seismic images (Nemeth et al., 1999; Kühl and
Sacchi, 2003; Plessix and Mulder, 2004; Clapp, 2005). An extension of image-space
least-squares inversion (Valenciano, 2008) to time-lapse imaging has been shown to
improve time-lapse seismic images (Ayeni and Biondi, 2008). In this paper, we pro-
pose a data-space joint inversion method for imaging simultaneous source time-lapse
seismic data sets. The proposed method combines the cost-saving advantages of
both simultaneous source acquisition and phase encoded migration (Romero et al.,
2000). We further demonstrate that preconditioning with non-stationary dip filters
and temporal smoothness constraints further improves the time-lapse seismic images.

We assume a known, slowly changing background baseline velocity. Because a
close approximation of the background velocity is essential, we propose baseline data
acquisition with separate or few simultaneous sources and monitor data acquisition
with several simultaneous sources. We assume careful processing of the baseline
data such that the data can be used for velocity estimation and the image can be
used for dip estimation or interpretation. Furthermore, we assume that the shot-
receiver positions and relative shot-timing are known for all surveys. Integration of
background velocity and geomechanical changes into the joint inversion formulation
is ongoing and will be discussed elsewhere.

In this paper, we first discuss Born modeling of phase-encoded data as an ap-
proximation of simultaneous source acquisition. Then, using a phase-encoded model-
ing/migration formulation, we discuss joint linear least-squares inversion of multiple
simultaneous source seismic data sets. We also summarize a spatio-temporal pre-
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conditioning scheme based on spatial non-stationary dip-filters and temporal leaky
integration. Finally, using a modified version of the 2D Marmousi model (Versteeg,
1994), we show that solving the preconditioned joint inversion problem yields optimal
time-lapse seismic images.

LINEAR PHASE-ENCODED BORN MODELING

Within limits of the Born approximation of the acoustic wave equation, the seismic
data d recorded by a receiver at xr due to a shot at xs is given by

d(xs,xr, ω) = ω2
∑
x

fs(ω)G(xs,x, ω)G(x,xr, ω)m(x), (1)

where ω is frequency, m(x) is the reflectivity at image points x, fs(ω) is the source
waveform, and G(xs,x, ω) and G(x,xr, ω) are respectively the Green’s functions from
shot xs to x and from x to xr.

By considering randomized simultaneous source data as a special case of linear
phase-encoded shot gathers, equation (1) is modified to include a concatenation of
phase-shifted shots, from s = q to s = p:

d(xspq ,xr, ω) =

q∑
s=p

a(γs)ω
2
∑
x

fs(ω)G(xs,x, ω)G(x,xr, ω)m(x), (2)

where xspq defines the positions of the encoded sources, and

a(γs) = eiγs = eiωts , (3)

and γs, the linear time-delay function, depends on the delay time ts at shot s.

Relative shot-timing non-repeatability arises due to the uncertainty (Folland and
Sitaram, 1997) associated with correct positioning of shots and receivers while main-
taining the correct time delays ts between shots. This is particularly true for the
blended acquisition geometry (Berkhout, 2008), where several (20 or more) shots are
encoded into a single record.

LINEAR LEAST-SQUARES MIGRATION/INVERSION

We re-write the linear modeling operation in equation (1) in matrix-vector form as
follows:

d = Lm, (4)

where L is the modeling operator and m is the earth reflectivity. The encoding (or
blending) operation in equation (2) is then defined as:

d̃ = BLm = L̃m, (5)
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where d̃ is the encoded data, B is the encoding (or blending) operator, and L̃ is the
combined modeling and encoding operator.

Given two surveys (baseline and monitor), acquired over an evolving earth model
at times t = 0 and t = 1 respectively, we can write

d̃0 = L̃0m0,

d̃1 = L̃1m1,
(6)

where m0 and m1 are the baseline and monitor reflectivities, and d̃0 and d̃1 are the
encoded seismic data sets. Note that the modeling operators L̃0 and L̃1 in equation (6)
can define both different acquisition geometries and different relative shot-timings.

By applying the adjoint operators to the data sets, we obtain the migrated images:

ḿ0 = L̃
∗

0d̃0,

ḿ1 = L̃
∗

1d̃1,
(7)

where ḿ0 and ḿ1 are the migrated baseline and monitor images respectively, and

the symbol
∗

denotes the conjugate transpose of the modeling operators. The raw
time-lapse seismic image ∆m̃ is the difference between the migrated images:

∆ḿ = ḿ1 − ḿ0. (8)

Because of differences in relative shot-timings, cross-term artifacts (Romero et al.,
2000; Tang and Biondi, 2009) will be different for each migrated data set. Con-
ventional equalization methods (Rickett and Lumley, 2001; Calvert, 2005) will be
inadequate to remove these artifacts.

The quadratic cost functions for equation (6) are

S(m0) = ‖L̃0m0 − d̃0‖2,

S(m1) = ‖L̃1m1 − d̃1‖2,
(9)

which when minimized gives the inverted baseline m̂0 and monitor m̂1 images:

m̂0 = (L̃
∗

0L̃0)
−1L̃

∗

0d0,

m̂1 = (L̃
∗

1L̃1)
−1L̃

∗

1d1,
(10)

This is the so-called data-space least-squares migration/inversion method.

Joint-inversion

Instead of solving the two equations in equation (6) independently, we combine them
to form a joint system of equations[

L̃0 0

0 L̃1

] [
m0

m1

]
=

[
d̃0

d̃1

]
, (11)
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for which a solution is obtained by minimizing the objective function

S(m0,m1) =

∣∣∣∣∣
∣∣∣∣∣
[

L̃0 0

0 L̃1

] [
m0

m1

]
−

[
d̃0

d̃1

]∣∣∣∣∣
∣∣∣∣∣
2

. (12)

Neglecting numerical stability issues, the computational cost of minimizing equa-
tions 12 is the same as the cost of minimizing the two objective functions in equation 9.
Because several shots are encoded and directly imaged, the computational cost of this
approach is considerably reduced relative to non-encoded (or single source) data sets.
Equivalent formulations for conventional time-lapse seismic data sets have been shown
by previous authors (Ajo-Franklin et al., 2005; Ayeni and Biondi, 2008).

Regularization and Preconditioning

Seismic inversion is an ill-posed problem. Therefore, regularization operators are
required to stabilize the inversion and to prevent divergence to unrealistic solutions.
A regularized least squares solution m̂ is obtained by minimizing a modified objective
function:

S(m) = ‖L̃m− d̃‖2 + ε2‖Rm‖2, (13)

where ε is a damping factor that determines the strength of the regularization oper-
ator R. In this paper, we consider a fixed, heuristically determined, damping factor
computed as a function of the data as follows:

ε =
max|d̃|

100
. (14)

Relevant examples of regularization criteria for geophysical inverse problems in-
clude model smoothness (Tikhonov and Arsenin, 1977), temporal smoothness (Ajo-
Franklin et al., 2005), and horizontally smooth angle gathers (Clapp, 2005).

Minimizing equation (13) is equivalent to solving the problem[
L̃
εR

]
m =

[
d̃
0

]
. (15)

Fast iterative convergence can be obtained by preconditioning the regularization (Claer-
bout and Fomel, 2008). This is equivalent to making the variable substitution

m = R−1p = Ap, (16)

so that equation (15) becomes [
L̃A
εI

]
p =

[
d̃
0

]
, (17)
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where A is the preconditioner, and p is the preconditioned variable. By selecting an
invertible regularization operator R = A−1, we can solve the preconditioned problem
(equation (17)) at fewer iterations than the regularized problem (equation (15)).

For the current problem, we require two regularization constraints (spatial and
temporal). The spatial regularization operator is a system of non-stationary dip
filters applied on the helix (Claerbout and Fomel, 2008). These symmetric filters,
built from puck filters (Hale, 2007; Claerbout and Fomel, 2008), are then factored
into causal dip filters using Wilson-Burg factorization (Fomel et al., 2003). The
preconditioner, implemented as a helical polynomial division, uses dips estimated
from plane-wave destruction (Fomel, 2002) to determine the appropriate filters for
each model point. The temporal preconditioner is a bi-directional leaky integration
operator which penalizes sudden changes over time.

The preconditioned joint inverse problem is[
 LÅ
εI

]
p =

[
d
0

]
, (18)

where

 L =

[
L̃0 0

0 L̃1

]
, (19)

Å = AT, (20)

with

A =

[
A0 0
0 A1

]
, (21)

and

T =

[
I Λ
Λ I

]
. (22)

The operators A0 and A1 are preconditioners for the baseline and monitor images,
respectively, while I is identity and Λ is a diagonal operator containing the leak rates
λ. Equation (18) is directly extendable to an arbitrary number of surveys. The
proposed method, joint preconditioned least squares inversion (J-PLSI ) refers to
the definition in equation (18). We solve equation (18) using a conjugate gradient
algorithm.

Cascaded covariance-based preconditioning

We have specialized the spatial and temporal preconditioners such that the dip-
discrimination (or range) of the filters decreases as a function of iteration, while
the temporal integration leak rate increases as a function of iteration. This precon-
ditioning approach (which should be applicable to other inversion problems) ensures
that close to the solution, the data fitting goal is given more weight relative to the
regularization goal.
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In addition, because non-stationary deconvolution by polynomial division can be-
come unstable at sharp boundaries, the filter range at any image point is a function of
dip contrast-dependent covariance. Details of this preconditioning approach is outside
the scope of this paper and will be discussed elsewhere.

NUMERICAL EXAMPLE

We demonstrate J-PLSI using a modified section of 2D Marmousi model (Figure 1).
The objective is to image the seismic amplitude changes at the reservoir using si-
multaneous source data sets. We assume seismic amplitude changes only within the
reservoir and neglect geomechanical changes.

The data consist of two sets of 29 encoded shot records over the 8x8 m grid model
at different production stages. In this example, because we use a known background
baseline velocity model, both data sets are fully encoded. The random encoding
function, with a maximum delay of 1 s, is different for each data set. Shot positions
vary randomly between surveys with a maximum displacement of 32 m, whereas the
receiver array is the same for both surveys and fixed for all shots. Dips were computed
from a single source migrated baseline image (not shown).

(a)

Figure 1: 2D Marmousi velocity model.[ER]

Figures 2 shows the baseline and monitor data sets. The downgoing baseline
and monitor source wavefields at time 0.52 s are shown Figure 3. The single and
simultaneous source migrated monitor images are shown in Figures 4(a) and 4(b),
respectively. The inverted simultaneous source monitor image obtained from J-PLSI
is shown in Figure 4(c). Figure 5 shows the migrated and inverted time-lapse images.
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Note that the cross-term artifacts in the migrated time-lapse image (Figure 5(b))
are significantly attenuated in the inverted image (Figure 5(c)). The weighted RMS
difference (non-repeatability) between the migrated and inverted images are shown
in Figure 6.

DISCUSSION AND CONCLUSIONS

We have presented a joint least-squares wave-equation inversion method (J-PLSI)
for imaging simultaneous source (or blended) time-lapse seismic data sets. Because
it is difficult to repeat both the shot-receiver positions and relative shot-timing for
different surveys, there will be significant non-repeatability in simultaneous source
data sets. J-PLSI directly inverts the simultaneous source data sets without need
for prior separation, combining the cost savings advantages of simultaneous source
acquisition and phase-encoded migration.

Direct migration of simultaneous source data generates strong cross-term artifacts
(Figure 4(b)) relative to conventional single source data (Figure 4(a)). It is unlikely
that conventional cross-equalization methods will adequately attenuate these cross-
term artifacts while preserving the production-related time-lapse amplitude changes.
J-PLSI attenuates the artifacts giving images with better resolution and more bal-
anced amplitudes than migration (Figure 4). This translates to relatively high-quality,
high-resolution time-lapse images (Figure 5(c)).

Because simultaneous source acquisition reduces the overall data acquisition cost
and the acquired data can be efficiently processed, we recommend shorter survey
intervals. By acquiring time-lapse seismic data sets in this manner and processing
them using the J-PLSI method, we can get closer to the goal of continuous seismic
reservoir monitoring. The J-PLSI formulation also provides a suitable framework for
simultaneous inversion of multiple seismic and other reservoir monitoring data (e.g.
production).

J-PLSI provides gives good-quality inverted time-lapse images at a fraction of cost
of least-squares migration of single source data sets. Therefore, it can be applied to
conventional single source time-lapse data sets, specifically encoded for computational
cost savings. Where such an approach is taken, similar encoding schemes can be used
for all data sets and the suitable encoding scheme (Romero et al., 2000) can be chosen
to minimize the cross-term artifacts.

FUTURE DIRECTIONS

A more robust minimization such as L1 will likely yield better quality results than
those shown in this paper. We anticipate that a combination of L1-minimization
(including both data and model re-weighting) with our preconditioners will lead to a
robust inversion scheme for simultaneous source time lapse data sets.
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(a)

(b)

Figure 2: Encoded (a) baseline and (b) monitor data sets.[CR]
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(a)

(b)

Figure 3: Downgoing source wavefields at 0.52 s for (a) the baseline and (b) monitor
data sets. Note the difference in shot-timing.[CR]
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(a)

(b)

(c)

Figure 4: (a) Single source migrated monitor image. Simultaneous source (b) mi-
grated and (c) inverted monitor images.[CR]
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(a)

(b)

(c)

Figure 5: (a) Single source migrated time-lapse image. Simultaneous source (b)
migrated and (c) inverted time-lapse images. Note the cross-term artifacts in (b).[CR]
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(a)

(b)

Figure 6: Weighted RMS difference between the baseline and monitor images
obtained via (a) migration and (b) inversion. Note that inversion attenuates
the non-repeatbaility RMS energy and preserves preserving the production-related
change.[CR]
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