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ABSTRACT

Wave-equation tomography in the image-space is a powerful technique that
promises to yield more reliable velocity models than ray-based migration ve-
locity analysis in areas of complex overburden. Its practical use, however, has
been limited because of the high computational cost. Applying a target-oriented
approach and using data reduction can make wave-equation tomography in the
image space of practical use. Here, we present results of applying image-space
wave-equation tomography in the generalized source domain, where a small num-
ber of synthesized shot gathers are generated. Specifically, we generate synthe-
sized shot gathers by image-space phase encoding. This technique can also be
used in a target-oriented way. The comparison of the gradients of the tomogra-
phy objective functional obtained using image-space encoded gathers with those
obtained using the original shot gathers shows that those encoded shot gathers
can be used in wave-equation tomography problems. Velocity inversion using
image-space phase-encoded gathers converges to reasonable results when com-
pared to the correct velocity model. We illustrate our method by applying it to
the Marmousi model.

INTRODUCTION

Wave-equation tomography has the potential to overcome the problems faced by
ray-based traveltime tomography when estimating the velocity model in complex
geological scenarios. This is because wave-equation tomography uses band-limited
wavefields instead of infinite-frequency rays as carriers of information; thus it is ro-
bust even in the presence of strong velocity contrasts and immune to multi-pathing
issues. However, despite its theoretical advantages, wave-equation tomography is still
computationally challenging.

Wave-equation tomography can be performed in the data-space domain (Taran-
tola, 1987; Woodward, 1992) or in the image-space domain (Biondi and Sava, 1999;
Shen, 2004). The image-space approach minimizes the residual in the image do-
main obtained after migration. Regardless of the domain of application, using phase-
encoded data can substantially decrease the computational cost of wave-equation
tomography(Vigh and Starr, 2008; Shen and Symes, 2008). Tang et al. (2008) ex-
tended the theory of image-space wave-equation tomography from the conventional
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shot-profile domain (Shen, 2004) to the generalized source domain. The generalized
source domain can be obtained in two different spaces. In the data-space, shot gath-
ers are combined and the corresponding source function is synthesized, using a con-
venient phase-encoding scheme, which characterizes the data-space phase encoding
(Whitmore, 1995; Romero et al., 2000). In the image-space, source- and receiver-areal
data are synthesized by upward propagating wavefields. The initial condition for the
modeling is a prestack image computed with wave-equation migration, according to
the prestack exploding-reflector modeling (Biondi, 2006, 2007). The modeling exper-
iments can be combined such that a small quantity of areal data is generated. In
this case, to mitigate crosstalk during imaging, the modeling experiments and re-
flectors are phase-encoded, characterizing the image-space phase encoding (Guerra
and Biondi, 2008). To encode the reflectors, a picking step of some key reflectors is
necessary.

In this paper, we show that image-space phase-encoded wavefields can be used
to estimate the velocity model in image-space wave-equation tomography. We show
that the gradient of the tomographic objective functional is similar to that obtained
in the original shot-profile domain, but with less computational cost. Velocity inver-
sion using image-space phase-encoded gathers converges to reasonable results when
compared to the correct velocity model, provided that crosstalk has been sufficiently
attenuated. We briefly discuss the theory of wave-equation tomography in the image-
space domain; then we explain the prestack exploding-reflector modeling and show
that the image-space phase encoding can be used to accelerate wave-equation tomog-
raphy in the image domain. We use the Marmousi model to illustrate the method.

IMAGE-SPACE WAVE-EQUATION TOMOGRAPHY

Image-space wave-equation tomography is a non-linear inverse problem that tries to
find an optimal background slowness that minimizes the residual field, ∆I, defined in
the image space. The residual field is derived from the background image, I, which
is computed with a background slowness. The general form of the residual field is
(Biondi, 2008)

∆I = I− F(I), (1)

where F is a focusing operator, which measures the focusing of the migrated image. In
particular, in the Differential Semblance Optimization (DSO) method (Shen, 2004),
the focusing operator takes the form:

F(I) = (1−O) I, (2)

where 1 is the identity operator and O is the DSO operator either in the subsurface
offset domain or in the angle domain (Shen, 2004).

Under `2 norm, the tomography objective function can be written as follows:

J =
1

2
||∆I||2 =

1

2
||I− F(I)||2. (3)

SEP–138



Guerra et al. 3 Image-space wave-equation tomography

The gradient of J with respect to the slowness s is

∇J =

(
∂I

∂s
− ∂F(I)

∂s

)∗

(I− F(I)) , (4)

where ∗ denotes the adjoint.

The linear operator ∂I
∂s

∣∣
s=bs, which defines a linear mapping from the slowness

perturbation ∆s to the image perturbation ∆I, can be computed by expanding the
image I around the background slowness ŝ. Keeping only the zeroth and first order
terms, we get the linear operator ∂I

∂s

∣∣
s=bs as follows:

∆I =
∂I

∂s

∣∣∣∣
s=bs ∆s = T∆s, (5)

where ∆I = I− Î, Î is the background image computed with the background slowness
ŝ and ∆s = s − ŝ. T = ∂I

∂s

∣∣
s=bs is the wave-equation tomographic operator. The

tomographic operator can be evaluated either in the source and receiver domain
(Sava, 2004) or in the shot-profile domain (Shen, 2004).

In the shot-profile domain, both source and receiver wavefields are downward
continued with the one-way wave equations (Claerbout, 1971){ (

∂
∂z

+ iΛ
)
D(x,xs, ω) = 0

D(x, y, z = 0,xs, ω) = fs(ω)δ(x− xs)
, (6)

and { (
∂
∂z

+ iΛ
)
U(x,xs, ω) = 0

U(x, y, z = 0,xs, ω) = Q(x, y, z = 0,xs, ω)
, (7)

where D(x,xs, ω) is the source wavefield for a single frequency ω at image point
x = (x, y, z) with the source located at xs = (xs, ys, 0); U(x,xs, ω) is the receiver
wavefield for a single frequency ω at image point x for the source located at xs;
fs(ω) is the frequency dependent source signature, and fs(ω)δ(x− xs) defines the
point source function at xs, which serves as the boundary condition of Equation 6.
Q(x, y, z = 0,xs, ω) is the recorded shot gather for the shot located at xs, which
serves as the boundary condition of Equation 7. Λ is the square-root operator

Λ =
√

ω2s2(x)− |k|2, (8)

where s(x) is the slowness at x; k = (kx, ky) is the spatial wavenumber vector. The
image is computed by applying the cross-correlation imaging condition:

I(x,h) =
∑
xs

∑
ω

D(x− h,xs, ω)U(x + h,xs, ω), (9)

where the overline stands for complex conjugate; D(x,xs, ω) is the source wavefield
for a single frequency ω at image point x = (x, y, z) with the source located at xs =
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(xs, ys, 0); U(x,xs, ω) is the receiver wavefield and h = (hx, hy, hz) is the subsurface
half-offset.

The perturbed image can be derived by the application of the chain rule to Equa-
tion 9:

∆I(x,h) =
∑
xs

∑
ω

(
∆D(x− h,xs, ω)Û(x + h,xs, ω)+

D̂(x− h,xs, ω)∆U(x + h,xs, ω)
)

, (10)

where D̂(x − h,xs, ω) and Û(x + h,xs, ω) are the background source and receiver
wavefields computed with the background slowness ŝ(x); ∆D(x−h,xs, ω) and ∆U(x+
h,xs, ω) are the perturbed source wavefield and perturbed receiver wavefield, which
are the results of the slowness perturbation ∆s(x).

To evaluate the adjoint of the tomographic operator, T∗, we first apply the adjoint
of the imaging condition to get the perturbed source and receiver wavefields, ∆D(x+
h,xs, ω) and ∆U(x + h,xs, ω), as follows

∆D(x,xs, ω) =
∑
h

∆I(x,h)Û(x + h,xs, ω)

∆U(x,xs, ω) =
∑
h

∆I(x,h)D̂(x− h,xs, ω). (11)

The perturbed source and receiver wavefields satisfy the following one-way wave
equations, linearized with respect to slowness:

(
∂
∂z

+ iΛ
)
∆D(x,xs, ω) =

 −iωr
1− |k|2

ω2bs2(x)

D̂(x,xs, ω)

 ∆s(x)

∆D(x, y, z = 0,xs, ω) = 0

, (12)

and 
(

∂
∂z

+ iΛ
)
∆U(x,xs, ω) =

 −iωr
1− |k|2

ω2bs2(x)

Û(x,xs, ω)

 ∆s(x)

∆U(x, y, z = 0,xs, ω) = 0

. (13)

When solving the optimization problem, the gradient of the objective function
is obtained by computing the perturbed wavefields using the adjoint of the imaging
operator (equation 11), where the image perturbation results from the application of a
focusing operator (equation 1) on the background image; then the scattered wavefields
are obtained by applying the adjoint of the one-way wave equations 12 and 13; and,
finally, the adjoint scattering operator cross-correlates the upward propagated the
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scattered wavefields with the modified background wavefields (term in the parenthesis
on the right-hand side of equations 12 and 13). Figure 1 displays the image-space
wave-equation tomography flowchart. The gray box on the left represents the process
of obtaining the image perturbation, while the gray box on the right corresponds to
the application of the adjoint of the wave-equation tomography operator. WE stands
for wavefield extrapolation. The light gray boxes contain the wavefields, images and
slowness perturbation. The processes and operators are represented as white boxes.
More detailed information on how to evaluate the forward and adjoint operators can
be found in Tang et al. (2008).

Figure 1: Image-space wave-equation tomography flowchart. The gray box on the left
represents the process of obtaining the image perturbation, while the gray box on the
right corresponds to the application of the adjoint of the wave-equation tomography
operator.[NR]

PRESTACK EXPLODING-REFLECTOR MODELING

The general idea of prestack exploding-reflector modeling (Biondi, 2006) is to model
the data and corresponding source function that are related to only one event in the
subsurface. In this case, a single unfocused subsurface-offset-domain common-image
gather (SODCIG) containing a single reflector is used as the initial condition for
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recursive upward continuation with the following one-way wave equations:{ (
∂
∂z
− iΛ

)
QD(x, ω; xm, ym) = ID(x,h; xm, ym)

QD(x, y, z = zmax, ω; xm, ym) = 0
, (14)

and { (
∂
∂z
− iΛ

)
QU(x, ω; xm, ym) = IU(x,h; xm, ym)

QU(x, y, z = zmax, ω; xm, ym) = 0
, (15)

where ID(x,h; xm, ym) and IU(x,h; xm, ym) are the isolated SODCIGs at the horizon-
tal location (xm, ym) for a single reflector, and are suitable for the initial conditions for
the source and receiver wavefields, respectively. As Biondi (2006) discusses, a rotation
of the image gathers according to the apparent geological dip must be performed prior
to modeling. By collecting the wavefields at the surface, we obtain the areal source
data QD(x, y, z = 0, ω; xm, ym) and the areal receiver data QU(x, y, z = 0, ω; xm, ym)
for a single reflector and a single SODCIG located at (xm, ym). Λ is the square-root
operator defined by

Λ =
√

ω2ŝ2(x)− |k|2,

where s(x) is the slowness at x and k = (kx, ky) is the spatial wavenumber vector.

Since the size of the migrated image volume can be very large in practice, and
there are usually many reflectors in the subsurface, modeling each reflector and each
SODCIG may generate a data set even larger than the original data set. One strategy
to reduce the cost is to model several reflectors and several SODCIGs simultaneously
(Biondi, 2006); however, this process generates unwanted crosstalk. As discussed
by Guerra and Biondi (2008), random phase encoding can be used to attenuate the
crosstalk.

One important characteristic of the prestack exploding reflector modeling is that,
for velocity model building, the wavefields can be upward propagated to a certain
depth level or depth horizon, provided that the velocity model above is sufficiently
accurate. Therefore, a target-oriented strategy can be applied to derive the velocity
model below the that depth.

IMAGE-SPACE PHASE-ENCODED WAVEFIELDS

The randomly encoded areal source and areal receiver wavefields can be computed as
follows: { (

∂
∂z
− iΛ

)
Q̃D(x,pm, ω) = ĨD(x,h,pm, ω)

Q̃D(x, y, z = zmax,pm, ω) = 0
, (16)

and { (
∂
∂z
− iΛ

)
Q̃U(x,pm, ω) = ĨU(x,h,pm, ω)

Q̃U(x, y, z = zmax,pm, ω) = 0
, (17)

SEP–138



Guerra et al. 7 Image-space wave-equation tomography

where ĨD(x,h,pm, ω) and ĨU(x,h,pm, ω) are the encoded SODCIGs. They are de-
fined as:

ĨD(x,h,pm, ω) =
∑

xm,ym
ID(x,h, xm, ym)β,

ĨU(x,h,pm, ω) =
∑

xm,ym
IU(x,h, xm, ym)β,

(18)

where β = eiγ(x,xm,ym,pm,ω) is chosen to be the random phase-encoding function, with
γ(x, xm, ym,pm, ω) being a uniformly distributed random sequence in x, xm, ym and
ω; the variable pm is the index of different realizations of the random sequence. Recur-
sively solving Equations 16 and 17 gives us the encoded areal source data Q̃D(x,pm, ω)

and encoded areal receiver data Q̃U(x,pm, ω), which can be collected at any depth.

In image-space wave-equation tomography, the image-space phase-encoded areal
data sets are downward continued using the one-way wave equation. The background
image is produced by cross-correlating the two wavefields and summing images for all
realizations pm, as follows:

Ime(x,h) =
∑

pm,ω D̃(x,pm, ω)Ũ(x,pm, ω). (19)

The initial condition for modeling simultaneous events is set by regularly selecting
SODCIGs in the prestack image. The amount of crosstalk in the image Ime(x,h)
can be controlled by choosing a convenient sampling interval for SODCIGs used
simultaneously for the modeling. For instance, if only one reflector is present and the
correct velocity is used, no crosstalk is generated if the SODCIG interval is greater
than twice the maximum subsurface offset of the prestack image. In the extreme case,
when an incorrect velocity is used and the reflector’s energy spreads through the whole
range of subsurface offsets, crosstalk is not generated if the the SODCIG interval is
greater than four times the maximum subsurface offset. In the presence of more than
one reflector, crosstalk between reflectors occurs, regardless of the distance between
SODCIGs input to modeling. By phase-encoding the reflectors, we can mitigate the
crosstalk.

To phase-encode the reflectors it is necessary to pick some significant reflectors in
the prestack migrated data. This implies a horizon-based approach for the prestack
exploding-reflector modeling. In velocity-model updating, the idea of using some
key reflectors to extract the residual-moveout information is an established strategy
(Stork, 1992; Kosloff et al., 1996; Jiao et al., 2008).

The perturbed image is obtained by applying the chain rule to Equation 19. The
slowness perturbation is computed by applying the adjoint of the tomographic oper-
ator, T∗, to the image perturbation.

NUMERICAL EXAMPLES

We test the image-space wave-equation tomography using image-space encoded data
on a smoothed version of the Marmousi model, computed by applying a 200 m 2D-
median filter to the slowness model. One-way data were synthesized considering a
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reflectivity computed from the Marmousi stratigraphic velocity model. We modeled
376 shots, ranging from 0 to 9000 m, with 24 m spacing. We used split-spread
acquisition geometry, with maximum offset of 6600 m and receiver spacing of 24 m.

Figure 2(a) shows the true slowness model. The background velocity model is
equal to the correct velocity model above 2400 m depth and above the anticline
with apex at (x = 6000 m, z = 1850m). Therefore, the slowness perturbation is
zero in this portion of the model. Below these horizons, the background model is
characterized by a smoother version of the original Marmousi model, computed with
a 400 m 2D-median filter and scaled down by a factor of 5%. Figure 2(b) shows the
background slowness. By using this background slowness model, we assume that a
layer striping approach has been used and that the model is accurately defined up to a
certain horizon, as usually occurs in projects of velocity model building. The slowness
perturbation, computed by taking the difference between the correct and background
slownesses, is shown in Figure 3(a). In the part where the slowness perturbation is
different from zero, the ratio between the true and the background slowness ranges
approximately from 0.8 to 0.92 (Figure 3(b)). Notice that the minimum depth is 1500
m. Henceforth, all the figures will be displayed with a minimum depth of 1500 m.

Figure 2: a) Correct slowness; b) Background slowness.[ER]

To compute the image-space phase-encoded data, we picked 10 reflectors in the
non-zero slowness perturbation part, in the prestack image computed with the 376
original shots using the background slowness model. Figure 4 shows the background
image (Figure 4a) computed with shot-profile migration. The panel on the left corre-
sponds to the zero-subsurface-offset section, and the panel on the right is the SODCIG
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Figure 3: a) Slowness perturbation; b) Ratio between the true and the background
slownesses.[ER]

at CMP position 5500 m. Notice the effects of using an inaccurate background slow-
ness. The reflector at (7000 m, 2500 m) is pulled up, as are the subjacent reflectors.
In the SODCIG, the energy is not focused at the zero subsurface offset.

Figure 4(b) shows the picked reflectors used to model the image-space phase-
encoded data. This image is used as input for the rotation of the reflectors in the
SODCIGs with respect to the apparent geological dip, and the results are used as
the initial conditions to model the image-space phase-encoded data, as discussed by
Biondi (2006, 2007). Figure 5 shows the initial conditions for the prestack modeling.
Figure 5(a) shows the initial condition for modeling the receiver wavefield, and Figure
5(b) shows the initial condition for modeling the source wavefield.

Two image-space phase-encoded data sets were synthesized using different pa-
rameters. One contains one random realization of phase-encoded areal shots initiated
simultaneously with SODCIG sampling interval of 264 m and encoded according to
the CMP position and reflector number, generating 11 areal shot gathers. The other
data set corresponds to two random realizations modeled with SODCIG sampling in-
terval of 840 m, composed of 70 areal shot gathers. Because in the velocity inversion
we consider the maximum subsurface offset to be 192 m, this data set is expected to
generate less crosstalk. In some comparisons, we use just one random realization (35
areal shots) of the second data set. We use the two random realizations when com-
paring the results of the non-linear optimization of the slowness model. Henceforth,
the image-space phase-encoded data sets are called areal shots.
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Figure 4: Zero-subsurface offset section (panel on the left) and SODCIG at 5500 m
(panel on the right) showing: a) background image, and b) windowed image used to
compute image-space-encoded data.[CR]

Figure 5: Zero-subsurface offset section (panel on the left) and SODCIG at 5500 m
(panel on the right) showing: a) initial condition for modeling the receiver wavefield,
and b) initial condition for modeling the source wavefield.[CR]
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In the slowness optimization problem, we compute the image perturbation by
applying the DSO operator, O, to the background image in the subsurface-offset
domain. The corresponding objective functional is

J =
1

2
||OÎ||2 =

1

2
||hÎ||2. (20)

Since the DSO operator is independent of the slowness, the gradient of J with respect
to the slowness s is

∇J =

(
∂I

∂s

∣∣∣∣
s=bs

)∗

O∗OÎ = T∗O∗OÎ. (21)

Given that the computation of the DSO objective functional is fully automated, it
can be minimized by using quasi-Newton methods. Here, we specifically use the
constrained L-BFGS algorithm (Nocedal and Wright, 2000).

To guarantee smoothness of the wave-equation tomography gradient, we use a
B-spline representation with nodes located every 960 m in the x-direction and 16 m
in the z-direction.

Figure 6 shows the image perturbation computed by applying the forward tomo-
graphic operator, T, and using the background slowness of Figure 2(b) and the known
slowness perturbation of Figure 3. Figure 6a shows the image perturbation computed
in the shot-profile domain for the 376 shots; Figure 6b shows the image perturbation
computed in the image-space phase-encoded domain using 11 areal shots; and Figure
6c shows the image perturbation computed in the image-space phase-encoded domain
using 35 areal shots. Notice that the dispersed crosstalk is stronger in Figure 6b than
in Figure 6c.

Figure 7 illustrates the normalized slowness perturbations obtained by applying
the adjoint tomographic operator T∗ to the image perturbations of Figure 6. Compare
with the correct slowness perturbation of Figure 3. Figure 7a is the predicted slowness
perturbation found by back-projecting Figure 6a using all 376 shot gathers; Figure 7b
shows the back-projection of Figure 6b using 11 areal shots; and Figure 7c shows the
back-projection of Figure 6c using 35 areal shots. Notice that we do not use a B-spline
representation for the slowness perturbations. In general, the predicted slowness
perturbation with image-space phase-encoded gathers shows a structure similar to
that obtained with the original shot gathers. The differences can be credited, at
first order, to the occurrence of residual crosstalk in the image-space phase-encoded
perturbed image and to a sub-optimal number of selected reflectors for the prestack
exploding-reflector modeling.

Finally, we compare the optimized slowness models with the correct slowness
model of Figure 2(a). After 5 non-linear iterations for both the 11 areal shots and 35
areal shots (one random realization) of the 70-gather image-space phase-encoded data
set the optimization stopped because the difference between the objective functional of
successive iterations was smaller than the machine precision. The number of function
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Figure 6: Zero-subsurface offset section (panel on the left) and SODCIG at 5500
m (panel on the right) showing: a) image perturbation in the shot-profile domain;
b) image perturbation computed with 11 areal shots; and c) image perturbation
computed with 35 areal shots.[CR]
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Figure 7: Normalized slowness perturbation obtained by applying the adjoint tomo-
graphic operator T∗ on the image perturbations in Figure 6. a) Slowness perturbation
computed from Figure 6a. b) Slowness perturbation computed from Figure 6b. c)
Slowness perturbation computed from Figure 6c.[CR]
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evaluations was 28 for the 11 areal shots, and 27 for the 35 areal shots. We also
computed 2 non-linear iterations with a total of 6 function evaluations using the two
random realizations of the 70 areal shots. To verify the accuracy of the resulting
optimized slowness models, we also migrated the original shot gathers with the three
optimized slownesses and also with the correct slowness.

Figure 8 displays the evolution of the objective functional with the non-linear
iterations for the 11 areal shots (Figure 8(a)) and 35 areal shots (Figure 8(b)). For
comparison, the value of the objective functional for the true velocity is also shown
as dashed lines. The values are normalized according to the value of the objective
functional of the first iteration for each case. The objective functional was reduced in
22% and 36% for the 11 areal shots and for the 35 areal shots, respectively. Notice that
those values are 23% and 47%, respectively, when using the true slowness model. The
smaller difference between the final optimized value of the objective functional and the
objective functional computed with the true slowness model for the optimization with
the 11 areal shots, can be partially credited to the more severe crosstalk generated
by this data set than the 35 areal shots. Even if the correct slowness model is used,
residual crosstalk is amplified when applying the DSO operator.
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Figure 8: Evolution of the objective functional with the non-linear iterations. The
dashed lines represent the value of the objective functional for the true slowness
model. a) Normalized objective functional for the 11 areal shots. b) Normalized
objective functional for the 35 areal shots.[NR]

Figure 9 shows the optimized slownesses and, for comparison purposes, the true
slowness. Figure 9(a) displays the slowness model; Figure 9(b) is the slowness model
obtained with the 11-gather image-space phase encoded data; Figure 9(c) is the slow-
ness model obtained with the 35-gather image-space phase encoded data; and Figure
9(d) is the slowness model obtained with the 70-gather image-space phase encoded
data. In general, the predicted slownesses are reasonable. The predicted slowness
using the 11 areal shots shows slightly lower values than the other two predicted
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slownesses. Notice that the detailed slowness variation present in the true slowness is
not recovered in the optimized slownesses, due to the B-spline representation of the
gradient of the wave-equation tomography objective functional. In addition, as we
are solving for the deeper portion of the model with dipping reflectors, it is likely that
deficient illumination prevents us to obtain a more accurate slowness model. How-
ever, the slowness model obtained with the 70 areal shots recovers the low slowness
values on the left of model better than the other two predicted slownesses.

Figure 10 shows the histograms of the ratio between the true and background
interval slowness (continuous line) and between the true and predicted interval slow-
nesses obtained with the 11 (fine dash), 35 (fine dot), and 70 areal shots (large dash)
below the depth of 2400 m.

The mean and standard deviation of the corresponding distributions are summa-
rized in Table 1. In general, the predicted slownesses vary between 94% to 100% of
the true slowness. The background slowness varies between 110% to 116% of the true
slowness.

Slowness ratio mean σ
background 0.884 0.025
11 gathers 1.030 0.033
35 gathers 1.027 0.032
70 gathers 1.013 0.027

Table 1: Mean and standard deviation of the interval slowness ratio.

Figure 11 displays the zero-subsurface-offset section after migration of the 376
original shot gathers using the true slowness model (Figure 11(b)), the predicted
slowness using 11 areal shots (Figure 11(c)), the predicted slowness using 35 areal
shots (Figure 11(d)), and the predicted slowness using 70 areal shots (Figure 11(e)).
For comparison, we also display in Figure 11(a) the zero-subsurface-offset section
after migration with the background slowness of Figure 2(b). Notice that reflectors
in the central portion of Figure 11(a) are pulled up when comparing to Figure 11(b).
The image obtained with the optimized slowness model computed with the 11 areal
shots (Figure 11(c))presents pushed down reflectors around (4000 m, 2500 m) as a
consequence of the lower values of the optimized slowness. In addition, in this image
the undulating character of the reflector at (7000 m, 2600 m) reflects some velocity
inaccuracy, when compared to Figures 11(b) and (e).

From top to bottom, Figure 12 displays SODCIGs at 1500 m, 3500 m, 5500 m
and 7500 m after migration of the 376 original shot gathers, using the background
slowness of Figure 2(b) in the first row, using the true slowness model in the second
row, using the predicted slowness with 11 areal shots in the third row, using the
predicted slowness with 35 areal shots in the fourth row, and using the predicted
slowness with 70 areal shots in the fifth row. The subsurface-offset ranges from -192
m to 192 m. The analysis of the SODCIGs in Figures 12(c) to (e) shows that better
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Figure 9: True and optimized slownesses. a) True slowness model; b) Slowness model
obtained with the 11-gather image-space phase-encoded data. c) Slowness model
obtained with the 35gather -image-space phase-encoded data. d) Slowness model
obtained with the 70-gather image-space phase-encoded data.[CR]
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Figure 10: Histograms of the slowness ratios between the true and background interval
slowness (continuous line) and between the true and predicted interval slownesses
obtained with the 11 (fine dash), 35 (fine dot), and 70 areal shots (large dash).[CR]

focusing is achieved when more image-space phase-encoded gathers are used in the
wave-equation tomography.

Figure 13 displays the angle-domain common-image gathers (ADCIGs) taken at
the same CMP position as SODCIGs of Figure 12. From top to bottom, Figure 13
displays ADCIGs after migration using the background slowness in the first row, using
the true slowness model in the second row, using the predicted slowness with 11 areal
shots in the third row, using the predicted slowness with 35 areal shots in the fourth
row, and using the predicted slowness with 70 areal shots in the fifth row. Notice
that migration with the predicted slowness using 70 areal shots shows virtually no
residual moveout. For the case of predicted slowness using 11 and 35 areal shots some
residual moveout occurs for CMP position 5500 m. As can be seen if Figure 13, the
angular coverage for the dipping deep reflectors we consider in the slowness inversion
ranges from −15◦ to 15◦. For the reflectors at the central portion of the model it
varies between −25◦ to 25◦. This limited angular coverage decreases the resolution
of the slowness estimate.

The accuracy of the optimized slowness improves when using more phase-encoded
gathers in the wave-equation tomography, or, in other words, when the crosstalk in
the perturbed image is less severe, as Figures 6 and 7 suggest. Figure 14 shows the
perturbed image computed by applying the DSO operator on the image migrated
with the background slowness of Figure 2(b). The panel on the left corresponds to
the subsurface-offset -144 m and the panel on the right is the SODCIG taken at 5500
m. Figure 14(a) shows the perturbed image using 11 areal shots; Figure 14(b) shows
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Figure 11: Zero-subsurface-offset section after migration of the 376 original shot
gathers using: a) the true slowness model; b) the predicted slowness model of Figure
9(a); c) the predicted slowness model of Figure 9(b); and d) the predicted slowness
model of Figure 9(c).[CR]
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Figure 12: Subsurface-offset gathers after migration of the 376 original shot gathers.
From top to bottom: in the first row, using the background slowness model; the
second row, using the true slowness model; in the third row, using the predicted
slowness model of Figure 9(b); in the fourth row, using the predicted slowness model
of Figure 9(c); and in the fifth row, using the predicted slowness model of Figure
9(d).[CR]
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Figure 13: ADCIGs after angle transformation of the SODCIGs of Figure 12. From
top to bottom: in the first row, using the background slowness model; the second
row, using the true slowness model; in the third row, using the predicted slowness
model of Figure 9(b); in the fourth row, using the predicted slowness model of Figure
9(c); and in the fifth row, using the predicted slowness model of Figure 9(d).[CR]
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the perturbed image using 35 areal shots; and Figure 14(c) shows the perturbed
image using 70 areal shots. Notice how the signal-to-noise ratio improves as more
phase-encoded gathers are used. The SODCIG of the perturbed image of Figure
14(a) presents coherent events, related to unattenuated crosstalk, curving upward at
z = 2700 m; these events are not present in Figures 14(b) and (c). If these events are
sufficiently incoherent along the subsurface-offset sections, a two-dimensional filter
could be applied to attenuate them. In that case, a new objective function should be
defined. This deserves future investigation.

Figure 14: Perturbed images computed with the DSO operator. a) Perturbed image
using 11 areal shots. b) Perturbed image using 35 areal shots. c) Perturbed image
using 70 areal shots.[CR]
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CONCLUSIONS

We present a cost-effective method to perform image-space wave-equation tomog-
raphy using image-space phase-encoded shot gathers. One important advantage is
that we are able to synthesize a much smaller data set while still keeping necessary
velocity information for migration velocity analysis; hence the computational cost of
performing image-space wave-equation tomography can be significantly reduced. Our
results show that using the image-space phase-encoded wavefields in the image-space
wave-equation tomography problem can provide reliable optimized slowness model,
given that crosstalk is sufficiently attenuated.
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