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Preface

The electronic version of this report1 makes the included programs and applications available
to the reader. The markings [ER], [CR], and [NR] are promises by the author about the
reproducibility of each figure result. Reproducibility is a way of organizing computational
research that allows both the author and the reader of a publication to verify the reported
results. Reproducibility facilitates the transfer of knowledge within SEP and between SEP
and its sponsors.

ER denotes Easily Reproducible and are the results of processing described in the pa-
per. The author claims that you can reproduce such a figure from the programs,
parameters, and makefiles included in the electronic document. The data must either
be included in the electronic distribution, be easily available to all researchers (e.g.,
SEG-EAGE data sets), or be available in the SEP data library2. We assume you have
a UNIX workstation with Fortran, Fortran90, C, X-Windows system and the software
downloadable from our website (SEP makerules, SEPlib, and the SEP latex package),
or other free software such as SU. Before the publication of the electronic document,
someone other than the author tests the author’s claim by destroying and rebuilding
all ER figures. Some ER figures may not be reproducible by outsiders because they
depend on data sets that are too large to distribute, or data that we do not have
permission to redistribute but are in the SEP data library.

CR denotes Conditional Reproducibility. The author certifies that the commands are in
place to reproduce the figure if certain resources are available. The primary reasons for
the CR designation is that the processing requires 20 minutes or more, or commercial
packages such as Matlab or Mathematica.

NR denotes Non-Reproducible figures. SEP discourages authors from flagging their fig-
ures as NR except for figures that are used solely for motivation, comparison, or
illustration of the theory, such as: artist drawings, scannings, or figures taken from
SEP reports not by the authors or from non-SEP publications.

Our testing is currently limited to LINUX 2.6 (using the Intel Fortran90 compiler), but the
code should be portable to other architectures. Reader’s suggestions are welcome. More
information on reproducing SEP’s electronic documents is available online3.

1http://sepwww.stanford.edu/private/docs/sep138
2http://sepwww.stanford.edu/public/docs/sepdatalib/toc html
3http://sepwww.stanford.edu/research/redoc/
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Delayed-shot migration in TEC coordinates

Jeff Shragge

ABSTRACT

This paper extends the analytical Riemannian wavefield extrapolation (RWE) approach
to 3D coordinate systems. I formulate an inline delayed-shot migration procedure in
tilted elliptical-cylindrical (TEC) coordinate systems. When inline coordinate tilt an-
gles are well-matched to the inline source ray parameters, the TEC coordinate extension
affords accurate propagation of both steep-dip and turning-wave components. I show
that wavefield extrapolation in TEC coordinates is no more complicated than propa-
gation in elliptically anisotropic media. Impulse response tests illustrate the accuracy
and lack of numerical anisotropy of the implemented scheme. I apply this approach to
a realistic 3D wide-azimuth synthetic derived from a field Gulf of Mexico data set. The
resulting images demonstrate the imaging advantages made possible through 3D RWE
implementations, including the improved imaging of steeply dipping salt flanks, poten-
tially at a reduced computational cost. Narrow-azimuth migration results demonstrate
the applicability of the approach to typical Gulf of Mexico field data.

INTRODUCTION

Wave-equation migration (WEM) methods routinely generate accurate seismic images in
areas of complex geology. One common class of WEM approaches is shot-profile migration
using one-way wavefield extrapolation. The first shot-profile migration step is to specify
source and receiver wavefields that consist of modeled point sources and an individual shot
profile, respectively. The migration algorithm propagates these two wavefields through the
velocity model and correlates them at each extrapolation step to form an image. Although
this procedure generates high-quality migration results, two drawbacks make shot-profile
migration a less-than-ideal strategy. The first issue is that each individual shot migration
requires a large aperture to propagate energy to wide offsets. The second drawback is that
one migrates each shot record individually, which can be computationally expensive for
large surveys with a high shot density.

One way to make the shot-profile style of WEM more efficient is to migrate a reduced
number of composite source and receiver profiles each covering a broader aperture. For
example, one can image a number of shot profiles simultaneously on the same migration
domain. The key idea is that one makes a computationally advantageous trade-off of a
broader migration aperture for a reduced number of shots. Shot-profile migration with
composite wavefields, though, leads to the mixing of information from different shots and
generates image crosstalk. A number of authors address this problem using a variety of
phase-encoding migration approaches (Morton and Ober, 1998; Jing et al., 2000; Romero
et al., 2000; Sun et al., 2002), that minimize the deleterious crosstalk effects.

Plane-wave migration (PWM) is one technique for reducing total migration cost using
composite wavefields (Whitmore, 1995; Mosher and Foster, 1998; Duquet et al., 2001; Zhang
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et al., 2003; Liu et al., 2004, 2006). As originally demonstrated by Whitmore (1995), the key
idea is to synthesize from the full wavefield volume the set of composite receiver wavefields
that would have been recorded were a planar source function used. Generally, the number
of synthesized wavefields is fewer than the corresponding number of shot profiles. One
generates PWM images by propagating the modeled planar source and composite receiver
wavefields through the velocity and computing a (weighted) correlation. Liu et al. (2006)
and Duquet and Lailly (2006) demonstrate that PWM is equivalent to shot-profile migration
in the limit where one uses many plane waves with well-sampled plane-wave dip spectra. Liu
et al. (2006) also prove that 3D PWM is equivalent to conical-wave migration of individual
sail lines synthesized as inline composite wavefields. The approach is termed conical wave
because the source wavefronts form conic sections (in constant media) for non-zero inline
plane-wave ray parameters.

The migration of plane- and conical-wave data, though more efficient than shot-profile
migration, is similarly restricted in accuracy by one-way wavefield extrapolation assump-
tions. The most common limitation is a difficulty in propagating waves at large angles and
turning waves by design, both of which are important for accurately imaging salt flanks in
complex geologic areas. Shan and Biondi (2004) circumvent this problem by implementing
3D PWM in tilted Cartesian meshes. This coordinate system effectively orients the wave-
field extrapolation axis toward the plane-wave take-off vector, enabling more accurate bulk
propagation of plane-wave energy. One logistical complication of performing fully 3D PWM
is that it requires propagating image-space-sized data volumes on a number of meshes tilt-
ing in both the inline and cross-line directions. This leads to a number of computational
issues associated with the significant memory footprint.

This paper presents an alternative to the phase-encoding approach of Shan and Biondi
(2004), which similarly uses alternative coordinate systems. The key differences between
these two approaches are two-fold. The first difference is that I phase encode only according
to the inline source coordinate, leading to the inline delayed-shot migration algorithm.
This leads to a straightforward coarse-grain parallelization of the migration tasks across
individual sail lines, where each migration has a significantly smaller aperture than the
corresponding image-space-sized PWM volumes. A second efficiency gain over PWM is a
reduction in the total number of migrations, because the number of sail lines is quite often
fewer than the required number of cross-line plane waves. Thus, the inline-delayed shot
approach has attractive computational advantages over the 3D PWM technique.

The second difference is that I migrate data in tilted elliptical-cylindrical (TEC) coordi-
nates, rather than tilted Cartesian meshes. The key idea is that, because the geometry of the
TEC coordinate system closely resembles the shape of a line-source impulse response, TEC
meshes afford accurate propagation of most steep-dip and turning waves in all directions.
TEC coordinate systems, formed by concatenating a set of the 2D elliptical coordinates
(Shragge and Shan, 2008) along the invariant third axis, are thus well-suited for migrating
individual sail lines. I extrapolate the inline delay-shot synthesized wavefield volumes out-
ward on a series of elliptical-cylindrical shells. This allows source and receiver wavefields
with zero inline dip to overturn in the cross-line direction, if necessary. I introduce an extra
degree of freedom that permits the coordinate system to tilt along the invariant inline axis,
thus enabling the propagation of turning waves inline. Consequently, inline delayed-shot
migration in TEC coordinates allows wavefields with most non-zero dips to propagate and
overturn to all azimuths as appropriate.
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The paper begins by examining 3D full-plane-wave and inline delayed-shot migration
theory. I then introduce the TEC coordinate geometry and develop the corresponding
wavenumber that forms the basis of the TEC wavefield extrapolation operator. I discuss
the finite-difference extrapolation implementation and present the 3D impulse response. I
apply the technique to a 3D wide-azimuth synthetic data set derived from real Gulf of
Mexico velocity model to demonstrate the imaging advantages of 3D RWE migration. I
then discuss the numerical costs associated with performing inline delayed-shot migration
in TEC coordinates relative to Cartesian meshes. The paper concludes with narrow-azimuth
migration results demonstrate the applicability of the approach to typical Gulf of Mexico
field data.

3D PLANE-WAVE MIGRATION

The full plane-wave and inline delayed-shot migration theory discussed herein draws largely
from Liu et al. (2006). I restate a number of key points for completeness, though with
a slightly different notation. As in previous chapters, I define Cartesian coordinates by
x = [x1, x2, x3] and a generalized coordinate system by ξ = [ξ1, ξ2, ξ3].

Full plane-wave phase-encoding migration

Performing 3D plane-wave migration is similar in many respects to 3D shot-profile migra-
tion. The main differences derive from how the composite source and receiver wavefield
volumes, S and R, are re-synthesized from individual source and receiver profiles, Sjk and
Rlm, prior to imaging. The complete wavefields are generated by filtering the source and
receiver profiles by a function dependent on the inline and cross-line plane-wave ray param-
eters, pξ = [pξ1 , pξ2 ]. These wavefields are then propagated through the migration domain
to generate the full source and receiver wavefield volumes

S(ξ|ω) =
A∑

j=1

B∑
k=1

Sjk(ξ|ω)f(ω)eiω[pξ1
∆ξ1(j−p)+pξ2

∆ξ2(k−q)], (1)

R(ξ|ω) =
A∑

l=1

B∑
m=1

Rlm(ξ|ω)f(ω)eiω[pξ1
∆ξ1(l−p)+pξ2

∆ξ2(m−q)], (2)

where f(ω) is a frequency filter to be discussed below, ∆ξ1 and ∆ξ2 are the inline and
cross-line sampling intervals, p and q are reference spatial indices in the inline and cross-
line directions, j and k are indices fixing the inline and crossline source position, l and m are
indices fixing the inline and cross-line receiver position, and A and B are the number of inline
and cross-line source records, respectively. The phase encoding, implemented at the surface
independent of wavefield extrapolation, is valid for any generalized coordinate system. Note
that the wavefield propagation throughout the migration volume in equations 1 and 2 is
understood, and assumed to be governed by the wavefield propagation techniques described
in Shragge (2008).

An image volume I(ξ) is formed from a series of individual full plane-wave migration
images, IPW (ξ|pξ), by correlating the composite plane-wave source and receiver wavefields
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and stacking the results over frequency. The plane-wave migration kernel mixes source and
receiver wavefield energy, Sjk(ξ|ω) and Rlm(ξ|ω), according to

I(ξ) =
∑
pξ1

∑
pξ2

A∑
j,l=1

B∑
k,m=1

IPW
jklm(ξ|pξ) (3)

=
∑
pξ1

∑
pξ2

A∑
j,l=1

B∑
k,m=1

∑
ω

|f(ω)|2 S∗jk(ξ|ω)Rlm(ξ|ω)eiω[pξ1
∆ξ1(j−l)+pξ2

∆ξ2(k−m)],

where ∗ indicates complex conjugate.

Generally, mixing wavefields of differing Sjk and Rlm indices introduces image crosstalk.
A plane-wave migration image will be crosstalk-free, though, in the following limits:

lim
Npξ1

→∞

Npξ1∑
α=−Npξ1

eiωα∆pξ1
∆ξ1(j−l) = |ω|−1δjl,

lim
Npξ2

→∞

Npξ2∑
α=−Npξ2

eiωα∆pξ2
∆ξ2(k−m) = |ω|−1δkm. (4)

where Npξ1
and Npξ2

are the number of plane waves in the ξ1 and ξ2 directions. Assuming
that equation 4 approximately is valid (i.e., for large values of Npξ1

and Npξ2
), I rewrite

equation 3 as

I(ξ) ≈
A∑

j=1

B∑
k=1

∑
ω

|f(ω)|2|ω|−2S∗jk(ξ|ω)Rjk(ξ|ω), (5)

which, by defining |f(ω)|2 = |ω|2, generates the following expression:

I(ξ) ≈
M∑

j=1

N∑
k=1

∑
ω

S∗jk(ξ|ω)Rjk(ξ|ω). (6)

This demonstrates the equivalence between plane-wave and shot-profile migration (Liu et al.,
2006).

Inline delayed-shot migration

An alternate 3D migration formulation is to phase-encode individual sail lines for a given ray
parameter, pξ1 , solely according to inline source position. This phase-encoding approach is
related to conical-wave migration, which requires j− l = 0 in equation 3. However, I choose
to not make this restriction because it is realized only by straight sail lines and non-flip-flop
sources (Liu et al., 2006). Rather, I present an alternative theory of inline delayed-shot
migration that allows more general crossline source and receiver distribution.

Inline delayed-shot wavefields, propagated through the migration domain to generate
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the full source and receiver wavefield volumes, are defined by

S(ξ|ω) =
A∑

l=1

B∑
j=1

Sjl(ξ|ω)f(ω)eiω[pξ1
∆ξ1(j−p)], (7)

R(ξ|ω) =
A∑

l=1

B∑
k=1

Rkl(ξ|ω)f(ω)eiω[pξ1
∆ξ1(k−p)], (8)

where j and k are the source and receiver inline position, respectively, B is the number of
inline records, l is the sail line index out of a total of A sail lines, and p is a reference inline
index.

An image volume I(ξ) is generated from a series of inline delayed-shot migration images,
IDS
l (ξ|pξ1), formed by correlating the composite inline source and receiver wavefields and

stacking the results over frequency. The inline delayed-shot migration kernel mixes source
and receiver wavefield energy, Sjl(ξ|ω) and Rkl(ξ|ω), according to

I(ξ) =
A∑

l=1

∑
pξ1

B∑
j=1

B∑
k=1

IDS
jkl (ξ|pξ1) (9)

=
A∑

l=1

∑
pξ1

B∑
j=1

B∑
k=1

∑
ω

|f(ω)|2 S∗jl(ξ|ω)Rkl(ξ|ω)eiω[pξ1
∆ξ1(j−k)],

Similar to plane-wave migration, mixing wavefields of differing Sjl and Rkl indices will
introduce crosstalk into the image volume. However, inline delayed-shot migration will be
crosstalk-free in the following limit:

lim
Npξ1

→∞

Npξ1∑
α=−Npξ1

eiωα∆pξ1
∆ξ1(j−k) = |ω|−1δjk, (10)

Defining |f(ω)|2 = |ω| and using the approximation in equation 10, I rewrite

IDS
l (ξ) ≈

B∑
j=1

∑
ω

S∗jl(ξ|ω)Rjl(ξ|ω). (11)

Stacking over all inline delayed-shot sail-line migration results yields the full image volume,

I(ξ) ≈
A∑

l=1

IDS
l (ξ) ≈

A∑
l=1

B∑
j=1

∑
ω

S∗jl(ξ|ω)Rjl(ξ|ω). (12)

This proves the equivalence of inline delayed-shot and shot-profile migration.

TILTED ELLIPTICAL-CYLINDRICAL COORDINATES

One question to be addressed is what coordinate system geometry optimally conforms to
the impulse response of a conical wavefield? I assert that the best geometry is that of the
TEC coordinate system shown in Figures 1 and 2. One advantage is that the breadth of
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the first extrapolation step at the surface allows multiple streamers of a single sail line
to be positioned directly on a single mesh. Hence, this geometry is applicable to both
narrow- and wide-azimuth acquisition. A second advantage is that one direction of large-
angle propagation can be handled by coordinate system tilting, while the other is naturally
handled by the ellipticality of the mesh. (Note that the geometry of another natural mesh
- cylindrical polar coordinates - would not be a judicious choice for because the geometry
permits migration of only single-streamer data and has singular points located on the surface
at the first extrapolation step.)

I set up the migration geometry of the elliptical-cylindrical mesh as follows:

• ξ3 ∈ [0,∞] is the extrapolation direction, where surfaces of constant ξ3 form concentric
elliptical cylinders, shown in Figure 1a.

• ξ2 ∈ [0, 2π) is the crossline direction, where surfaces of constant ξ2 are folded hyper-
bolic planes, shown in Figure 1b; and

• ξ1 ∈ [−∞,∞] is the inline direction, where surfaces of constant ξ1 are 2D elliptical
coordinate meshes, shown in Figure 1c;

The mapping relationship between the two coordinate systems, adapted from Arfken
(1970), is  x1

x2

x3

 =

 ξ1 cos θ − a sinh ξ3 sin ξ2 sin θ
a cosh ξ3 cos ξ2

ξ1 sin θ + a sinh ξ3 sin ξ2 cos θ

 , (13)

where θ is the inline tilt angle of the coordinate system and parameter a controls the
coordinate system breadth. Panels 2a and 2b show the TEC coordinate system at 0◦ and
25◦ tilt angles, respectively.

TEC extrapolation wavenumber

A metric tensor gjk can be specified from the mapping relationship given in equations 13:

[gjk] =

 1 0 0
0 A2 0
0 0 A2

 , (14)

where A = a
√

sinh2 ξ3 + sin2 ξ2. The determinant of the metric tensor is: |g| = A4. The
corresponding inverse weighted metric tensor, mjk as developed in Shragge (2008), is given
by: [

mjk
]

=

 A2 0 0
0 1 0
0 0 1

 . (15)

Note that even though the metric of the TEC coordinate system varies spatially, the local
curvature parameters (nj = ∂mjk

∂ξk
) remain constant: n1 = n2 = n3 = 0. The corresponding

extrapolation wavenumber, kξ3 , can be generated by inputting tensor mjk and fields nj into
the general wavenumber expression for 3D non-orthogonal coordinate systems

kξ3 = ±
√
A2s2ω2 −A2k2

ξ1
− k2

ξ2
, (16)
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Figure 1: Constant surfaces of the elliptical-cylindrical coordinate system (with zero inline
tilt). Cartesian coordinate axes are given by the vector diagram. a) constant ξ3 surfaces
forming confocal elliptical-cylindrical shells that represent the direction of extrapolation
direction. b) constant ξ2 surfaces representing folded hyperbolic planes. c) constant ξ1
surfaces representing 2D elliptical meshes. NR jeff1/. TECgeom
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Figure 2: Four extrapolation steps in ξ3 of an TEC coordinate system, where the ξ1 and
ξ2 coordinate axes are oriented in the inline and crossline directions, respectively. a) 0◦ tilt
angle. b) 25◦ tilt angle. NR jeff1/. TEC

where s is the slowness (reciprocal of velocity), kξ3 is the extrapolation wavenumber, and
kξ1 and kξ2 are the inline and crossline wavenumbers, respectively.

The wavenumber specified in equation 16 is central to the inline delayed-shot migration
algorithm. The first step is to extrapolate the source and receiver wavefields

Eξ3 [Sjl(ξ3, ξ1, ξ2|ω)] = Sjl(ξ3 + ∆ξ3, ξ1, ξ2|ω), (17)
E∗

ξ3 [Rkl(ξ3, ξ1, ξ2|ω)] = Rkl(ξ3 + ∆ξ3, ξ1, ξ2|ω), (18)

where Eξ3 [·] and E∗
ξ3

[·] are the extrapolation operator and its conjugate, respectively. The
results herein were computed using the ω−ξ finite-difference extrapolators discussed below.
The second step involves summing the individual inline delayed-shot images contributions,
IDS
jk (ξ), into the total image volume, I(ξ) according to equation 12.

3D IMPLICIT FINITE-DIFFERENCE EXTRAPOLATION

One obvious concern is whether the dispersion relationship in equation 16 can be imple-
mented accurately and efficiently in a wavefield extrapolation scheme. I address this ques-
tion by comparing the elliptical-cylindrical dispersion relationship to that for elliptically
anisotropic media in Cartesian coordinates. By defining an effective slowness sA = As and
rewriting equation 16 as

kξ3

ωsA
=

√
1−A2

k2
ξ1

ω2s2A
−

k2
ξ2

ω2s2A
, (19)

the TEC coordinate dispersion relationship resembles that of elliptically anisotropic media
(Tsvankin, 1996). More specifically, extrapolation in TEC coordinates is related to a special
case where the Thomsen parameters (Thomsen, 1986) obey ε = δ:

kx3

ωs

∣∣∣∣
ε=δ

=

√√√√√1− (1 + 2ε)
k2

x1
+k2

x2
ω2s2

1− 2(ε− δ)k2
x1

+k2
x2

ω2s2

∣∣∣∣∣∣∣
ε=δ

=

√
1− (1 + 2ε)

k2
x1

ω2s2
− (1 + 2ε)

k2
x2

ω2s2
. (20)

From equation 20 we see that equation 16 is no more complex than the dispersion relation-
ship for propagating waves in elliptically anisotropic media, which is now routinely handled
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Coeff. order j Coeff. aj Coeff. bj
1 0.040315157 0.873981642
2 0.457289566 0.222691983

Table 1: Coefficients used in 3D implicit finite-difference wavefield extrapolation.

with finite-difference approaches (Zhang et al., 2001; Baumstein and Anderson, 2003; Shan
and Biondi, 2005).

A general approach to 3D implicit finite-difference propagation is to approximate the
square-root by a series of rational functions (Ma, 1982)

Sξ3 =
√

1−A2S2
ξ1
− S2

ξ2
≈

n∑
j=1

ajS
2
r

1− bjS2
r

, (21)

where Sξj
=

kξj

ωsA
and S2

r = A2S2
ξ1

+ S2
ξ2

, for j = 1, 2, 3, and n is the order of the coefficient
expansion.

An optimal set of coefficients can be found by solving an optimization problem (Shan
and Biondi, 2005),

E(aj , bj) = min
∫ sinφ

0

√1− S2
r −

n∑
j=1

ajS
2
r

1− bjS2
r

2

dSr, (22)

where φ is the maximum optimization angle. I generated the following results using a
4th-order approximation and coefficients found in Table 1 (Lee and Suh, 1985).

Specifying a finite-difference extrapolator operator using the 4th-order approximation
is equivalent to solving a cascade of partial differential equations (Shan and Biondi, 2005)

∂

∂ξ3
Uξ3+∆ξ3/3 = iωsUξ3 ,

∂

∂ξ3
Uξ3+2∆ξ3/3 = iωs

[
a1

ω2s2
∂2

∂ξ21

1+
b1

ω2s2
∂2

∂ξ21

+
a1

ω2s2
A

∂2

∂ξ22

1+
b1

ω2s2
A

∂2

∂ξ22

]
Uξ3+∆ξ3/3, (23)

∂

∂ξ3
Uξ3+∆ξ3 = iωs

[
a2

ω2s2
∂2

∂ξ21

1+
b2

ω2s2
∂2

∂ξ21

+
a2

ω2s2
A

∂2

∂ξ22

1+
b2

ω2s2
A

∂2

∂ξ22

]
Uξ3+2∆ξ3/3.

I solve these equations implicitly at each extrapolation step by a finite-difference splitting
approach that alternatively advances the wavefield in the ξ1 and ξ2 directions. Splitting
methods allow the direct application of the A scaling factor in equation 21 by introducing
the original slowness model, sA

A = s, for the ξ1 direction split.

One drawback to finite-difference splitting methods is that they commonly generate
numerical anisotropy. To minimize these effects, I apply a Fourier-domain phase-correction
filter L[·] (Li, 1991)

L[U ] = Uei∆ξ3kL , (24)
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where

kL =

√
1−

k2
ξ1

(ωsr
1)2
−

k2
ξ2

(ωsr
2)2
−

1−
2∑

j=1

 aj(
kξ1
ωsr

1
)2

1− bj(
kξ1
ωsr

1
)2
−

aj(
kξ2
ωsr

2
)2

1− bj(
kξ2
ωsr

2
)2

 , (25)

and sr
1 and sr

2 are reference slownesses chosen to be the mean value of sA
eff and s defined

above, respectively. Note that while this phase-shift correction is explictly correct for v(ξ3)
media, the Li filter in v(ξ3, ξ1, ξ2) media is only approximate and will introduce error.

Impulse response tests

I conducted impulse response tests on a 500x400x400 cube in a homogeneous medium of
slowness s = 0.0005 sm−1. The initial wavefield consisted of three horizontally smoothed
point sources at t=0.5, 0.75, and 1 s. The impulse responses are expected to consist of three
hemispherical surfaces of radii r=1000, 1500, and 2000 m.

Figures 3a and 3b show the inline and crossline responses. The three lines overlying
the analytic curves show the correct impulse response locations. Note that the impulse
responses are restricted at large angles both by the coordinate system boundaries and by
the 50 sample cosine-taper function along the edges of the TEC mesh. Figure 4 shows a
impulse response slice extracted at 1300 m depth. The symmetric response indicates that
the numerical anisotropy from the numerical splitting is accounted for by the Li phase-
correction filter.

3D WIDE-AZIMUTH SYNTHETIC TESTS

This section presents the inline delayed-shot migration algorithm test results on a wide-
azimuth synthetic data set generated from a realistic 3D Gulf of Mexico velocity model.
Figure 5 presents some depth slices and sections through the model. The velocity model
is comprised of typical Gulf of Mexico sedimentary profile with a velocity gradient of ap-
proximately 0.2 s−1, with a number of salt bodies of complex 3D geometry characterized
by smoothly varying salt tops and steep flanks below overhangs. Key imaging targets in-
clude the steep salt flanks and the on-lapping sedimentary units that comprise the likely
exploration areas.

Table 2 summarizes the acquisition geometry of the data set. The data used for migra-
tion consisted of 72 sail lines separated 250 m apart. Each sail line consists of 100 shots
sampled at a 250 m shot interval. The receiver pattern for each shot record contains 321
inline samples with a maximum offset of ±8000 m computed at a 50 m interval, and 161
crossline samples with a maximum offset of ±4000 m at a 50 m interval.

A total of 192 frequencies were selected for migration starting at 1.42 Hz at a sampling
rate of 0.075 Hz. Filtered data from each sail line data were transformed into a plane-wave
data set by phase-encoding over a range of inline ray parameters, pξ1 . I selected a total of
101 inline ray parameters between ±8.33x10−4 sm−1 at a sampling rate of 8.33x10−6 sm−1.
Given the 1500 ms−1 water velocities at the surface, the maximum values correspond to a
surface take-off angle of ±38.7◦.
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Figure 3: Elliptical-cylindrical-coordinate impulse-response tests. a) Inline section. b)
Crossline section. CR jeff1/. CrossIn
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Figure 4: Elliptical-cylindrical im-
pulse response at 1300 m depth.
Note the circular symmetry of the
impulse response indicating little-to-
no numerical anisotropy. CR
jeff1/. Depth1300

Source Parameter Value Receiver Parameter Value
Number of sail lines 72 Max. inline offset (m) ±8000
Sail line interval (m) 250 Max. crossline offset (m) ±4000

Shots per sail line 100 Inline receiver interval (m) 50
Shot interval (m) 250 Crossline receiver interval (m) 50

Table 2: Parameters associated with the 3D synthetic data set.

I applied the inline delayed-shot migration technique to the plane-wave data on a sail-line
by sail-line basis, which allowed for a coarse-grain computational parallelism at a scripting
level. (The migration code was also OMP-enabled, which led to a second level of coarse-
grain parallelism over the frequency axis.) Migration runs were conducted for Cartesian
coordinate (CC) and TEC geometries with both tilting and non-tilting meshes. For CC
migrations, the data volumes were zero-padded with 40 samples on each inline side and 95
samples on each crossline side. The data volume for TEC migrations were padded with
40 samples on the inline sides, but only one sample on each crossline side because the
coordinate system aperture expands naturally in the crossline direction.

Figure 6 presents the 15400 m cross section from the 24500 m sail-line migration image
(for 101 plane-waves) for the TEC (top panel) and the CC (bottom panel) geometries. The
gently dipping sedimentary reflections in both sections are imaged across a 6000 m swath.
The TEC migration, relative to that in CC geometry, shows a significant improvement in
the vertical salt flank on the right-hand-side of the image. Although the salt-flank is weakly
present in the CC image under strong clipping, it is mis-positioned due to the 80◦ limit of
extrapolation operator accuracy.

Figures 7 and 8 present crossline sections from the full TEC and CC image volumes.
Figure 7 presents the EC and Cartesian crossline sections at the 33700 m inline coordinate
in the upper and lower panels, respectively. The TEC image has an improved left-hand salt
flank (marked A) that is more correctly positioned relative to the CC image. Similarly, the
right-hand salt flank (marked B) is more accurately positioned and forms a more continuous
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Figure 5: Depth section and inline crossline sections of the Gulf of Mexico velocity model
through complex 3D salt bodies. Top: 3900 m depth slice. Middle: 33000 m inline section.
Top: 16000 m crossline section. ER jeff1/. VELCUT
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Figure 6: Sections for the 24500 m sail line at the 15400m crossline coordinate. Top:
Elliptical-cylindrical coordinate image. Bottom: Cartesian coordinate image. NR
jeff1/. TESTY15400

reflector. Figure 8 presents the 15100 m crossline sections extracted from the two image
volumes. Note the differences in the vertical right-hand salt flank (marked A) between
the ECC (top panel) and CC (bottom panel) images. The TEC image exhibits a stronger
reflector that is better positioned than that in the CC image (again because of the high-angle
limits of the extrapolation operator).

Figure 9 shows the 21750 m inline section through the complete TEC (upper panel) and
CC (lower panel) image volumes. The left-hand salt flank (marked A) is more accurately
located and continuous in the TEC image. The right-hand salt flank (marked B), again,
is more continuous in the TEC image. Another observation is that the TEC image (and
in Figures 7-8) does not contain the same spatial frequency content as the CC images (see
below).

Figure 10 presents slices extracted at 6150 m depth from the TEC (top panel) and
CC (bottom panel) images. The images are again fairly similar, though are there slight
differences that correspond to amplitude differences between the weakly imaged steep flank
reflectors. Examples include the regions marked A and C that corresponds to the salt flanks
in Figure 9 and Figure 7, respectively. Finally, the migration algorithm has well-imaged the
set of channels denoted in region B in both coordinate system images.

Discussion

Relative computational cost is one important metric to consider when comparing the migra-
tion algorithms in different coordinate systems. In the above tests, padding in the crossline
direction tended to be the most important factor in determining the migration run time.
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Figure 7: crossline sections through the velocity model and full image volumes at inline
coordinate 33700 m. Top panel: Elliptical-cylindrical coordinate image. Bottom panel:
Cartesian coordinate image. The imaging improvements for the left-hand salt flank are de-
noted by the oval marked A. The oval marked B illustrates a more continuous and correctly
placed reflector in the TEC coordinate system. NR jeff1/. FIG3
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Figure 8: crossline sections through the velocity model and full image volumes at inline
coordinate 15100 m. Top panel: Elliptical-cylindrical coordinate image. Bottom panel:
Cartesian coordinate image. The oval marked A indicates the location of the vertical salt
flank that is better imaged in TEC coordinates. NR jeff1/. FIG4
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Figure 9: Inline sections through the velocity model and full image volumes at crossline
coordinate 21750 m. Top panel: Velocity section. Middle panel: Elliptical-cylindrical
coordinate image. Bottom panel: Cartesian coordinate image. The left-hand salt flank,
shown in oval A, is more accurately positioned in the TEC coordinate image, while the
right-hand flank, marked by oval B, is similarly more accurately positioned and continuous.
NR jeff1/. FIG1
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Figure 10: Depth slices through the velocity model and image volumes at 6150 m depth.
Top panel: Elliptical-cylindrical coordinate image. Bottom panel: Cartesian coordinate
image. Oval A illustrates the improved TEC image for the vertical salt flank shown in
Figure 8. Oval B demarcates a region where some of the smaller-scale fractures are well
imaged in both images. Oval C shows the region where the near-vertical flank shown in
TEC coordinate image in Figure 7 is better imaged. NR jeff1/. FIG5
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Migration Coordinate Mean run
style system time (hrs)

Plane-wave Tilted elliptical cylindrical 37.2
Plane-wave Cartesian 45.0
Shot-profile Tilted elliptical cylindrical 15.5
Shot-profile Cartesian 20.0

Table 3: Run-time comparisons for the delayed-shot migration and shot-profile styles in the
tilted elliptical-cylindrical and Cartesian coordinate systems.

One benefit of the TEC geometry is its naturally outward-expanding mesh in the elliptical
direction that effectively increasing the migration aperture. Thus, TEC migrations usually
require less zero-padding in the crossline direction relative to CC geometries. I performed
the TEC migrations on meshes with inline-by-crossline-by-depth grids of 720x324x400. Mi-
grations in CC geometries required a 720x512x400 mesh in order to achieve similar crossline
aperture, which resulted in a fairly significant additional computational overhead.

Table 3 shows the comparative costs for various TEC and CC migration runs for both
the shot-profile and delayed-shot migration styles. I used 72 data points in specifying each
median runtime times for the four different migration runs. The test migrations indicate that
the TEC geometry migrations were faster than the those in Cartesian tests (for equivalent
effective aperture), with 29% and 21% computational cost reduction for the shot-profile and
inline delayed-shot migration strategies, respectively.

One question worth addressing is how far can the TEC sampling be reduced before
imaging artifacts become apparent? As one moves outward between successive extrapolation
surfaces, the TEC geometry expands at increasingly larger step sizes. Fortunately, most
realistic velocity models have velocity increasing with depth, causing the wavelengths of
the propagated waves to lengthen. This phenomenon acts as a natural wavefield filter
that, in most cases, prevents wavenumbers from aliasing (except near-surface in the grid
extremities). A good rule-of-thumb is that one must ensure that the grid point of TEC
coordinate system mesh does not go below one grid point for every two CC grid points in
each direction; however, maintaining this relationship throughout the image volume is not
a straightforward task. Additional work on the craft of 3D coordinate-system interpolation
is necessary and would likely help restore some of the absent high frequency information.

An additional consideration of parameter choice is the interpolation window over which
the surface wavefields are injected onto the TEC coordinate mesh. Not using a sinc-based
interpolation over the near-surface depth axis can lead to significant artifacts; however,
choosing too large of a window will blend information from different extrapolation steps
leading to smoother and lower frequency images. Figures 7-10 show the result of a somewhat
overcautious parameter choice (interpolating wavefields three additional depth steps) that
led to the lower spatial wavenumber content of the TEC images relative to the CC images.
I assert that his effective low-pass filtering can be reduced by interpolating only one or two
additional steps in depth.
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NARROW-AZIMUTH FIELD DATA TEST

This section presents the results of applying the inline delayed-shot imaging procedure to a
3D Gulf of Mexico narrow-azimuth data set provided by ExxonMobil. The velocity model,
shown in Figure 11, consists of typical sediment-controlled v(ξ3) velocity structure, save for
the salt body intruding in the center of the block, and offset associated with throw along
the moderately dipping fault planes. By agreement with ExxonMobil, the depths shown in
all figures differ from the true values. Key imaging targets in this model include the steep

Figure 11: Velocity model example for Gulf of Mexico field data set. ER jeff1/. XOM-VEL

salt flanks around the salt structure and the onlapping sediments. Previous imaging work in
this area indicates that the sediments surrounding the salt body exhibit moderate-to-strong
degrees of anisotropy. Bear et al. (2005) estimated the vertical velocity and anisotropy
parameters (assuming VTI media) using a joint inversion technique that combined surface
seismic and borehole constraints. Shan (2008), using a 3D tilted Cartesian coordinate
plane-wave migration algorithm for transversely isotropic (TTI) media, demonstrated that
accounting for anisotropy greatly improves migrated image quality for this data set.

The migration strategy presented herein differs from that in Shan (2008) in a number
of respects. First, I perform migration using only isotropic vertical-velocity sediment flood
model that does not incorporate anisotropy. Second, I use a multi-streamer data set for
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Source Parameter Value Receiver Parameter Value
Number of sail lines 54 Max. inline offset (m) ±3725
Sail line interval (m) 160 Max. crossline offset (m) ±500

Shots per sail line 300 Inline receiver interval (m) 25
Shot interval (m) 50 Crossline receiver interval (m) 80

Table 4: Approximate acquisition parameters associated with the 3D Gulf of Mexico field
data set.

imaging, rather than the more optimally regularized single-streamer data formed through
azimuthal move-out preprocessing (Biondi, 2004).

Table 4 summarizes the acquisition geometry of the data set. The data used for mi-
gration consisted of 54 sail lines separated roughly 160 m apart, each sail line consists of
approximately 300 shots acquired every 50 m. I binned the sources in 25 m and 80 m
intervals in the inline and crossline, respectively. Figure 12 shows the source distribution,
and illustrates the sail line direction, herein chosen to be the inline direction. Figure 13
shows the chosen offset distribution. The receiver points fall to both positive and negative
offsets, as the sail lines were acquired in two directions. The gap in offset coverage between
offsets of ±2500-2750 m arises due to a corrupted data tape. Receivers were binned at 25 m
in both the inline and crossline directions.

Figure 12: Chosen source distribu-
tion for the field data set. CR
jeff1/. XOM-SRC

I prepared the data for migration by applying an inline delay-shot phase-encoding algo-
rithm according to the inline source position. A total of 54 plane-wave sub-volumes were
generated from the total 5D shot record volume, each consisting of 41 plane-waves equally
sampled between ±20◦. I chose a total of 244 frequencies between 3 Hz and 25 Hz for
migration. The data were imaged on migration grids with dimensions of 800x350x300 sam-
ples. Migrations in TEC coordinates were performed using tilt angles between ±20◦ at 1◦

increments.

Figures 14-16 present comparative slices from the 3D Gulf of Mexico migration images
computed in the TEC and Cartesian coordinate systems. Figure 14 presents an inline
section taken at the constant 8750 m crossline coordinate for the TEC (top panel) and
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Figure 13: Chosen receiver distri-
bution for the field data set. The
missing data between offsets ±2500-
2750 m is due to a corrupted data
tape. CR jeff1/. XOM-RCV

CC (bottom panel) images corresponding to the front face of Figure 11. The top of salt
body is well-imaged in both images; however, the near-vertical salt-flanks to the right are
nearly entirely absent. Oval A shows the imaging improvements in TEC coordinates for
the left-hand flank. Figure 15 presents crossline sections for the TEC (top panel) and CC
(bottom panel) images. Both images are subject to fair amounts of near-surface aliasing a
sali line contribution every 160 m in the crossline direction, as well as the artifaces due to
using a non-regularized data set with locations where no data are present. The outlines of
the salt body reflector, though, are imaged. Oval A shots an example of an area where the
TEC coordinate image is better than the Cartesian image.

Figure 16 presents a depth slice extracted from the TEC (top panel) and CC (bottom
panel) image volumes. The annular ring, showing the location of the salt body, is apparent in
both images; however, the image is sharper in the TEC image indicating improved focussing
of energy. Oval A shows an example of an area where the TEC image is better than that
generated in Cartesian, including two parts of the right-hand salt flank. Oval B shows the
TEC coordinate image improvements in the crossline direction.

The results of the 3D field data application likely could have been improved in a number
of aspects. First, a migration velocity model incorporating anisotropy values (e.g. vmig =
vvert(1 + 1.8δ)) could have been used instead of the vertical velocity profile. Although this
would affect the vertical location of the flat-lying sedimentary reflectors, it likely would have
led to more accurate horizontal propagation and imaging of waves reflecting off the target
salt flanks. Second, if additional computational resources were made available, migrating
the full data set (i.e. every 80 m in crossline source position rather than every 160 m) with
a higher frequency content would have led to a more infilled and higher resolution image.
Third, extending the generalized RWE theory to incorporate TTI anisotropy likely would
have enabled a more consistent imaging of the steep salt flanks. This extension is likely to
be a subject for future research.
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Figure 14: Inline sections through the migration images taken at the 8750 m crossline
coordinate location. Top: TEC coordinate migration results. Bottom: Cartesian coordinate
migration results. Oval A shows the imaging improvements in TEC coordinates for the left-
hand flank. CR jeff1/. RFIG1
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Figure 15: Crossline sections through the migration images taken at the 7100 m crossline
coordinate location. Top: TEC coordinate migration results. Bottom: Cartesian coordinate
migration results. Oval A shows an example of an area where the TEC coordinate image
is better than the Cartesian image. CR jeff1/. RFIG3
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Figure 16: Migration results for the 3D Gulf of Mexico field data set through the sedimentary
section. Top: TEC coordinate migration results. Bottom: Cartesian coordinate migration
results. Oval A shows an example of an area where the TEC image is better than that
generated in Cartesian, including two parts of the right-hand salt flank. Oval B shows the
TEC coordinate image improvements in the crossline direction. CR jeff1/. RFIG5
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CONCLUSIONS

This paper discusses an inline delayed-shot migration technique in tilted elliptical-cylindrical
coordinates. I argue that migration approach, relative to the full 3D plane-wave technique,
offers both lower memory requirements (due to small migration aperture), as well as a po-
tential reduction in the number of total migrations needed (by migrating fewer sail lines than
crossline plane waves). I demonstrate that the impulse response of inline-source delayed-
shot wavefields are well-matched to TEC geometry, and that corresponding extrapolation
wavenumber is no more complicated than that of elliptically anisotropic media. This leads
to an accurate 3D finite-difference splitting algorithm that both accurately propagates wave-
fields and handles the associated numerical anisotropy. The 3D synthetic Gulf of Mexico
data tests demonstrate the migration technique’s ability to generate improved images of
steeply dipping structure, relative to Cartesian coordinate migration, at reduced computa-
tional cost. Field data tests illustrate the utility of the 3D migration approach in exploration
practice.
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Reverse time migration with random boundaries

Robert G. Clapp

ABSTRACT

Reading wavefield checkpoints from disk is quickly becoming the bottleneck in Reverse
Time Migration. We eliminate the need to write the wavefields to disk by creating an
increasingly random boundary around the computational domain when propagating
the source function. The wavefield that encounters the boundary region is pseudo-
randomized. Reflections off the random layer have minimal coherent correlation with
the receiver wavefield but can be reformed by running the wave equation in the reverse
direction. This allows the source to first be propagated to the maximum recording
time and then to be backward propagated simultaneously with receiver wavefield sig-
nificantly reducing memory and IO requirements. I demonstrate the methodology on
the Sigsbee synthetic and show that it significantly reduces coherent correlation arti-
facts.

INTRODUCTION

Reverse Time Migration (RTM) (Baysal et al., 1983) is quickly becoming the standard for
high-end imaging. At the core of the RTM algorithm is a modeling kernel. The simplicity of
the the modeling kernel has led to high-performance implementation on Field Programmable
Gate Arrays (FPGA) (Nemeth et al., 2008), General Purpose Graphics Processing Units
(GPGPU) (Micikevicius, 2008), and conventional processors. Of growing significance is the
problem that the source field must propagated from t = 0 to t = maxtime while the receiver
wavefield must be propagated from t = maxtime to t = 0 since the fields must be correlated
at equivalent time positions. One propagation must be stored either completely or in a
check-pointed manner to disk.

Symes (2007) and Dussaud et al. (2008) discuss checkpointing methods to handle the
different propagation directions. Dussaud et al. (2008) and Clapp (2008) suggest an alter-
nate approach of propagating the source wavefield to the maximum recording time and then
reversing the propagation to make it consistent with the receiver propagation direction. The
use of damping schemes around the boundary results in the need to inject energy from the
non-damped, forward propagated wavefield, inside the boundary region. The RAM require-
ment with this scheme is less than conventional checkpointing approaches but still imposes
significant disk IO requirements.

In this paper, I discuss an alternate approach. I replace the conventional damped region
with an increasingly random velocity region. Rather than eliminate reflections I distort
them to minimize coherent correlations with the receiver wavefield that cause artifacts.
I begin by describing the construction of the random boundary. I then demonstrate the
amplitude behavior of the time reversed wavefield. I conclude by showing the methodology
applied in a 2-D synthetic.

29
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BACKGROUND

The basic idea behind RTM is to propagate a source function within the computational
domain from time t = 0 to t = maxtime, storing the wavefield s(t,x) at time steps con-
sistent with the time sampling of the data dt. The recorded data is injected into a second
computational domain and propagated from t = maxtime to t = 0 and stored in r(t,x).
The final image I is constructed

I(x) =
maxtime∑

t=0

s(t,x)r(t,x), (1)

or some similar imaging condition. The problem is that s(t,x) and r(t,x) are too large
to store in memory, and often too large store on disk. The image can be updated while
propagating the receiver wavefield but the different propagation directions of the source
and receiver wavefields, still introduce a large storage requirement. To reduce the storage
requirement, checkpointing schemes are used. The source wavefield is stored at various
intervals dcheck during forward propagation. When propagating the receiver wavefield these
checkpoints are read from disk and re-propagated into a buffer to be correlated with the
receiver propagation. Algorithm 1 illustrates this approach. There are several undesirable

Algorithm 1 Standard RTM with checkpointing
for all shots do

while t < maxtime do
Advance source wavefield to check point (dcheck)
store wavefield

end while
t = maxtime
while t > 0 do

Read source wavefield at t− dcheck

Advance and buffer source wavefield to t
for t = 0 to t = dcheck do

Advance receiver wavefield −dt
Correlate source and receiver wavefield at constant t

end for
t = t− dcheck

end while
end for

features to this approach. First, the source wavefield must be re-propagated. Second,
buffering of the re-propagated source wavefield introduces a large memory requirement.
Finally, reading the snapshots from disk, particularly when the propagation is done on an
accelerator, can/does make RTM IO bound. A wavefield can be propagated forward or
backwards in time. On first glance, an obvious solution to the storage and IO requirements
is to propagate the source wavefield to t = maxtime and then reverse the propagation
eliminating the need for checkpointing. The flaw in this hypothesis comes from the boundary
conditions we conventionally use.
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BOUNDARY CONDITIONS

Ideally, we would like to emulate an infinite computational domain when propagating our
seismic wavefield. Computationally, this is an unachievable goal; instead we try to minimize
artifacts, reflections from the boundaries, caused by our limited computational domain.
The most effective method is the Perfectly Matched Boundary method from the electro-
magentic community (Berenger, 1994). This method amounts to mapping the coordinate
system into the complex domain and changing the propagating wavefield into a decaying
wavefield. A second common technique is to introduce a damping region at the edge of the
computation domain (Cerjan et al., 1985; Baysal et al., 1984). This is often combined with
techniques to kill plane waves that are perpendicular to the computational boundary. All
of these techniques have proven effective for modeling seismic data, but force propagation
in a single direction.

One technique to allow time reversal is to store the wavefield that has not hit the bound-
ary region at each time step and then re-inject when reversing the propagation direction
(Clapp, 2008). This technique has the advantage of eliminating the need for buffering, but
still requires a large volume of data to be stored on disk.

Another approach is to rethink what we are attempting to accomplish with our boundary
conditions for RTM. Ideally, we would like to eliminate all reflections from the edge of our
computational domain, but what we are really concerned with is coherent reflections. If we
can distort the wavefield coming from the boundaries so it does not coherently correlate
with the receiver wavefield, we will have accomplished our goal.

In acoustic modeling, one way to manipulate the boundaries while still allowing time
reversal, is to introduce a random component to the velocity field at the boundary. We must
be careful in how we modify the boundary, both by staying within the stability constraint of
our finite difference method, and by slowly introducing random numbers to avoid immediate
reflections off the randomized zone. The basic algorithm for constructing the boundary
can be found below. Panel ‘A’ of Figure 1 shows a velocity model constructed with a

Algorithm 2 Creating random boundary
for all x,y,z do

if within boundary region then
d=distance within boundary
found=false
while found==false do

select random number r
vtest = v(x, y, z) + r ∗ d
if vtest meets stability constraint then
v(x, y, z) = vtest
found=true

end if
end while

end if
end for

random boundary and panel ‘B’ shows a cross section through that boundary. Note how
the variability of the velocity increases near the edge of the computational domain.
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Figure 1: Panel A shows the con-
stant velocity model with a random
boundary. Panel B shows a cross
section through the velocity model.
Note the increasing random nature
of the boundary. [ER] bob1/. vel

Panel ‘A’ of Figure 2 shows the wavefield at t = .63 after injecting a source in the center
of the computational domain. Panel ‘B’ shows the wavefield at t = 2.205 after the wavefield
has hit the boundary. Note the absence of a coherent reflection off the boundary. Panel
‘C’ shows the wavefield at t = 3.906, when no coherent energy is present. The wavefield
was then propagated to t = 5.0 and the computation was reversed. Panel ‘D’ shows the
reversed wavefield at t = .63, and panel ‘E’ shows the difference between wavefields scaled
by 10,000. The difference between the two images is in the range of the machine precision.

To see if there is a coherent pattern underneath the random looking field, I repeated
the experiment 16 times, each with a different random boundary. Panels ‘F-J’ show the
average of these 16 experiments at the same times as panels ‘A-E’. Note in panel ‘G’ how the
average of the 16 experiments has greatly reduced the energy reflected from the boundary.
In panel ‘H’ we can see that there is a low energy, low spatial frequency reflection from the
boundary. Panel ‘J’ shows that even the machine precision noise tends to cancel.

Panels ‘A’ and ‘B’ of Figure 3 show the results of Fourier transforming the data shown
in panels ‘C’ and ‘H’ of Figure 2. Panel ‘A’ demonstrates that the wave field is dominated
by low-spatial wave-number features. In panel ‘B’ we see that almost all of the energy
is concentrated at the low spatial wave-numbers. This is not surprising. At low enough
frequencies, our random boundary does not affect our propagating wavefield. By increasing
the size of the random zone, we can damp lower frequencies.

Summing multiple experiments is directly applicable to RTM. In RTM we are summing
the result from many migrated shots to form our final image. As a result we will get a
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Figure 2: The left column shows snapshots from a single modeling experiment at .63, 2.205,
and 3.906. The fourth panel shows the result of time reversing the computation to .63
seconds. The bottom panel shows the difference between first and fourth panel scaled by
10000. The right column shows the summing of 16 modeling experiments each with different
random boundaries. [ER] bob1/. combo

Figure 3: Panel ‘A’ is the result of Fourier transforming the data shown in panels ‘C’ and
‘H’ of Figure 2. Note how the summing of multiple experiment reduces the energy in higher
spatial wave-number events. [ER] bob1/. spat
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signal-to-noise boost from neighboring shots having different random patterns.

By making these changes, the RTM algorithm simplifies to the following template.

Algorithm 3 Time reverse RTM with random boundaries
for all shots do

Create random boundary around computational domain
Advance source wavefield to t = maxtime
for t = maxtime to t = 0 do

Advance source wavefield −dt
Advance receiver wavefield −dt
Correlate source and receiver wavefield

end for
end for

SYNTHETIC EXAMPLE

To test the methodology, I implemented both algorithm 1 and 3. I used the first 4.5 seconds
of the Sigsbee synthetic, limiting the computational domain to the first 4.5 km. As a baseline
I performed RTM using a reflecting boundary condition. Locations ‘A’ and ‘B’ in Figure 4
show where reflections from the top of the domain coherently correlated with the receiver
wavefield.

Figure 4: The result of RTM migration using a reflecting boundary. Note the obvious
boundary artifacts at ‘A’ and ‘B’. [CR] bob1/. none

Figure 5 shows the RTM result using algorithm 1. In this case I applied a damped
exponential in a 30 point region around the computational domain. Note how the artifacts
at ‘A’ and ‘B’ are significantly reduced. Finally, Figure 6 shows the result of algorithm
3. Note how the energy at ‘A’ and ‘B’ are further reduced. Some additional coherent
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correlations are present in the water layer but are not visible lower in the image once
sufficient reflected energy is present.

Figure 5: The result of RTM migration using a damping boundary condition following the
methodology described by algorithm 1. Note how the boundary artifacts have been reduced
at ‘A’ and ‘B’. [CR] bob1/. damp

OTHER APPLICATIONS

There are two notable additional applications to this approach. We can think of the random
boundary region as a series of point sources that are excited at different times. By cross-
correlating the energy at any two locations we can generate a two-way interferometric
Green’s function.

In addition, the random boundaries offer the potential to use implicit rather than explicit
propagation. We can treat our medium as a single 1-D trace (helixize (Claerbout, 1998)
the computational domain). We can then use 1-D theory to calculate causal-minimum
phase filters that can be applied using polynomial division. This technique was applied
to downward continuation by Rickett et al. (1998) but suffered from obvious wraparound
problems. The random boundaries discussed in this paper would minimize this problem.

CONCLUSIONS

Pseudo-random boundary conditions effectively distort an incoming wavefield. I use these
boundary conditions to propagate the source wavefield in RTM both forward and backwards.
The distorted wavefield correlates poorly with the receiver wavefield, minimizing boundary
artifacts. I hypothesize that these boundaries have additional applications for implicit finite
difference and interferometry.
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Figure 6: The result of RTM migration using a random boundary condition using the
methodology described by algorithm 3. Note the greatly reduced artifacts at ‘A’ and ‘B’
[CR] bob1/. rand
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Kinematics in Iterated Correlations of a Passive Acoustic
Experiment

Sjoerd de Ridder and George Papanicolaou

ABSTRACT

Correlating ambient seismic noise can yield the inter-station Green’s function, but only
if the energy that is excited by seismic background sources is sufficiently equipartitioned
after averaging over all sources. If this requirement is not fulfilled, the reconstructed
Green’s function is imperfect. Secondary scattering can mitigate the directivity of the
primary wave field emitted by the sources. To extract and utilize secondary scattering
for Green’s function reconstruction, we introduce a second correlation using an auxil-
iary station. We investigate the kinematics of the reconstructed Green’s functions to
understand the role of the positions of source, scatterer and auxiliary stations. Iterated
correlations can use secondary scattering to mitigate the directivity in the background
seismic wave field. In general, there will be additional spurious events in the retrieved
Green’s functions. Averaging the results of several sources and using a network of ran-
domly distributed auxiliary stations can minimize these spurious events with respect
to the correct events in the retrieved Green’s functions.

INTRODUCTION

It has long been known that correlations of seismic background noise recorded at two stations
can yield the Green’s function between the two stations (Aki, 1957; Claerbout, 1968; Lobkis
and Weaver, 2001; Wapenaar, 2004), hereafter referred to as the estimated Green’s function
(EGF). A variety of proofs exist for this relation, including many based upon diffusivity
of the wave fields (Weaver and Lobkis, 2001; Roux et al., 2005; Sánchez-Sesma et al.,
2006; Sánchez-Sesma and Campillo, 2006), stationary-phase analysis (Schuster et al., 2004;
Snieder, 2004; Snieder et al., 2006), and propagation invariants and reciprocity theorems
(Claerbout, 1976; Weaver and Lobkis, 2004; Wapenaar, 2004; Wapenaar and Fokkema,
2006; van Manen et al., 2005). In general, these proofs require energy equipartitioning
in the background seismic field; i.e., the energy flow must be equal in all directions. It
is generally assumed that energy equipartitioning should be obtained after averaging over
sources that excite the background field (Snieder et al., 2007). If the background noise field
does not satisfy this condition, we expect the field correlations to recover imperfect EGFs
(Malcolm et al., 2004; Paul et al., 2005).

Recently it has been argued that multiple scattering by random inhomogeneities can
excite a secondary wave field that satisfies the assumption of equipartitioning, even if the
primary wave field does not (Stehly et al., 2008). It is also known that correlation of coda
waves can yield the Green’s function (Snieder, 2004; Malcolm et al., 2004; Paul et al., 2005;
de Ridder, 2008). Stehly et al. (2008) describes a way to use the coda waves of background
noise to improve the quality of EGFs (Stehly et al., 2008). Garnier and Papanicolaou

39
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(2009) give a proof for this procedure to enhance Green’s function estimation in random
media based upon stationary-phase analysis of the four leading terms in the higher order
correlation.

This paper discusses the problems associated with Green’s function retrieval in direc-
tional wave fields. Then we proceed to briefly repeat the stationary-phase analysis of Garnier
and Papanicolaou (2009) in the case of a wave field excited by one source in a homogeneous
medium with the addition of one scatterer. The kinematics of the four leading terms are
investigated using correlation gathers of auxiliary station position and source positions. Our
examples show the basic procedure for reconstructing a Green’s function by iterated correla-
tions and provides a physical understanding of the elementary requirements for the positions
of sources, random inhomogeneities, and auxiliary stations. This study has implications for
seismic exploration using ambient seismic noise for different acquisition geometries, as in a
network of stations only on the surface recording the ambient field above a reservoir, or a
borehole survey with stations both down-hole and on the surface.

CONVENTIONAL VERSUS ITERATIVE INTERFEROMETRY

Conventional seismic interferometry (SI) retrieves the Green’s function between two stations
by correlating, C(2), records of an ambient field, in which the energy is equipartitioned,
recorded at both stations. It is generally assumed that energy equipartitioning should
be obtained after averaging over sources that excite the background field (Snieder et al.,
2007). Sources located at stationary phases are necessary to retrieve high-quality EGFs.
For example, the stationary-phase region of the Green’s function between stations A and B
in Figure 1(a) is located on a ray path from station B extending to and beyond station A
[gray shading on left side of Figure 1(a)]. Correlating responses from these sources recorded
at A and B will retrieve a high-quality EGF. However, because the sources in Figure 5(b)
are not located in the stationary-phase region, correlating responses from these sources
recorded at A and B will retrieve a low-quality EGF.

Sources

A B
Stationary-phase 
region for GB,A(t)

Stationary-phase 
region for GA,B(−t)

(a)

A B
Stationary-phase 
region for GB,A(t)

Stationary-phase 
region for GA,B(−t)

Sources

(b)

Figure 1: Source positions for respectively (a) high-quality and (b) poor quality Green’s
function estimation by conventional SI. Stationary-phase regions are indicated by gray areas.
[NR] sjoerd1/. mainC2drawnew1,mainC2drawnew2

Some proposed methods to compensate for anisotropic illuminations include: (a) Beam
forming and weighting (Stork and Cole, 2007) or τ − p filtering (Ruigrok et al., 2008)
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the data for different directionality components. (b) Estimating a radiation pattern by
autocorrelating the down-going wave field and correcting by deconvolution (van der Neut
et al., 2008; van der Neut and Bakulin, 2008). (c) Multidimensional deconvolution after
the identification of individual responses (Wapenaar et al., 2008). Finally (d), Stehly et al.
(2008) propose a novel procedure to improve EGFs by using scatterers positioned at the
stationary-phase positions that act as secondary Huygens’ sources, as illustrated in Figure 2.
Their method requires three steps: First, the recordings at two main stations are correlated
with a network of auxiliary stations. Each correlation yields an EGF. Second, each EGF is
muted for times prior to an estimated arrival time. Third, a correlation, C3, is evaluated
between the muted EGF pairs estimated for each auxiliary station. That correlation is
subsequently averaged across the network of auxiliary stations.

Figure 2: Illustration of how scat-
terers acting as secondary Huy-
gens’ sources can illuminate sta-
tions A and B from a stationary-
phase region, while the primary
sources are located outside the
stationary-phase regions. [NR]
sjoerd1/. mainC4drawnew0

Sources

A B

Scatterers

Stationary-phase 
region for GB,A(t)

Stationary-phase 
region for GA,B(−t)

GREEN’S FUNCTION RETRIEVAL BY CORRELATION

We define the temporal correlation function between two time signals FA(t) and FB(t)
measured at stations A and B as

C
(2)
B,A(t) =

∫ ∞

−∞
FB(τ + t)FA(τ)dτ =

1
2π

∫ ∞

−∞
FB(ω)F ∗

A(ω) exp {iωt}dω, (1)

where ω denotes angular frequency. The right-hand side of equation 1 shows that through
the inverse Fourier transformation of equation A-3, a correlation integral in the time domain
is a direct product in the frequency domain. We can retrieve the Green’s function between
two stations A and B by independently measuring responses of sources positioned on a
boundary surrounding the two stations, and summing the correlation between the measure-
ments at the two stations. This property can be expressed as∗ (Wapenaar and Fokkema,
2006):

G(xB,xA, ω)−G∗(xA,xB, ω) = −2iω
c0

∮
∂D

G(xB,xs, ω)G∗(xA,xs, ω)dxs, (2)

where xA, xB and xs denote positions of stations A and B and the sources respectively.

We investigate the terms within this this integral for a medium containing a scatterer.
The Green’s function under the Born approximation in a scattering medium is composed
of two terms:

G(x,xs, ω) = G0(x,xs, ω) +G1(x,xs, ω), (3)
∗We employ a different definition of the Green’s function with respect to equation 31 of Wapenaar and

Fokkema (2006), G′ = ρ
iω

G, where ρ is density.
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where G0 is the contribution of the direct wave, and G1 is the contribution of the scattered
wave. In the Born approximation, the contribution of the scatterer is included to order
α. The correlation product between measurements made at stations A and B therefore is
composed of 22 = 4 terms

C
(2)
B,A(ω) = G0(xB,xs, ω)G∗

0(xA,xs, ω) +G0(xB,xs, ω)G∗
1(xA,xs, ω) +

G1(xB,xs, ω)G∗
0(xA,xs, ω) +G1(xB,xs, ω)G∗

1(xA,xs, ω), (4)

which will be referred to as 4.1, 4.2, 4.3 and 4.4 respectively. The second and third terms

Figure 3: Geometry for the eval-
uation of C

(2)
B,A in a homogeneous

medium containing one scatterer.
For three source positions, a, b and
c, two ray paths are shown for sta-
tionary phases; see text. [ER]
sjoerd1/. geomC2
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are of order α, and the fourth term is of order α2. Therefore, we should exclude the fourth
term when we evaluate the right-hand side of equation 2 and compare it to the left-hand side
of equation 2. See Snieder et al. (2008) for a more general discussion of the fourth term for
exact Green’s functions (without Born approximation). We denote the integration of C(2)

B,A

over the source coordinate and multiplication by the phase-modifying factor as follows:

C̃
(2)
B,A(ω) = −2iω

c0

∮
∂D

C
(2)
B,A(ω)dxs, (5)

where C(2)
B,A(ω) is an implicit function of source position xs, according to equation 4.

STATIONARY-PHASE ANALYSIS OF CONVENTIONAL
INTERFEROMETRY

The phase of the correlation under the integral on the right-hand side of equation 2 changes
rapidly as a function of source position. The dominant contribution to the integral comes
from points at which the phase is stationary. Physically these positions correspond to source
points from where the ray paths to both stations align. To analyze the stationary phases in
the presence of a scatterer, we consider a homogeneous medium and study the time-domain
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Figure 4: a) Correlogram displaying correlations of source responses measured at stations
A and B for sources as a function of position angle. b) Comparison of retrieved and true
Green’s functions. [ER] sjoerd1/. corrC2,resultC2

expression of equation 2 using the first three terms in C
(2)
B,A of equation 4:

G(xB,xA, t)−G(xA,xB,−t) = (6)

C̃
(2)
B,A(t) = −

∫ ∞

−∞

2iω
2πc0

∮
∂D

a0(xB,xs, ω)a∗0(xA,xs, ω)exp {iΩ1} +

a0(xB,xs, ω)a∗1(xA,xs, ω)exp {iΩ2} +
a1(xB,xs, ω)a∗0(xA,xs, ω)exp {iΩ3} dxsdω,

where a0 and a1 are amplitude factors. The rapid phases, Ω1 = Ω1(xs,xA,xB, ω), Ω2(xs,xA,xB, ω)
and Ω3(xs,xA,xB, ω), of the three terms are found using equations A-6 and A-11:

Ω1 = ω
[
t− c−1

0 {|xB − xs| − |xA − xs|}
]
, (7)

Ω2 = ω
[
t− c−1

0 {|xB − xs| − |xA − xc| − |xc − xs|}
]
, (8)

Ω3 = ω
[
t− c−1

0 {|xB − xc|+ |xc − xs| − |xA − xs|}
]
, (9)

where xc is the position of the scatterer.

We analyze these rapid phases using the stationary-phase method, keeping xA and xB

fixed and varying xs. According to the stationary-phase method, the dominant contribution
comes from stationary phases where

∂ωΩ = 0 and ∇xsΩ = 0. (10)

From the rapid phase, Ω1, of the first term in equation 6, we find stationary points for
which

t = c−1
0 {|xB − xs| − |xA − xs|} and ∇xs |xB − xs| = ∇xs |xA − xs|. (11)
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The second condition requires the points xA and xB to be aligned along a line issuing from
xs. When the stations and source are aligned as xs → xA → xB, the first condition gives
t = c−1

0 {|xB − xA|}. When the stations and source are aligned as xs → xB → xA, the first
condition gives t = −c−1

0 {|xB − xA|}.

From rapid phase Ω2 of the second terms in equation 6, we find stationary points for
which

t = c−1
0 {|xB − xs| − |xA − xc| − |xc − xs|} and ∇xs |xB − xs| = ∇xs |xc − xs|. (12)

The second condition requires the points xB and xc to be on a line issuing from xs. When
station B, as well as the scatterer and sources are aligned as xs → xB → xc, then |xc−xs| =
|xc − xB|+ |xB − xs|, and the first condition states that t = −c−1

0 {|xB − xc|+ |xc − xA|}.
When station B, the scatterer and the source are aligned as xs → xc → xB, then |xB−xs| =
|xc − xs|+ |xB − xc|, and the first condition states that t = c−1

0 {|xB − xc| − |xA − xc|}.

From rapid phase Ω3 of the second terms in equation 6, we find stationary points for
which

t = c−1
0 {|xB − xc|+ |xc − xs| − |xA − xs|} and ∇xs |xA − xs| = ∇xs |xc − xs|. (13)

The second condition requires the points xA and xc to be on a line issuing from xs. When
station A, as well as the scatterer and sources are aligned as xs → xA → xc, then |xc−xs| =
|xc − xA| + |xA − xs|, and the first condition states that t = c−1

0 {|xB − xc|+ |xc − xA|}.
When station A, the scatterer and sources are aligned as xs → xc → xA, then |xA − xs| =
|xA−xc|+ |xc−xs|, and the first condition states that t = c−1

0 {|xB − xc| − |xA − xc|}. For
a more extensive treatment of stationary-phase positions in conventional interferometry, see
Schuster et al. (2004); Snieder (2004); Snieder et al. (2006) and Garnier and Papanicolaou
(2009).

EXAMPLE OF GREEN’S FUNCTION RETRIEVAL BY
CONVENTIONAL INTERFEROMETRY

To aid interpretation of iterated interferometry in later sections, we study the kinematics of
conventional interferometry for a medium containing a scatterer. The background velocity
is c0 = 2000 m/s. Stations A and B are positioned 200 m distant from each other, and the
scatterer is positioned 125 m above and in between the stations. The stations and scatterer
are surrounded by 512 sources on a circle with a radius of 800 m, centered between the two
stations; see Figure 3.

We simulate the measurements at stations A and B using the single-scatterer Born
approximation (see appendix equation A-11). We assume all sources emit a zero-phase
Ricker wavelet, s(t) (see appendix equation A-8). For each source location separately,
the responses recorded at stations A and B are cross-correlated, and their contribution to
the integral on the right-hand side of equation 2 is shown as a function of angle in the
correlogram in Figure 4(a).

The correlogram contains three events labeled 1, 2 and 3. These correspond to the first
three terms respectively in the correlation product in equation 4. Term 1 is associated with
the direct event between stations A and B. It has two stationary points at angles of φ = 0
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and φ = π radians, where the stations and source are aligned on a line as xs → xB → xA

and xs → xA → xB, respectively. For all other angles, the correlation peak resides at
a lag that is smaller than the actual travel time between the stations. The second and
third terms correspond to correlations of recorded events that are either scattered at A and
direct at B or vice versa. Both events have two stationary phases. Event 2, for example,
has a stationary phase for a source positioned close to φ = 3/4π where xs → xc → xB,
and at approximately φ = 4/3π where xs → xB → xc. The total correlogram is summed
over all angles and multiplied by a factor −2iω

c0
, according to equation 5, to match the

asymmetrized true Green’s function on the left-hand side of equation 2. The asymmetrized
Green’s function is multiplied with the auto-correlation of the Ricker wavelet to match the
source function after correlations. Although the calculation matches before normalization,
the Green’s functions are normalized to have a peak value of 1. The comparison between
the retrieved result (dashed green line) found by evaluating the right-hand side of equation
2 and the directly modeled result (solid blue curve) found by computing the left-hand side
of equation 2 is shown in Figure 4(b), they match exactly.

Three contributions of stationary angles are isolated from all other source contributions
and compared to the fully retrieved result. These stationary angles have events arriving
with the correct travel time but incorrect phase. They also have events with incorrect
travel times. However the contribution from a source positioned close to φ = 4/3π radians
seems to have an event with a travel time approximately corresponding to the acausal direct
event. It is non-stationary and associated with the acausal scattered events as can be seen
in Figure 4(a).

GREEN’S FUNCTION RETRIEVAL BY ITERATED CORRELATIONS

In the absence of complete source coverage, we can make use of the scattering properties of
the medium to mitigate the directivity of the wave field. The iterated correlation between
stations B and A is defined using auxiliary station X as follows:

C
(3)
B,A(t) =

∫ ∞

−∞
C

(2)
B,X(τ ′ + t)C(2)

A,X(τ ′)dτ ′

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
FB(τ + τ ′ + t)FX(τ)FX(s)FA(s+ τ ′)dsdτdτ ′

=
1

2π

∫ ∞

−∞
FB(ω)F ∗

X(ω)FX(ω)F ∗
A(ω) exp {iωt}dω (14)

The Green’s function in the Born approximation for a scattering medium is composed
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of two terms; C(3)
B,A therefore contains 24 = 16 terms

C
(3)
B,A = G0(xB,xs, ω)G∗

0(xX ,xs, ω)G∗
0(xA,xs, ω)G0(xX ,xs, ω) + (15.1) (15)

G0(xB,xs, ω)G∗
0(xX ,xs, ω)G∗

0(xA,xs, ω)G1(xX ,xs, ω) + (15.2)
G0(xB,xs, ω)G∗

0(xX ,xs, ω)G∗
1(xA,xs, ω)G0(xX ,xs, ω) + (15.3)

G0(xB,xs, ω)G∗
0(xX ,xs, ω)G∗

1(xA,xs, ω)G1(xX ,xs, ω) + (15.4)
G0(xB,xs, ω)G∗

1(xX ,xs, ω)G∗
0(xA,xs, ω)G0(xX ,xs, ω) + (15.5)

G0(xB,xs, ω)G∗
1(xX ,xs, ω)G∗

0(xA,xs, ω)G1(xX ,xs, ω) + (15.6)
G0(xB,xs, ω)G∗

1(xX ,xs, ω)G∗
1(xA,xs, ω)G0(xX ,xs, ω) + (15.7)

G0(xB,xs, ω)G∗
1(xX ,xs, ω)G∗

1(xA,xs, ω)G1(xX ,xs, ω) + (15.8)
G1(xB,xs, ω)G∗

0(xX ,xs, ω)G∗
0(xA,xs, ω)G0(xX ,xs, ω) + (15.9)

G1(xB,xs, ω)G∗
0(xX ,xs, ω)G∗

0(xA,xs, ω)G1(xX ,xs, ω) + (15.10)
G1(xB,xs, ω)G∗

0(xX ,xs, ω)G∗
1(xA,xs, ω)G0(xX ,xs, ω) + (15.11)

G1(xB,xs, ω)G∗
0(xX ,xs, ω)G∗

1(xA,xs, ω)G1(xX ,xs, ω) + (15.12)
G1(xB,xs, ω)G∗

1(xX ,xs, ω)G∗
0(xA,xs, ω)G0(xX ,xs, ω) + (15.13)

G1(xB,xs, ω)G∗
1(xX ,xs, ω)G∗

0(xA,xs, ω)G1(xX ,xs, ω) + (15.14)
G1(xB,xs, ω)G∗

1(xX ,xs, ω)G∗
1(xA,xs, ω)G0(xX ,xs, ω) + (15.15)

G1(xB,xs, ω)G∗
1(xX ,xs, ω)G∗

1(xA,xs, ω)G1(xX ,xs, ω). (15.16)

Three groups of terms can be distinguished; group 1 includes terms 15.1, 15.2, 15.3, 15.4,
15.5, 15.9 and 15.13, which are terms correlating with the dominant contribution in C(2);
G0G

∗
0. Group 2 contains the terms of interest in this paper; 15.6, 15.7, 15.10 and 15.11; see

the stationary-phase analysis below. The third group contains events that are of order α3

and includes terms 15.8, 15.12, 15.14, 15.15 and 15.16. The leading term in C(2) contributes
to a spurious term, because the source is not located at a stationary angle of the event
between stations A and B. To exclude the terms of group 1, we remove the dominant term
after forming C(2)

B,X and C
(2)
A,X . This is done by muting the correlation in the time domain

to suppress all times smaller than τcoda:

C
(3)
B,A(t) =

∫ τ ′coda,∞

−∞,−τ ′coda

∫ ∞

−∞

∫ ∞

−∞
FB(τ + τ ′ + t)FX(τ)FX(s)FA(s+ τ ′)dsdτdτ ′ (16)

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
β(τ ′)FB(τ + τ ′ + t)FX(τ)FX(s)FA(s+ τ ′)dsdτdτ ′, (17)

where τcoda is defined as an estimated traveltime between the main stations and the auxiliary
stations, β(τ) is a muting function that is zero for β(τ) = 0 for τ : [−τcoda : τcoda] and
otherwise β(τ) = 1.

We learned from Figure 3 that the dominant term always arrives within that time
window. We average the iterated correlations over a network of A auxiliary stations and
include a phase-modifying term,

C̃
(3)
B,A(ω) =

2c0
iωA

A∑
a=1

C
(3)
B,A(ω), (18)
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where C̃(3)
B,A(ω) is an implicit function of auxiliary-station position xX,a, according to equa-

tion 15. The phase-modifying proportionality factor is chosen such that the ω2

c20
factor in

the Born approximation (see equation A-10) is matched to the −2iω
c0

factor in conventional
interferometry (equation 2).

STATIONARY PHASES IN ITERATED CORRELATIONS

We proceed by studying the stationary phases of terms 15.6, 15.7, 15.10 and 15.11 in the
iterated correlation. All terms correspond to particular combinations of ray paths.

Figure 5 shows for each term a graphical illustration of the combination of ray paths.
Ray paths towards the source are subtracted from the ray paths emitting from the source,
as in the correlation process (a convolution of one Green’s function with the time reverse
of another Green’s function). The time domain of equation 15, including only the terms

Sources

A B

Scatterers X

Stationary-phase 
region for GB,A(t)

Stationary-phase 
region for GA,B(−t)

(a)

Sources

A B

Scatterers X

Stationary-phase 
region for GB,A(t)

Stationary-phase 
region for GA,B(−t)

(b)

Sources

A B

Scatterers X

Stationary-phase 
region for GB,A(t)

Stationary-phase 
region for GA,B(−t)

(c)

Sources

A B

Scatterers X

Stationary-phase 
region for GB,A(t)

Stationary-phase 
region for GA,B(−t)

(d)

Figure 5: Geometrical interpretation of the correlations in terms
15.6, 15.7, 15.10 and 15.11 respectively in a) b) c) and d). [NR]
sjoerd1/. mainC4drawnew1,mainC4drawnew2,mainC4drawnew3,mainC4drawnew4
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of group 2, is given as

C̃
(3)
B,A(t) =

∫ ∞

−∞

2c0
2πiωA

A∑
a=1

(19)

a0(xB,xs, ω)a∗1(xX,a,xs, ω)a∗0(xA,xs, ω)a1(xX,a,xs, ω)exp {iΩ1} +
a0(xB,xs, ω)a∗1(xX,a,xs, ω)a∗1(xA,xs, ω)a0(xX,a,xs, ω)exp {iΩ2} +
a1(xB,xs, ω)a∗0(xX,a,xs, ω)a∗0(xA,xs, ω)a1(xX,a,xs, ω)exp {iΩ3} +
a1(xB,xs, ω)a∗0(xX,a,xs, ω)a∗1(xA,xs, ω)a0(xX,a,xs, ω)exp {iΩ4} dxxdω,

where a0 and a1 are amplitude factors. The rapid phases, Ω1, Ω2, Ω3 and Ω4 are found
using equations A-6 and A-11; for a particular auxiliary station xX , we find

Ω1 = ω
[
t− c−1

0 {|xB − xs| − |xA − xs|}
]
, (20)

Ω2 = ω
[
t− c−1

0 {|xB − xs| − |xX − xc| − 2|xc − xs| − |xA − xc|+ |xX − xs|}
]
, (21)

Ω3 = ω
[
t− c−1

0 {|xB − xc|+ 2|xc − xs| − |xX − xs| − |xA − xs|+ |xX − xc|}
]
, (22)

Ω4 = ω
[
t− c−1

0 {|xB − xc| − |xA − xc|}
]
. (23)

We analyze these rapid phases using the stationary-phase method, keeping xA and xB

fixed and varying xX , xc and xs. According to the stationary-phase method, the dominant
contribution to the integral and sum in equation 19 comes from positions of xX , xc and xs

where
∂ωΩ = 0, ∇xsΩ = 0, ∇xX Ω = 0 and ∇xcΩ = 0 (24)

From the rapid phase, Ω1, of the first term in equation 19 we find stationary points for
which

t = c−1
0 {|xB − xs| − |xA − xs|} , (25)

∇xs |xB − xs| = ∇xs |xA − xs|, (26)
∇xX |xB − xs| = ∇xX |xA − xs|, (27)
∇xc |xB − xs| = ∇xc |xA − xs|. (28)

Conditions 27 and 28 are always satisfied. Condition 26 requires the stations to be on a line
and the source to be on a line issuing from xs. When the stations and source are aligned
as xs → xA → xB, condition 25 gives t = c−1

0 |xB − xA|. When the stations and source are
aligned as xs → xB → xA, the first condition gives t = −c−1

0 |xB − xA|.

From the rapid phase, Ω2, of the first term in equation 19 we find stationary points for
which

t = c−1
0 {|xB − xs| − |xX − xc| − 2|xc − xs| − |xA − xc|+ |xX − xs|} , (29)
∇xs {|xB − xs| − |xc − xs|} = ∇xs {|xc − xs| − |xX − xs|} , (30)

∇xX |xX − xc| = ∇xX |xX − xs|, (31)
−∇xc {|xc − xs|+ |xX − xc|} = ∇xc {|xA − xc|+ |xc − xs|} . (32)

Condition 30 requires that station B, auxiliary station, the scatterer are on a line issuing
from the source. Condition 31 requires that the auxiliary station and the scatterer are on
a line issuing from the source. Condition 32 requires that station A, an auxiliary station
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and a scatterer are on a line issuing from the source. In short, stations A and B, an
auxiliary station, and the scatterer all align on a line issuing from the source. When these
are aligned as xs → xc → xX → xA → xB, then |xX − xs| = |xX − xc| + |xc − xs|,
|xc − xs|+ |xA − xc| = |xA − xs|, and condition 29 gives t = c−1

0 |xB − xA|. When stations
A and B are reversed, condition 29 gives t = −c−1

0 |xB − xA|.

The rapid phase, Ω3, of the third term in equation 19 is similar to the rapid phase,
Ω2, of the second term in equation 19. If stations A, B, an auxiliary station, and the
scatterer are located on a line issuing from the source, aligned as xs → xc → xX →
xA → xB, the dominant contribution resides at t = c−1

0 |xB − xA|. When stations A and
B are interchanged, the dominant contribution of the third term in equation 19 resides at
t = −c−1

0 |xB − xA|. Last we analyze the rapid phase, Ω4, of the fourth term in equation
19, and we find stationary points for which

t = c−1
0 {|xB − xc| − |xA − xc|} , (33)

∇xs |xB − xc| = ∇xs |xA − xc|, (34)
∇xX |xB − xc| = ∇xX |xA − xc|, (35)
∇xc |xB − xc| = ∇xc |xA − xc|. (36)

Conditions 34 and 35 are always satisfied. Condition 36 is satisfied when the scatterer lies
on a line through stations A and B. When stations A, B and the scatterer are aligned as
xc → xA → xB, condition 33 gives t = c−1

0 |xB−xA|. When stations A, B and the scatterer
align as xc → xB → xA, condition 33 gives t = −c−1

0 |xB − xA|.

EXAMPLE OF GREEN’S FUNCTION ITERATED CORRELATION

We next study how forming C(3)
B,A of a wave field excited by a single source can improve the

retrieved Green’s function in the presence of an auxiliary scatterer. We study a geometry
where the main stations are located 200 m distant from each other (see Figure 6). We
use 512 auxiliary stations located on a circle with radius 300 m centered between the two
main stations. The source is located at s′, with a distance of 800 m from the center and
at an angle of φ = 3/4π radians. There is a scatterer positioned at a distance of 550 m
from the center at an angle of φ = π radians. We omit the terms of group 3 in equation
15, because their contribution is at least of order α weaker than those in group 2. C(2)

is evaluated between stations A or B and all the auxiliary stations X, yielding C(2)
A,X and

C
(2)
B,X ; the obtained correlograms are shown in Figures 7(a) and 7(b). We evaluate C(3)

B,A for
each auxiliary station, including all terms of groups 1 and 2, and compile the result in a
correlogram shown in Figure 8(a).

The contribution of each term is labeled according to the numbering of equation 15.
We sum C

(3)
B,A over the auxiliary stations, according to equation 18, to obtain the retrieved

signal in Figure 8(b). We compare this signal to the true result, convolved with the square
of the autocorrelation of the wavelet S(ω), and the result retrieved by correlating stations
B and A directly (C(2)

B,A) weighted by −iωS(ω). It is clear that the dominant contribution

in C
(3)
B,A, without muting C(2)

A,X and C
(2)
B,X , does not correspond to the direct event between

the stations A and B. If we assume we can perfectly mute only the dominant term 4.1 from
C

(2)
A,X and C

(2)
B,X , this would leave the terms of group 2.
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Figure 6: Experiment geometry
for the evaluation of C(3)

B,A. [ER]

sjoerd1/. geomC4
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A correlogram of their contributions to C
(3)
B,A is shown in Figure 9(a), summing this

panel and multiplying with a phase-modifying according to equation 18, leads to the signal
in Figure 9(b). We now see that there is a dominant term coinciding with the causal direct
event between stations A and B in the true result; this event comes from term 15.11.

ITERATED CORRELATION AFTER MUTING

The terms in group 2 cannot uniquely be separated from those of groups 1. Time-domain
muting of C(2)

B,X and C
(2)
B,X can exclude the leading order event 4.1, but would also exclude

parts of terms 4.2 and 4.3. The black lines in Figures 7(a) and 7(b) indicate the travel time
of an event between station A or B and each auxiliary station. The dominant term in C(2)

will always reside in this window, see Figure 4(a). We now mute each C(2) according to
these limits to obtain the two correlograms in Figures 10(a) and 10(b).

The C(3)
B,A is evaluated for each auxiliary station to obtain the correlogram in Figure

11(a), this panel is summed and multiplied with a phase-modifying according to equation
18 to retrieve the signal in Figure 11(b).

The resulting signal resembles the true result slightly better than evaluating the terms
of equation 15 group 2 without muting; the spurious event arriving at t = .8s is slightly
smaller. This is because, for the present geometry, the auxiliary stations where the spurious
event is absent, would have contributed more strongly to the spurious event without muting
before evaluating C(3)

B,A. (The geometrical spreading factors vary for the contribution of each
auxiliary station.)
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Figure 7: a) Correlogram for correlations between station A and all auxiliary stations as
a function of auxiliary station-position angle. Black lines indicates traveltime of a wave
from station A to each auxiliary station. b) Correlogram for correlations between sta-
tion B and all auxiliary stations as a function of auxiliary station-position angle. Black
line indicates traveltime of a wave from station or B to each auxiliary station. [ER]
sjoerd1/. corrC2a,corrC2b
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Figure 9: a) Comparison of reconstructed Green’s function with the true result, after sum-
mation of all 11 terms of groups 1 and 2 over auxiliary station. b) Comparison of recon-
structed Green’s function with true result, after summation of 4 terms of group 2 over
auxiliary station. [ER] sjoerd1/. corrC4ABb,resultC4b
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Figure 10: Muted C
(2)
A,X in a) and C

(2)
B,X in b). These are the input for the evaluation of

C
(3)
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Figure 11: a) Correlogram of C
(3)
B,A evaluated after muting C(2), as a function of

each auxiliary station-position angle φ. b) Comparison of retrieved Green’s func-
tion with the true result, after summation of C(3)

B,A over all auxiliary stations. [ER]

sjoerd1/. corrC4ABc,resultC4c

ITERATED CORRELATION DEPENDANCE ON SOURCE POSITION

For the geometry in Figure 6, the source, stations A and B, auxiliary stations and scatterer
are not aligned at a stationary phase of terms 15.6, 15.7 and 15.10. We will investigate
the retrieved result of evaluating C(3)

B,A after muting C(2)
A,X and C(2)

B,X , and summing over all
auxiliary stations and multiplying with the phase-modifying factor as in equation 18. The
sources are positioned on a circle with radius 800 m centered between stations A and B in
the geometry described as before; see Figure 6. Evaluating C(3)

B,A and summation over the
auxiliary stations for terms 15.6 15.7, 15.10 and 15.11, and then evaluating equation 18 for
each source contribution gives the correlogram in Figure 12(a).

This correlogram confirms that when the source, stations A and B, an auxiliary station,
and the scatterer are aligned, each term has a stationary phase. We also see how term 15.11
is stationary with respect to source postion. The behavior of term 15.6 is similar to that of
the leading term in C

(2)
B,A; see Figure 4(a). This can be expected from the constraint on t

in condition 25, which is equal to condition 11 on t for C(2)
B,A. We can expect that when we

time-average the C(3)
B,A of multiple sources at different angular positions, term 15.6 interferes

destructively.

Figure 12(a) also tells us that terms 15.7 and 15.10 are also non-stationary with respect
to source position. However, the arrival time of non-stationary positions is dependent upon
scatterer position (see condition 29); this implies that in a medium with randomly positioned
scatterers, terms 15.7 and 15.10 would interfere destructively. Last we investigate whether
muting C(2) before evaluating C(3)

B,A can work for the source postions located at stationary
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phases for terms 15.6 15.7 and 15.10; see Figure 12(b). We see how muting the C(2)
A,X and

C
(2)
B,X for source positions at and close to φ = π radians also would remove the energy

associated with the scatterer. This is expected, because the scatterer is directly behind the
source as seen from both stations A and B; thus the contribution arrives simultaneously
with the direct event from the source.
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Figure 12: a) Gather showing time-domain equivalents of 15.6, 15.7, 15.10 and 15.11 after
summing over auxiliary stations as a function of source position angle φ. b) Gather of
|C̃3

B,A(t)| as a function of source position angle φ. [ER] sjoerd1/. corrC4ABSa,corrC4ABSb

CONCLUSIONS

Using Green’s functions under the Born approximation in a homogeneous medium with
one scatterer, we show that C(3)

B,A constitutes 16 terms, that can be divided into 3 groups.
The leading-order terms, group 1, are associated with the correlation of the direct waves
recorded at the stations from a source that is generally not at a stationary-phase position.
Thus evaluating C(3)

B,A directly does not improve the Green’s function estimation. Instead

we can remove the terms in group 1 from C
(3)
B,A by muting C(2)

A,X and C(2)
B,X . Group 2 contains

the 4 leading-order terms in C(3)
B,A after muting C(2)

B,X and C(2)
B,X . A stationary-phase ananysis

of the 4 terms tells us that the scatterer must be aligned on ray paths between two stations,
outside the station span.

Term 15.6 is non-stationary for all source postitions not aligned with the scatterer
and stations A and B. The non-stationarity is a function only of source position, not of
auxiliary-station position. When we evaluate an ensemble average of multiple sources from
different locations, term 15.6 will, in general, interfere destructively. Terms 15.7 and 15.10
are stationary when the source aligns with the scatterer, an auxiliary station and stations A
and B. The non-stationarity is a function of source position and of auxiliary-station position.
We can exploit this fact by using a network of auxiliary stations positioned randomly, such
that if the source position is not at the stationary phase, the contribution from different
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auxiliary stations stack incoherently. Only term 15.11 remains stationary no matter where
the source or auxiliary stations are positioned, so that any stacking of C(3)

B,A over auxiliary
stations will enhance the contribution of this term.

An additional problem for the utilization of terms 15.6, 15.7 and 15.10 for the im-
provement of Green’s function reconstruction is that for the source position for which these
terms have stationary contributions at the correct traveltime, the contribution becomes
indistinguishable from the leading-order contribution in C

(2)
A,X and C

(2)
B,X that must be re-

moved. This means that stacking is the key to enhancing the contribution of term 15.11
and diminishing the contributions of terms 15.6, 15.7 and 15.10 to the EGF from C

(3)
B,A.

APPENDIX

WAVE EQUATION AND GREEN’S FUNCTION

We study the wave equation in an acoustic, linear, isotropic, time-invariant, sourceless,
constant-density medium. The familiar wave equation for pressure P = P (x, t) is

∂2
i P − c−2∂2

t P = 0, (A-1)

where Einstein’s summation convention is applied to lower-case subscripts; for 2D they are
summed over 1 and 2. Temporal and spatial derivatives are denoted ∂t and ∂i respectively,
where the subscripts denote time and spatial directions respectively. Under the constant-
density assumption, the characteristic wave velocity c = c(x) fully determines the medium.

Fourier Transformations

The temporal Fourier transformation pairs of a time-domain function F (t) and frequency-
domain function F (ω) are defined as

F (ω) =
∫ −∞

∞
F (t) exp (−iωt) dt, (A-2)

F (t) =
1

2π

∫ −∞

∞
F (ω) exp (iωt) dω, (A-3)

the particular Fourier-domain of the function F is specified by the argument only.

Frequency-domain Green’s function in homogeneous media

Using the forward Fourier transformation equation A-2, the wave equation for pressure in
a homogeneous medium with c(x) = c0 is written in the frequency-domain as

∂2
i P +

ω2

c20
P = 0. (A-4)

The frequency-domain Green’s function G = G(x,xs, ω) is defined by introducing an
impulsive point source acting at t = 0 and x = xs on the right-hand side of equation A-4
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as follows:

∂2
i G+

ω2

c20
G = −δ(x− xs). (A-5)

The Green’s function solution for two-dimensional space, under the far field approximation
can be obtained as

G(x,xs, ω) =
1√

8πωc−1
0 |x− xs|

exp
(
−i
[
ωc−1

0 |x− xs|+
π

4

])
. (A-6)

A source function is easily included by multiplication with the frequency-domain source
function. A measurement, PA(ω), at a station located at xA of a source at xs emitting a
source function s(ω) is obtained as follows:

PA = G(xA,xs, ω)s(ω). (A-7)

The sources in this paper are simulated emitting zero-phase Ricker wavelets with center
frequency ω0. The frequency-domain expression used is

s(ω) =
2ω2

√
π ω3

0

exp
(
−ω

2

ω2
0

)
. (A-8)

Green’s function in the Born Approximation

We are interested in the Green’s function in an inhomogeneous medium. We assume the
velocity can be split into a background velocity c0 and a perturbation α(x) as c−2(x) =
c−2
0 [1 + α(x)]. Assuming the perturbation is confined inside some finite domain Ds, the

Green’s function in the Born approximation can now be computed in terms of a Green’s
function computed in the background, G0, medium as

G(x,xs, ω) = G0(x,xs, ω) +G1(x,xs, ω), with (A-9)

G1(x,xs, ω) =
∮
Ds

G0(x,x′, ω)
ω2

c20
α(x′)G0(x′,xs, ω)dx′. (A-10)

The Green’s function in the background medium is computed using equation A-5 with
c = c0. When the medium consists of a homogeneous background with a series of N scatters

positioned at xc,1,xc,2,xc,3...xc,N with strength α1, α2, α3, ...αN , then α(x) =
N∑

i=1

δ(x −

xc,i)αi. Hence the Green’s function G1 in equation A-10 can be written as

G1(x,xs, ω) =
N∑

i=1

G0(x,xc,i, ω)
ω2

c20
αiG0(xc,i,xs, ω). (A-11)
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Measuring image focusing for velocity analysis

Biondo Biondi

ABSTRACT

I present a method for extracting velocity information by measuring the focusing and
unfocusing of migrated images. It measures image focusing by evaluating coherency
across structural dips, in addition to coherency across aperture/azimuth angles. The
inherent ambiguity between velocity and reflectors’ curvature is directly tackled by
introducing a curvature correction into the computation of the semblance functional
that estimates image coherency. The resulting velocity estimator provides velocity esti-
mates that are: 1) unbiased by reflectors’ curvature, and 2) consistent with the velocity
information that we routinely gather by measuring coherency over aperture/azimuth
angles.
The application of the method to a 2D synthetic data set and a 2D field data set
confirms that it provides consistent and unbiased velocity information. It also suggests
that velocity estimates based on the new image-focusing semblance may be more robust
and have higher resolution than estimates based on conventional semblance functionals.
Preliminary tests on two 2D zero-offset synthetic data sets show that velocity infor-
mation can be extracted from zero-offset data in presence of reflectors with arbitrary
curvature, and not only in presence of point diffractors as previously published methods
require.

INTRODUCTION

The effects of migration velocity on the focusing and unfocusing of seismic images is obvious
when observing depth migrated seismic images obtained with different migration velocities.
Quantitative measures of image focusing could provide valuable information to velocity es-
timation. This information is particularly abundant in areas where reflectors have strong
curvature or are discontinuous; such as in presence of faults, heavily folded geology, buried
channels, uncomformities or rough salt/sediment interfaces. Figure 1 shows three images
obtained by migrating the same prestack data set: the top panel (a) shows the image ob-
tained with too low migration velocity, the middle panel (b) shows the image obtained with
approximately the correct velocity, and the bottom panel (c) shows the image obtained with
too high velocity. An interpreter could easily spot clear signs of undermigration in Figure 1a
and of overmigration in Figure 1c. However, the definition of objective quantitative criteria
to measure image focusing is challenging. Consequently, current practical methods for ex-
ploiting image-focusing information are based on subjective interpretation criteria instead
of quantitative measurements (Sava et al., 2005; Wang et al., 2006).

If we were able to extract reliably quantitative focusing-velocity information from mi-
grated images it could supplement the velocity information that we routinely extract by
analyzing residual moveout along offsets (after common-offset migration) or aperture-angles
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(after angle-domain migration) axes. Velocity estimation would be enhanced by increas-
ing resolution and decreasing uncertainties. It would be particularly useful to improve the
interpretability of the final image and the accuracy of time-to-depth conversion in areas
where the reflection aperture range is narrow, either because of unfavorable depth/offset
ratio, or because of the presence of high-velocity geological bodies in the overburden (e.g.
salt bodies) that deflect the propagating waves. In practice, velocity analysis based on im-
age focusing is unlikely to replace conventional velocity analysis, but only to supplement it.
Therefore, a method that measures image focusing should provide velocity estimates that
are consistent with conventional methods.

Figure 1 illustrates some of the challenges of defining quantitative criteria to measure
image focusing. The main challenge is related to the ambiguity between reflectors’ curvature
and their apparent focusing velocity. The section migrated with approximately the correct
velocity (Figure 1b) shows several convex reflectors with strong curvature. These reflectors
collapse into high-amplitude foci in the overmigrated section (Figure 1c). Criteria that have
been previously proposed to measure image focusing, such as maximization of the power of
the stack or minimization of image entropy (Harlan et al., 1984; De Vries and Berkhout,
1984; Stinson et al., 2005; Fomel et al., 2007), would wrongly rank the overmigrated image
higher than the more accurate image. When in the subsurface we have high-curvature
reflectors, but not infinite curvature reflectors, the minimum-entropy criterion would fail
because it assumes the presence of point scatterers in the subsurface.

Fomel et al. (2007) propose to separate in the data space the diffractions originated from
point scatterers before performing minimum-entropy velocity analysis. However, in complex
geology this separation can be unreliable, mostly because reflections from curved reflectors
may appear as diffractions. This potential source of errors is also well illustrated by the
field-data example. Figure 2 shows the near-offset section of the data set used to generate
the images shown in Figure 1. The diffraction-like hyperbolic events visible in this section
were generated by the high-curvature reflectors discussed above. An application aimed to
separate diffractions from other events could easily classify these events for diffractions and
lead to biased velocity estimates.

This paper aims to overcome the shortcomings of current methods used to measure image
focusing. It presents a new method that has two important characteristics: 1) it is unbiased
by reflectors’ curvature, and 2) it provides velocity information from image focusing that is
consistent with the velocity information that we routinely extract from migrated images by
analyzing their coherency along the reflection-aperture angle axes. The method is based on
the image-focusing semblance functional I introduced in Biondi (2008b), where I generalized
the conventional semblance functional used to measure image coherency along the aperture-
angle axes by defining an image-focusing semblance functional that simultaneously measures
image coherency along the structural-dip axes and the aperture-angle axes.

To remove the bias caused by reflectors’ curvature, I explicitly take into account curva-
ture by correcting its effects on image coherency along structural dips. Making curvature an
explicit parameter of the velocity estimation does not necessarily resolves the fundamental
problem of the ambiguity between the determination of reflectors’ curvature and migration
velocity. However, I show that it enables a consistent and unbiased velocity estimation
that optimally uses the information contained in the data. In the last section of the paper,
I present examples of image-focusing velocity analysis applied to two synthetic zero-offset
data sets. These examples indicate that image-focusing analysis could automatically extract
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Figure 1: Three images obtained
by prestack residual migration ap-
plied to the same prestack migration:
the top panel (a) is undermigrated
(ρ = 0.8975), the middle panel (b)
s approximately well focused (ρ =
1.01), and the bottom panel (c) is
overmigrated (ρ = 1.2725). [CR]
biondo1/. ResMig-stack-overn

Figure 2: Near-offset section of the
data set used to generate the im-
ages shown in Figure 1. [CR]
biondo1/. Near-off-overn
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useful velocity information from zero-offset data even when the reflectivity model contains
curved reflectors with finite curvature.

The simultaneous image-coherency measurement along both the structural-dip axes and
the aperture-angle axes of the curvature-corrected images, assures the consistency of the
velocity information provided by the method. This consistency facilitates the interpretation
of the results. Furthermore, it may improve the robustness of velocity estimation with
respect to conventional angle-domain methods by automatically averaging the coherency
computation along reflectors. At each point on a reflector, image coherency is measured
for several dips in addition to the stationary dip. The inclusion of non-stationary dips is
equivalent to averaging coherency measurements along the reflector, following both its dip
and its curvature.

In this paper, I present results of the proposed method applied to 2D data. The com-
putation of the image-focusing semblance functional could be easily generalized from 2D
to 3D. In 2D, semblance is computed on 2D patches (structural dip and aperture angle);
with 3D full-azimuth data, semblance would be computed on 4D patches (indexed by two
structural dips, reflection aperture and reflection azimuth). The curvature correction is
also easily generalizable from 2D to 3D. However, three parameters are required to define
curvature in 3D: the two main curvatures along the principal axes, and the rotation of the
principal axes with respect to the coordinate axes (Al-Dossary and Marfurt, 2006). I expect
the nature of the ambiguity between velocity and curvature to be different between 2D and
3D. In both cases velocity is defined by one scalar parameter, whereas curvature is defined
by three parameters in 3D.

UNBIASED MEASURE OF IMAGE FOCUSING

In Biondi (2008b), I introduced a new semblance functional, that I dubbed Image-focusing
semblance, aimed at quantitatively measuring image focusing simultaneously along the spa-
tial directions and the reflection angle (or offset) axes. The underlying idea is to extend
the conventional semblance evaluation by measuring image coherency also along the the
structural-dip axes. However, the estimates provided by the image-focusing semblance pre-
sented in that report can be biased by reflectors’ curvature. In this section, I modify the
definition of the image-focusing semblance by explicitly exposing its dependency from the
image local curvature. This enables a consistent evaluation of the image focusing across
both the reflection-angle axis and the structural-dip axis and improves the interpretability
of the results.

The starting point of my method is an ensemble of prestack images, R (x, γ, ρ); these
images are function of a spatial coordinate vector x = {z, x} (with z depth and x the
horizontal location), the aperture angle γ, and a velocity parameter ρ. In the numerical
examples that follow, the ensemble of prestack images is obtained by residual prestack mi-
gration in the angle domain as I presented in Biondi (2008a). The parameter ρ is the ratio
between the new migration velocity and the migration velocity used for the initial migra-
tion. The proposed method could be easily adapted to the case when residual prestack
Stolt migration (Sava, 2003), or any other method that can efficiently generate ensembles
of prestack images dependent on a velocity parameter, is used to compute R (x, γ, ρ). Al-
though, when using other methods to produce the ensemble R (x, γ, ρ), the corrections
equivalent to equations 5, 8 and 9 might be different.



SEP–138 Image-focusing analysis 63

To measure coherency along the structural dip α, I first decompose the prestack image
and create the dip-decomposed prestack image R (x, γ, α, ρ). When using either choices of
residual prestack migration discussed above, the decomposition can be efficiently performed
in the Fourier domain during the residual prestack migration. If other methods are used
to produce the ensemble of prestack images R (x, γ, ρ), the dip decomposition could as
efficiently performed in the space domain by applying recursive filters (Fomel, 2002; Hale,
2007). Notice, that the dip-decomposed images I use as input have different kinematic
characteristics than the ones described in Reshef and Rüger (2008), Landa et al. (2008),
and Reshef (2008). They obtain dip-decomposed images by not performing the implicit
summation over dips that is part of angle-domain Kirchoff migration (Audebert et al.,
2002), whereas I decompose the migrated images.

In equation 5 in Biondi (2008b) I defined the 2D Image-focusing semblance as:

S(γ,α) (x, ρ) =

[∑
γ

∑
α R (x, γ, α, ρ)

]2
NγNα

∑
γ

∑
α R (x, γ, α, ρ)2

, (1)

where Nγ and Nα are, respectively, the number of aperture angles and the number of
dips to be included in the computation. The effective definition of the aperture-angle and
the structural-dip ranges to be used in equation 1 is one of the practical challenges when
applying the proposed method.

Image curvature and residual migration

In presence of point diffractors, the semblance functional defined in expression 1 yields
unbiased estimates of the velocity parameter ρ. However, when the curvature is finite, the
dip components would not be aligned for the correct value of ρ and the estimates would be
biased. To remove this bias we can correct the dip-decomposed images for the presence of
curvature. In Appendix A I show the simple derivation of this correction that amounts to
the following spatial shift, ∆nCurv, along the normal to the structural dip,

∆nCurv =
sin (α− ᾱ) tan (α− ᾱ)

2
Rn, (2)

where R is the local radius of curvature, ᾱ is the local dip and n is the vector normal to the
dip α and directed towards increasing depth. Notice that the application of this correction
requires the estimation of local dip ᾱ. To estimate the local dips, I used the Seplib program
Sdip that implements a variant of the algorithms described by Fomel (2002).

Expression 2 can be used directly to create an ensemble to dip-decomposed images that
are corrected for the local curvature RCurv (x, γ, α, ρ,R). The image-focusing semblance
can be computed on these images as:

S(γ,α) (x, ρ, R) =

[∑
γ

∑
α RCurv (x, γ, α, ρ,R)

]2
NγNα

∑
γ

∑
α RCurv (x, γ, α, ρ,R)2

. (3)

However, the application of correction 2 can be quite expensive unless it is performed to-
gether with residual migration. Furthermore, precomputing the curvature-corrected images
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would further increase the dimensionality of the image space, creating obvious problems
for handling the resulting bulky data sets. Fortunately, when the ensemble of the dip-
decomposed images R (x, γ, α, ρ) are the result of residual prestack migration, the curvature
correction can be efficiently computed during the evaluation of the semblance functional 3.
Correction 2 becomes a simple interpolation along the residual velocity parameter ρ, as a
function of the aperture angles and dips.

To derive the interpolating function, I first recall the expression of residual migration in
Biondi (2008a):

∆nRmig = (ρnew − ρold)
cosα(

cos2α− sin2 γ
)z0n, (4)

where ∆nRmig is the normal shift applied by residual migration, ρnew is the value of ρ after
residual migration and ρold is the value of ρ before residual migration, which is usually set
to be equal to one. The parameter z0 is a constant that is equal to the depth for which the
residual migration in 4 is exact.

Equating the normal shift in 4 with the normal shift in 2 and solving for ρnew we obtain

ρnew = ρold +
sin (α− ᾱ) tan (α− ᾱ)

(
cos2 α− sin2 γ

)
2 cosαz0

R. (5)

In this case, ρnew is the ρ of the images from which the data are interpolated from, and ρold

is the ρ of the images after correction; that is,

RCurv (x, γ, α, ρold, R) = R [x, γ, α, ρnew (ρold, γ, α, ᾱ, R)] . (6)

Image curvature and residual migration in the pseudo-depth domain

The interpolation defined by 5 depends in a non-straightforward manner from both angles
γ and α, as well as from the estimate of the local dip ᾱ. Although, this is the relationship
I used in practice for the examples in this paper, I will now analyze one of its variants that
is simpler and thus it helps to better understand the relationship between image curvature
and residual migration parameter.

I start from redefining residual migration in the pseudo-depth domain z̃ = z/ρ (Sava,
2004). In this domain, the focusing/unfocusing effects of residual migration are better sepa-
rated from its mapping effects than in the conventional depth domain. In the pseudo-depth
domain, normal-incidence images of flat reflectors are not shifted by residual migration.
The expression of residual migration 4 becomes:

∆nRmig = (ρnew − ρold)

[
cosα(

cos2 α− sin2 γ
) − cosα

]
z0n, (7)

and the expression of curvature correction 5 becomes:

ρnew = ρold +
sin2 (α− ᾱ)

(
cos2 α− sin2 γ

)
2z0 cos (α− ᾱ) cosα

(
sin2 α+ sin2 γ

)R, (8)

that also does not provide a straightforward relationship between the input and output ρs.
Furthermore, it becomes singular for the flat dip component (α = 0) of normal incidence
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images (γ = 0). Its use is thus more cumbersome than the use the equivalent expression in
the depth domain (equation 5).

However, in the special case of events that are locally flat (ᾱ = 0) and are imaged at
normal-incidence (i.e. γ = 0), this expression simplifies into:

ρnew = ρold +
R

2z0
. (9)

In this case, the curvature correction becomes independent from the dip α. It only remaps
the image from ρnew to ρold and thus does not affect the coherency along the dip direction
of the dip-decomposed images. There is perfect ambiguity between the residual migration
parameter ρ and the reflector radius of curvature R.

SYNTHETIC-DATA EXAMPLE

To illustrate the proposed method, I first present its application to a synthetic data set. The
model is a medium with constant slowness of .5 s/km and a single reflector with sinusoidal
shape. This reflector is shown in Figure 3. I modeled a prestack data set with offsets
between -1.5 kilometers and 1.5 kilometers. I then migrated the data with both the correct
slowness and a high slowness of .525 s/km; that is, 105% the correct slowness.

I dip-decomposed the image obtained with the correct slowness at zero-subsurface off-
set and corrected it for curvature according to expression 5. Figure 4a shows the dip-
decomposed image at the midpoint of one of the bottoms of the sinusoid (x=4.250 km).
Because of the curvature, the dips are not aligned and the event is frowning down. Figure 4b
shows the panel in Figure 4a corrected for image curvature by applying the shift defined in
expression 2. I selected the radius of curvature to be equal to -90 meters. This is consistent
with the analytical radius of curvature of the sinusoidal reflector at the same location of -86
meters. I set the reflector local dip to be zero; that is, I set ᾱ = 0 in expression 2.

The panels shown in Figure 5 are equivalent to the panels shown in Figure 4, except that
the midpoint location is at one of the tops of the sinusoid (x=4.750 km). At this location
the curvature is positive and thus the uncorrected dip panel (Figure 5a) smiles upward.
The corrected panel (Figure 5b) corresponds to a positive radius of curvature of 90 meters.

I computed the conventional semblance over aperture angle and the proposed image-
focusing semblance from the migrated image obtained with the high slowness. Figure 6
compares the semblance fields computed by the conventional semblance functional that
measures coherency only over aperture angles (Figure 6a), with the semblance cube com-
puted by the proposed image-focusing semblance functional that measures coherency over
both aperture angles and structural dips (Figure 6b). The figure shows the semblance fields
at x=4.750 km, that is at one of the local top of the sinusoidal reflector. The ρ-range is
the same (0.984 ≤ ρ ≤ 1.134) for the two panels in the figure. The semblance peak is more
sharply defined as a function of the ρ parameter in the result of the new image-focusing
functional (right face in Figure 6b) than in the result of conventional method (Figure 6a).

Notice that the semblance peak is located at longer radius of curvature (R=125 meters)
than the actual radius of curvature of the reflector (R=86 meters), because residual migra-
tion in the angle domain is not exact and does not fully correct for the reflector curvature.
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This error is inconsequential for the proposed method since the aim is to better estimate ρ
not R.

FIELD-DATA EXAMPLE

I applied the proposed method to a 2D marine line extracted from a 3D data set. The
images shown in Figure 1 were produced from this 2D line. I will focus on the analysis of
the results for a small window of the image that contains both convex and concave reflectors.
In contrast with the previous synthetic-data example, I performed the curvature correction
defined in equation 5 by using a field of local dips estimated numerically. I applied the Seplib
program Sdip to the ensemble of sections obtained by stacking along the aperture-angle axis
the residual migrated images for each value of ρ.

Figure 7a shows the migrated stack of the analysis window for a particular choice of the
ρ parameter (ρ=1.04) that maximizes flatness in the aperture-angle gather at the midpoint
location corresponding to the black line superimposed onto the stack; that is for x=5.646
km. Figure 7b shows the aperture-angle gather and Figure 7c the corresponding semblance
panel.

Starting from the prestack images, I computed dip-decomposed images that are function
of both the aperture angle γ and the structural dip α. Figure 8 shows the 3D cube of the
dip-decomposed image at the same midpoint location as the previous figure; that is for
x=5.646 kilometers. The convex reflector of interest, at depth of 950 meters, shows an
upward-smiling moveout in the structural-dips panel, consistently with the result observed
when discussing the synthetic-data example in the previous section. Figure 9 displays the
image-focusing semblance cube at that same midpoint location. The left panel in the cube
displays semblance as a function of depth and radius of curvature (R) at ρ=1.04; the right
panel displays semblance as a function of depth and ρ at R=125 meters. The location of
the semblance peak in the cube at depth of 950 meters is consistent with the location of the
semblance peak in the conventional ρ scan shown in Figure 7c. The semblance peak in the
image-focusing cube is slightly tighter than in the conventional scan, but the differences are
not substantial.

Figures 10-12 shows similar analysis of the migrated images presented above, but at the
midpoint location corresponding to the reflector with negative curvature; that is for x=5.539
kilometers. The reflector is locally dipping with negative dip of approximately 45 degrees.
The stationary point in the dip-decomposed image shown in the right panel of Figure 11 is
located at that value of the structural dip, and it is frowning instead of smiling because of
the negative local curvature. The value of ρ for which the reflector is the flattest along the
aperture-angle axis (ρ=.95), is substantially lower than for the previous reflector (ρ=1.04).
This substantial difference in apparent velocity, notwithstanding the proximity of the two
midpoint locations, is probably related to the fact that the wavefronts that illuminate the
two events propagate through different zones of the velocity model due to the dip of the
second reflector.

The semblance peak in the image-focusing cube (right panel in Figure 12) is now sub-
stantially better defined than in the conventional semblance panel shown in Figure 10c,
suggesting a potential resolution benefit for velocity estimation. Further analysis of this
potential benefit is needed before drawing definitive conclusions.
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Figure 3: Sinusoidal reflec-
tor used to generate the syn-
thetic prestack data set. [ER]
biondo1/. Refl-sinus-overn

Figure 4: The dip-decomposed
images at the midpoint of one of the
bottoms of the sinusoidal reflector
(x=4.250 km): without curva-
ture correction (panel a) and after
curvature correction (panel b). [CR]
biondo1/. ResMig-short-dip-curv-all-X4250-overn

Figure 5: The dip-decomposed
images at the midpoint of one of
the tops of the sinusoidal reflector
(x=4.750 km): without curva-
ture correction (panel a) and after
curvature correction (panel b). [CR]
biondo1/. ResMig-short-dip-curv-all-X4750-overn
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Figure 6: Comparison of the sem-
blance fields computed by the
conventional semblance functional
that measures coherency only over
aperture angles (panel a), with
the semblance cube computed by
the proposed image-focusing sem-
blance functional that measures
coherency over both aperture an-
gles and structural dips (panel
b). The figure shows the sem-
blance fields at x=4.750 km. [CR]
biondo1/. Wind-Sembl-short-ang-dip-all-X4750-overn

Figure 7: The migrated stack of the analysis window for ρ=1.04 (panel a), the aperture-
angle gather at x=5.5646 km for ρ=1.04 (panel b), and the aperture-angle semblance section
at x=5.646 km (panel c). [CR] biondo1/. Wind-ResMig-all-X5646-overn
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Another potential advantage of explicitly taking into account, and correcting for, reflec-
tors’ curvature in the semblance analysis, is that it automatically enables the simultaneous
measurements of coherency for several structural dips, in addition to the stationary dip, at
each analysis point. The semblance measurements are thus automatically averaged along
the reflector, following both its local dip and its local curvature. To test this hypothesis, I
computed a modified version of the conventional semblance functional along the aperture-
angle axis according to the following expression:

Sγ (x, ρ, R) =

∑
α

[∑
γ RCurv (x, γ, α, ρ,R)

]2
∑

αNγ
∑

γ RCurv (x, γ, α, ρ,R)2
, (10)

that averages both numerator and denominator along the structural-dip axis. Figure 13
compares the result of conventional semblance with the result of computing the semblance
functional defined in 10. Figure 13c displays conventional semblance, and it is the same
panel shown in Figure 10c. Figure 13a displays the constant ρ section of the semblance
cube computed using 10 and Figure 13b displays the constant curvature (R=-75 meters)
section of this semblance cube. Although both panel b) and panel c) are computed by
measuring coherency only along the aperture-angle axis, the semblance peak corresponding
to the concave reflector is clearly better focused and more easily pickable in panel b) than
in panel c). This example suggests that there is an advantage on averaging semblance
over structural dips. On the other hand, there is the additional cost of computing the
dip-decomposed images and the additional complexity of picking a higher dimensionality
semblance cube.

ZERO-OFFSET SYNTHETIC-DATA EXAMPLE

The synthetic-data and field-data examples discussed in the two previous sections applied
the image-focusing semblance to prestack data sets, where useful velocity information is
provided by the data redundancy over offsets. In this section, I present experiments on
two simple zero-offset synthetic data sets. The only velocity information contained in the
migrated images obtained from zero-offset data is the focusing and unfocusing of reflections.

Figure 14 shows the reflectors’ geometry assumed to model the two synthetic data sets.
I modeled the first data set assuming a ”cloud” of point diffractors (panel a), whereas I
modeled the second data set assuming a ”cloud” of convex reflectors (panel b). In both
cases the velocity was assumed to be constant and equal to 2 km/s and the data were
migrated assuming a high slowness of .5125 s/km; that is, 102.5% of the correct slowness.

Figure 15 summarizes the main result of this section. All three panels show the image-
focusing semblance spatially averaged in an inner rectangle of the image space defined by
the following inequalities along the depth axis: 1.850 km ≤ z ≤ 2.150 km, and by the
following inequalities along the midpoint axis: 4.875 km ≤x≤ 5.125 km. The panel shows
the average semblance as a function of the velocity parameter ρ and the radius of curvature
R. Figure 15a shows the result corresponding to the point diffractors and Figure 15b shows
the result corresponding to the convex reflectors. In both cases, I applied the curvature
correction defined in 5 by using a field of local dips (ᾱ) estimated numerically by applying
the Seplib program Sdip to the ensemble of residual migrated images for each value of ρ.
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The important observation supported by this figure is that, in both Figure 15a and
Figure 15b, the semblance energy is concentrated in a relatively narrow interval that includes
the correct value of ρ; that is ρ = 1.025. This result indicates that we can extract useful
velocity information from zero-offset data by using the image-focusing semblance.

The third panel in Figure 15, shows the semblance average computed from the images
of the convex reflectors when I applied the curvature correction defined in 5 by using a
constant local dip equal to zero; that is, when I uniformly set ᾱ = 0. As predicted by
expression 9, there is strong ambiguity between the reflector curvature and the velocity
parameter and the semblance is high also for values of ρ that are far away from the correct
one. We can consequently conclude that the velocity information contained in panel a)
and b) derives from the inconsistency between the focusing information extracted using the
image-focusing semblance and the local dip estimation. This inconsistency occurs when
the image is sufficiently unfocused that the local dip estimation becomes unreliable. The
following figures illustrate this concept.

Figures 16–20 provide a graphical explanation of the results shown in Figure 15. Fig-
ure 16 shows the migrated images of the point-diffractors data corresponding to the values
of ρ at the edges of the semblance peak in Figure 15a. The inner rectangle delimited by
the grid superimposed to the images shows where the semblance is spatially averaged to
produce the results shown in Figure 15. The image in Figure 16a is undermigrated and
corresponds to ρ = 1.0125, whereas the image in Figure 16b is overmigrated and corre-
sponds to ρ = 1.0375. In both of these images the unfocusing starts to cause crossing of
events in the inner rectangle delimited by the grid superimposed to the images. The local
dips are then multivalued and the automatic estimation of the local dips becomes unreliable
and inconsistent with the more global behavior of the dips. Therefore, outside the interval
1.0125 ≤ ρ ≤ 1.0375 the semblance average drops substantially in value.

Similar behavior is displayed by the migrated images of the convex-reflectors data cor-
responding to the values of ρ at the edges of the semblance peak in Figure 15a. These
images are shown in Figure 17, and correspond to ρ = 1.01 (Figure 17a), and to ρ = 1.07
(Figure 17b). In this case, the ρ range is wider than in the previous case because the convex-
reflectors’ density is lower than the point-diffractors’ density, and thus a larger velocity error
is needed before poorly focused events start crossing.

Figures 18–20 show sections cut through the image-focusing semblance cubes at constant
value of ρ and R before spatial averaging. Figure 18a shows semblance for the point-
diffractors data for ρ = 1.025 and R = 0 meters; that is, the values of ρ and R for which
the data are best focused. Figure 18a shows semblance for ρ = 1.0125 and R = 40 meters.
This value of ρ is the one corresponding to the undermigrated image in Figure 16a. Because
of undermigration, the image from the point diffractors appears to have a positive radius
of curvature approximately equal to 40 m. However, because of inconsistency between the
focusing information and the local dip estimation, semblance is in average lower in the panel
on the right than in the panel on the left.

Similar behavior is displayed by the image-focusing semblance cubes computed from
the images of the convex-reflectors data. We find the “best focused” semblance panel
(Figure 19a) still at infinite curvature (R = 0 meters), but at a wrong value of ρ; that
is, at ρ = 1.04. However, the important result is that the interval with relative high
semblance still includes the correct value of ρ. The section shown in Figure 19b corresponds
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to undermigrated image shown in Figure 19b, and it is taken for ρ = 1.01 and R = 120
meters. The apparent curvature is lower than for the point diffractors because the actual
curvature of the reflector is lower.

Finally, Figure 20 shows sections through the image-focusing semblance cubes for the
convex-reflectors data when the local dip is uniformly set equal to zero. These panels
correspond to the average semblance shown in Figure 15c, and are sections taken for the
same values of ρ and R as the sections shown in Figure 17. Because of the ambiguity
between velocity and curvature, both panels show well-focused and high value semblance
peaks.

DISCUSSION AND CONCLUSIONS

Using image focusing and unfocusing for velocity estimation has been for long time an elusive
goal in reflection seismology. The main challenge is the ambiguity between image focusing
and reflectors’ curvature. Consequently, previously published methods had to rely on strong
assumptions on reflectors’ curvature, such as assuming that reflections were generated by
point diffractors; that is, by infinite-curvature reflectors. I present a method that does not
rely on this assumption because it explicitly takes into account of reflectors’ curvature when
measuring image focusing.

The synthetic-data example I present in the third section and the field-data example I
present in the fourth section show that the method may provide higher resolution and more
robust velocity information than conventional methods based on measuring image coherency
only along the aperture-angle axes (or the offset axes when constant-offset migration is
performed.) Furthermore, the proposed method extract image-focusing information from
prestack data that is consistent with the velocity information that we routinely extract by
measuring image coherency along the aperture-angle axes.

The two zero-offset synthetic-data examples I show in the last section suggest that useful
velocity information can be extracted from zero-offset data. Images that were migrated with
approximately the correct velocity have no crossing events and thus the local dip information
measured from these images is consistent with the focusing information measured by the
image-focusing semblance functional. When the migration velocity is far from the correct
one, the migrated images have a lot of crossing events. The local-dips information measured
from these images is unreliable and inconsistent with the focusing information measured by
the image-focusing semblance functional. These results suggest that it might be useful to
estimate the reflectors’ curvature by local curvature estimators (Al-Dossary and Marfurt,
2006) and use this information to further constrain the velocity estimates obtained by
applying the image-focusing semblance proposed in this paper.

APPENDIX A

CURVATURE CORRECTION

This appendix derives the expression for the curvature correction presented in the main text
in 2. The derivation is extremely simple and based on the geometry sketched in Figure 21.
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The reflector is approximated with a parabola with radius of curvature R at its vertex.
In the rotated coordinates system (z′, x′) the equation of the parabola is

z′ =
x′2

2R
. (A-1)

The shift ∆z′ that moves a tangent to the parabola to the vertex is equal to

∆z′ = tan2 α′
R

2
, (A-2)

and consequently the normal shift ∆n is equal to

∆n =
cosα′ tan2 α′

2
R =

sinα′ tanα′

2
R. (A-3)

The coordinate system (z′, x′) is rotated by ᾱ with respect to (z, x). Removing that rotation
is equivalent to set α′ = α−ᾱ; performing this substitution in the previous equation, I obtain
the correction in 2; that is,

∆n =
sin (α− ᾱ) tan (α− ᾱ)

2
R. (A-4)
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Figure 8: The dip-decomposed
image at x=5.646 kilometers.
The convex reflector of interest,
at depth of 950 meters, shows
an upward-smiling moveout in
the structural-dips panel. [CR]
biondo1/. Wind-ResMig-dip-ang-X5646-overn

Figure 9: The image-focusing sem-
blance cube at x=5.646 kilometers.
The location of the semblance peak
in the cube at depth of 950 meters
is consistent with the location in the
conventional ρ scan shown in Fig-
ure 7c. The peak is slightly tighter
than in the conventional scan. [CR]
biondo1/. Wind-Sembl-dip-ang-X5646-overn
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Figure 10: The migrated stack of the analysis window for ρ=0.95 (panel a), the aperture-
angle gather at x=5.539 km for ρ=0.95 (panel b), and the aperture-angle semblance section
at x=5.539 km (panel c). [CR] biondo1/. Wind-ResMig-all-X5539-overn

Figure 11: The dip-decomposed
image at x=5.539 kilometers.
The concave reflector of inter-
est, at depth of 1200 meters
and dip of 45 degrees, shows
a downward-frowning moveout
in the structural-dips panel. [CR]
biondo1/. Wind-ResMig-dip-ang-X5539-overn
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Figure 12: The image-focusing
semblance cube at x=5.539 kilome-
ters. The location of the semblance
peak in the cube at depth of
1200 meters is consistent with
the location in the conventional
ρ scan shown in Figure 10c, but
is substantially better defined
than in the conventional scan. [CR]
biondo1/. Wind-Sembl-dip-ang-X5539-overn

Figure 13: Comparison of the result of computing the semblance functional defined
in 10 (panels a and b) with the result of conventional semblance (panel a), at
x=5.539 kilometers. The semblance peak corresponding to the concave reflector is
clearly better focused and more easily pickable in panel b) than in panel c). [CR]
biondo1/. Wind-Sembl-curv-all-X5539-overn
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Figure 14: Reflectors’ geometry
assumed to model the two zero-
offset synthetic data sets I used
to test the proposed image-focusing
velocity-estimation method: a) a
”cloud” of point diffractors, and b)
a ”cloud” of convex reflectors. [ER]
biondo1/. Refl-all-overn

Figure 15: The image-focusing semblance spatially averaged in an inner rectangle of the
image space as a function of velocity parameter ρ and the radius of curvature R. Panel
a) shows the result corresponding to the point diffractors, and panel b) shows the result
corresponding to the convex reflectors when the curvature correction was applied by using
a field of local dips estimated numerically from the migrated images. Panel c) shows the
result corresponding to the convex reflectors when the curvature correction was applied by
using a constant local dip equal to zero (i.e. ᾱ = 0). [CR] biondo1/. Wind-Stack-all-overn

Figure 16: Migrated images of the
point-diffractors data corresponding
to the values of ρ at the edges of
the semblance peak in Figure 15a;
that is, ρ = 1.0125 for panel a),
and ρ = 1.0375 for panel b). [CR]
biondo1/. ResMig-all-scatter-overn
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Figure 17: Migrated images of the
convex-reflectors data corresponding
to the values of ρ at the edges of
the semblance peak in Figure 15b;
that is, ρ = 1.01 for panel a),
and ρ = 1.7 for panel b). [CR]
biondo1/. ResMig-all-repl-bump-overn

Figure 18: Sections cut through the
image-focusing semblance cubes at
constant value of ρ and R before
spatial averaging. These panels were
computed from the point-diffractors
data. Panel a) shows semblance for
ρ = 1.025 and R = 0 meters, and
panel b) shows semblance for for
ρ = 1.0125 andR = 40 meters. [CR]
biondo1/. Wind-Sembl-scatter-all-overn

Figure 19: Sections cut through the
image-focusing semblance cubes at
constant value of ρ and R before
spatial averaging. These panels were
computed from the convex-reflectors
data. Panel a) shows semblance for
ρ = 1.04 and R = 0 meters, and
panel b) shows semblance for for
ρ = 1.01 and R = 120 meters. [CR]
biondo1/. Wind-Sembl-repl-bump-all-overn



SEP–138 Image-focusing analysis 79

Figure 20: Sections cut through the
image-focusing semblance cubes at
constant value of ρ and R before
spatial averaging. These panels were
computed from the convex-reflectors
data. The local dip was set to be
constant and equal to zero when ap-
plying the curvature correction. In
contrast, the local dips were numer-
ically estimated when computing
the semblance panels shown in Fig-
ure 19. Panel a) shows semblance
for ρ = 1.04 and R = 0 meters, and
panel b) shows semblance for for
ρ = 1.01 and R = 120 meters. [CR]
biondo1/. Wind-Sembl-repl-bump-dip-0-all-overn

Figure 21: Sketch used to de-
rive the curvature correction pre-
sented in 2. The tangent to the
parabola (dashed line) needs to be
shifted by ∆n to pass through
the vertex of the parabola. [NR]
biondo1/. Curv-corr
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Attribute combinations for image segmentation

Adam Halpert and Robert G. Clapp

ABSTRACT

Seismic image segmentation relies upon attributes calculated from seismic data, but
a single attribute (usually amplitude) is not always sufficient to produce an accurate
result. Therefore, a combination of information from different attributes should lead to
an improved segmentation outcome. This paper explores opportunities for combining
attribute information at three different stages: before segmentation (by multiplying
attribute volumes), after the eigenvector calculation (via a linear combination of indi-
vidual eigenvectors), and after individual boundaries have been drawn (by using un-
certainty calculations to extract the best elements of individual boundaries). Overall,
a method that uses uncertainty calculations to determine weights for the eigenvector
linear combination produces satisfactory results, while avoiding potential drawbacks of
other methods. This method produces promising results when tested on field data in
both two and three dimensions.

INTRODUCTION

Image segmentation - an automated process of dividing an image into regions - offers a
number of promising applications for seismic data. Among the most straightforward of
these applications is to the task of picking salt bodies on seismic images, a process that can
be ambiguous and time-consuming when undertaken manually, especially for large three-
dimensional datasets with complex salt body geometries. The development of an algorithm
for automatically tracking salt boundaries (Lomask, 2007; Lomask et al., 2007) in many
cases allows for the quick, efficient and globally-optimized calculation of a salt interface
location. Such information may then be used, for example, to quickly update a velocity
model as part of an iterative migration system (Halpert et al., 2008).

The seismic image segmentation scheme is based on the Normalized Cut Image Segmen-
tation (NCIS) algorithm (Shi and Malik, 2000), which calculates an eigenvector based on
specific attributes gleaned from the image; the eigenvector is then used to trace a boundary
across the image. Although the most straightforward attribute for delineating salt bound-
aries on seismic images is amplitude of the envelope, this attribute alone is not always
sufficient to produce an accurate calculation of the boundary. In such cases, other at-
tributes may be used for segmentation. For example, an estimate of dips in a seismic image
is often used for interpretation purposes (Bednar, 1997), and strong variations in dominant
dips within an image can be indicative of a salt interface. Halpert and Clapp (2008) provide
details on using dip variability, as well as an instantaneous frequency attribute, for segmen-
tation with a single attribute. Ideally, however, a segmentation algorithm will combine
information from multiple attributes into a single result. In this paper, we discuss three
strategies for combining attributes: a multiplication of attribute volumes, a combination of
individually calculated boundaries, and a linear combination of individual eigenvectors. The
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latter method, when combined with an uncertainty measurement derived from the eigenvec-
tors, produces results superior to those using only a single attribute. Since improvements
in computing capabilities make increasingly complex segmentation problems tractable, it
is important to extend this process to three dimensions. Initial results from a combined-
attribute 3D segmentation scheme suggest that a more sophisticated, interpreter-guided
segmentation process can be successful.

ATTRIBUTE COMBINATIONS

In the segmentation algorithm, the determination of a salt interface takes place in three
distinct stages. The first stage is the calculation of attributes that may be useful in indicat-
ing a boundary between sediments and a salt body. The second stage involves transforming
the attribute volumes into eigenvectors of the image via the construction of a weight matrix
based on the attribute values. Finally, the third stage “draws” the salt boundary using
the eigenvector values. Each of these three stages represents an opportunity for combining
information from different attributes. The following sections will explore these three op-
tions, and illustrate their advantages and disadvantages with example calculations on a 2D
seismic section taken from a 3D Gulf of Mexico field dataset, seen in Figure 1.

Figure 1: A migrated seismic section used for 2D segmentation examples. Note the discon-
tinous nature of the strong reflector (salt boundary), which will present challenges for the
segmentation algorithm. [ER] adam1/. dat

The following examples will seek to combine useful information from two attributes -
amplitude and dip variability. Figure 2 shows eigenvectors derived from these two individual
attributes. The eigenvector values range from -1 to +1; in the figures here, negative values
are dark and positive values are light. The salt boundary is typically drawn along the
zero-contour of the eigenvector, where values pass from negative to positive. Thus, a sharp
transition from dark to light colors in the eigenvector indicates a boundary location with
relative certainty, while a grey area indicates a slower transition from negative to positive
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values, and relative uncertainty of the boundary location. Clearly, the amplitude eigenvector
provides better information throughout most of the image, although the transition near
x = 18000 suggests significant uncertainty. This is logical, as the original section (Figure 1)
shows a great deal on discontinuity at this location. Overall, the dip eigenvector shows much
less certainty than the one derived from the amplitude attribute; however, the previously
mentioned location appears more certain on the dip eigenvector. The boundary calculations
corresponding to these two eigenvectors (Figure 3) confirm these observations. Therefore, an
obvious goal for combining information from these two attributes is to produce a boundary
that uses information from the amplitude attribute in most locations, but incorporates the
dip information at this location.

Figure 2: Eigenvectors derived from amplitude of the envelope (a) and dip variability
(b) attributes. Areas of relative boundary certainty and uncertainty are indicated. [CR]
adam1/. eigs-ann

Attribute multiplication

One approach, suggested by Lomask (2007), is to combine multiple attribute volumes into
a single volume via multiplication:

A =
all attributes∏

i=each attribute

ai , (1)

where ai is an individual attribute volume, and then proceed with segmentation normally.
Multiplication of the attribute data has the effect of reinforcing information in areas where
the attributes “agree,” which can be beneficial. However, it also can have the effect of
destroying potentially valuable information if the two attributes are not in agreement. Panel
(a) in Figure 4 shows the boundary calculation resulting from this process.

Clearly, in this case the disadvantages of multiplying attribute volumes together out-
weigh the possible advantages - the process appears to have incorporated the worst infor-
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Figure 3: Zero-contour boundaries corresponding to the amplitude (a) and dip variability
(b) eigenvectors seen in Figure 2. [CR] adam1/. ampdipbnd
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mation from each of the attributes, resulting in a final boundary that does not improve on
either of the individual results (Figure 3) in any location.

Boundary combinations

A second “domain” in which information from different attributes may be combined is
after individual boundary calculations have already taken place. This method requires a
measure of uncertainty along each individual boundary, so that a new boundary can be
created by incorporating the “most certain” boundary at each location in the image. As
discussed previously, such an uncertainty measure may be gleaned from the zero-crossing
of the eigenvector:

d = |p1 − n1| , (2)

where p1 and n1 are the two values on either side of the boundary (one will be positive,
one negative). A sharp transition from positive to negative values - quantitatively, a large
value of d at that location - signifies relative certainty, while a slow transition or small
difference signals uncertainty. In this case, the measurement is taken perpendicular to the
calculated boundary, so as to avoid the assumption that the boundary is in all locations
locally horizontal. After such calculations are made at all locations for each boundary, a
combined boundary is formed by taking the most certain boundary location (depth value)
at each horizontal location. Panel (b) in Figure 4 shows the result of this process.

This approach performs very well in this example. Information from the amplitude
attribute is honored nearly everywhere, and the dip information is incorporated only where
it is superior to the amplitude information. However, the manner in which this approach
is implemented could lead to problems in some circumstances. Taking the best elements
of different boundaries could easily lead to erratic, “either/or” behavior in the combined
boundary; indeed, some indications of this behavior may be seen in the jaggedness of the
boundary where the dip information plays a significant role. It is likely that this behavior
would be even more troublesome in three dimensions.

Eigenvector combinations

Finally, a third approach is to use the individual attribute volumes to calculate multiple
eigenvectors, and then combine the eigenvectors before determining a boundary. Following
the recommendation of Shi and Malik (2000), a simple way to combine the eigenvectors is
via linear combination:

E =
all attributes∑

i=each attribute

λiei , (3)

where ei is an individual eigenvector and λi is a specific weight value assigned to the attribute
in question. Of course, taking this approach introduces the problem of determining weight
values for each attribute. Panel (c) in Figure 4 shows the result of this approach if equal
weights are given to the amplitude and dip attributes. While the boundary is satisfactory
in many locations, the dip attribute clearly has too much influence in some areas where the
amplitude attribute provides much better information. This method shows promise, but a
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Figure 4: Calculated boundaries corresponding to: (a) Attribute multiplication segmenta-
tion; (b) Combination of individual boundaries; (c) Equally-weighted eigenvector combina-
tion; and (d) Uncertainty-weighted eigenvector combination. [CR] adam1/. uno-bnds
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mechanism for assigning better weights is necessary. One such mechanism has already been
discussed; we can use the eigenvector uncertainty measurement, utilized previously for the
boundary combination approach, to assign attribute weight values for a linear combination
of eigenvectors. In this way, we are able to follow the recommendation of Shi and Malik for
combining information from different sources, while at the same time taking advantage of
a “built-in” method for estimating uncertainties.

Since the eigenvectors range in value from -1 to +1, the eigenvector difference across
one of the boundaries can never be greater than two. Thus, the value

ω =
1
2

(1 + damp − ddip) , (4)

where d is the difference across a calculated boundary at a particular x location, will range
from 0 to 1. If we want to heavily penalize uncertainty in one of the eigenvectors, we set
the weight values as follows:

Wamp =
{

ω2 if ω < 0.5√
ω if ω > 0.5

(5)

Wdip = 1− wamp . (6)

The results of assigning weight values in this manner to create an eigenvector are shown
in panel (d) of Figure 4. The boundary successfully follows the salt interface everywhere
the amplitude-only boundary does, and incorporates the dip information only where the
amplitude boundary fails. Furthermore, we do not see the erratic behavior in areas where
the dip information is most significant, as we did for the boundary combination method.

SEGMENTATION IN THREE DIMENSIONS

We have shown that image segmentation with one or multiple attributes can be very effective
for 2D seismic data. However, it is in three dimensions that the advantages of automated
image segmentation should become even more apparent. While a skilled human interpreter
can easily examine a 2D section and pick out a salt interface, visualization and time con-
straints make this a very difficult process for a 3D survey. In contrast, a computer is not
bound by these limitations and can excel at “seeing” in three dimensions. Furthermore,
the drastic increase in the number of pixel-to-pixel comparisons available in three dimen-
sions compared to two should also increase the robustness and accuracy of the segmentation
process.

Computational issues

Of course, moving to 3D also greatly increases the computational complexity and expense of
the image segmentation process. Lomask (2007) describes several modifications to the algo-
rithm that help to lessen the impact, such as comparing each pixel to a random selection of
other pixels instead of all pixels in a specified neighborhood. However, constant technologi-
cal advances in the computer hardware industry also contribute to the increasing tractability
of large-scale computational problems such as this one. The segmentation algorithm used
here involves heavy computations with very large, sparse matrices. As such, a promising
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avenue of interest is to work with many-core, large-memory machines such as those re-
cently developed by SiCortex (Reilly et al., 2006). Because such machines feature very fast
interprocessor communication capabilities, they lend themselves well to the sparse-matrix
eigenvector calculation portion of the segmentation scheme that, in most cases, represents
the majority of overall computational expense. Early implementations of the eigenvector
calculation algorithm on a SiCortex development machine with 72 low-power, relatively low-
performance nodes bear out this hypothesis. The matrix-vector multiplications needed for
calculation of the eigenvector on a 250 x 400 x 50 cube of data required approximately four
minutes on this machine, representing a speedup of over 750% when compared to the same
calculations on a single processor with much higher relative speed and power consumption.
Optimization of codes to take greater advantage of the machine’s capabilities should further
improve these results.

Attribute combinations in 3D

An ideal goal for an image segmentation algorithm is to be able to extend information
gathered from a 2D seismic section by using it to guide the segmentation for a 3D volume.
For instance, if an interpreter picks an interface on the 2D section, an automated inversion
scheme could determine which combination of attribute information would have led the
segmentation algorithm to produce the same boundary. This information would then be
used to segment the entire 3D cube. Here, we have an opportunity to test a primitive
version of this process.

Figure 5 displays a depth slice, inline section and crossline section of the 3D cube
containing a portion of the seismic section (Figure 1) used to demonstrate the 2D boundary
combinations above; the inline section shown is not the same as the one used for Figure 1.
Single-attribute 3D segmentations with amplitude and dip variability attributes produce the
eigenvectors seen in Figure 6. As we saw in the 2D case, the amplitude segmentation shows
greater certainty in most locations; however, the dip variability eigenvector is noticeably
superior in the two indicated areas. We seek to combine the two eigenvector volumes such
that the most accurate information from each attribute is contained in a single eigenvector
volume.

Previously, we used an uncertainty-weighted eigenvector combination scheme to produce
the boundary in panel (d) of Figure 4. From this process, we can retain the individual
weight values used for each attribute’s eigenvector at each x-direction sample. By making
the assumption that these weights will remain constant in the crossline direction, we can
combine the 3D eigenvector volumes by using these same weight values for every crossline
section. Figure 7 shows the results of this process for the same slices displayed in Figure 5.
The new eigenvector improves on the ambiguities indicated on the amplitude eigenvector
in Figure 6, yet retains the amplitude eigenvector’s superior results in other locations. The
corresponding zero-contour boundaries for these slices are seen in Figure 8; the boundary
accurately tracks the salt interface on all three sections.
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Figure 5: Depth slice and inline and crossline sections of a seismic data cube used for 3D
image segmentation. [ER] adam1/. unocal4
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Figure 6: Slices of the 3D eigenvectors calculated from amplitude (top) and dip variabil-
ity (bottom) attributes corresponding to the image in Figure 5. The circles indicate ar-
eas where the dip eigenvector is noticeably superior to the amplitude eigenvector. [CR]
adam1/. 3deigs
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Figure 7: Combined eigenvector, using a linear combination of the eigenvectors in Figure 6
with weights determined during the 2D example. [CR] adam1/. comboeig
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Figure 8: Zero-contour boundary corresponding to the combined eigenvector in Figure 7.
The salt interface is accurately tracked on all three sections. [CR] adam1/. 3dbnd
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CONCLUSIONS

Seismic image segmentation using a single attribute is not always sufficient to produce an
accurate salt boundary calculation, so the use of other attributes such as dip variability is
often necessary. By combining information from different attributes, we hope to incorporate
the most reliable information from each attribute into a single, improved segmentation
result. While opportunities for such combinations exist at several stages of the segmentation
process, the most promising method in 2D involves a linear combination of eigenvectors from
individual attributes, weighted according to uncertainties derived from each eigenvector. In
the examples here, this approach successfully incorporates useful information from two
different attributes, while avoiding potential pitfalls of other methods. This method may
be extended to three dimensions with the assumption that weight values are constant in
the crossline direction; in the 3D example shown here, such an approach yields an improved
eigenvector and accurate salt interface pick on a 3D seismic cube. While the constant-
weights assumption is part of an early and somewhat primitive approach, the results here
hold promise for the success of more sophisticated 3D image segmentations schemes.
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Wave-equation tomography using image-space
phase-encoded data

Claudio Guerra, Yaxun Tang, and Biondo Biondi

ABSTRACT

Wave-equation tomography in the image-space is a powerful technique that promises to
yield more reliable velocity models than ray-based migration velocity analysis in areas
of complex overburden. Its practical use, however, has been limited because of the high
computational cost. Applying a target-oriented approach and using data reduction can
make wave-equation tomography in the image space of practical use. Here, we present
results of applying image-space wave-equation tomography in the generalized source
domain, where a small number of synthesized shot gathers are generated. Specifically,
we generate synthesized shot gathers by image-space phase encoding. This technique
can also be used in a target-oriented way. The comparison of the gradients of the to-
mography objective functional obtained using image-space encoded gathers with those
obtained using the original shot gathers shows that those encoded shot gathers can
be used in wave-equation tomography problems. Velocity inversion using image-space
phase-encoded gathers converges to reasonable results when compared to the correct
velocity model. We illustrate our method by applying it to the Marmousi model.

INTRODUCTION

Wave-equation tomography has the potential to overcome the problems faced by ray-based
traveltime tomography when estimating the velocity model in complex geological scenarios.
This is because wave-equation tomography uses band-limited wavefields instead of infinite-
frequency rays as carriers of information; thus it is robust even in the presence of strong
velocity contrasts and immune to multi-pathing issues. However, despite its theoretical
advantages, wave-equation tomography is still computationally challenging.

Wave-equation tomography can be performed in the data-space domain (Tarantola,
1987; Woodward, 1992) or in the image-space domain (Biondi and Sava, 1999; Shen, 2004).
The image-space approach minimizes the residual in the image domain obtained after migra-
tion. Regardless of the domain of application, using phase-encoded data can substantially
decrease the computational cost of wave-equation tomography(Vigh and Starr, 2008; Shen
and Symes, 2008). Tang et al. (2008) extended the theory of image-space wave-equation to-
mography from the conventional shot-profile domain (Shen, 2004) to the generalized source
domain. The generalized source domain can be obtained in two different spaces. In the
data-space, shot gathers are combined and the corresponding source function is synthe-
sized, using a convenient phase-encoding scheme, which characterizes the data-space phase
encoding (Whitmore, 1995; Romero et al., 2000). In the image-space, source- and receiver-
areal data are synthesized by upward propagating wavefields. The initial condition for the
modeling is a prestack image computed with wave-equation migration, according to the
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prestack exploding-reflector modeling (Biondi, 2006, 2007). The modeling experiments can
be combined such that a small quantity of areal data is generated. In this case, to miti-
gate crosstalk during imaging, the modeling experiments and reflectors are phase-encoded,
characterizing the image-space phase encoding (Guerra and Biondi, 2008). To encode the
reflectors, a picking step of some key reflectors is necessary.

In this paper, we show that image-space phase-encoded wavefields can be used to es-
timate the velocity model in image-space wave-equation tomography. We show that the
gradient of the tomographic objective functional is similar to that obtained in the original
shot-profile domain, but with less computational cost. Velocity inversion using image-space
phase-encoded gathers converges to reasonable results when compared to the correct ve-
locity model, provided that crosstalk has been sufficiently attenuated. We briefly discuss
the theory of wave-equation tomography in the image-space domain; then we explain the
prestack exploding-reflector modeling and show that the image-space phase encoding can be
used to accelerate wave-equation tomography in the image domain. We use the Marmousi
model to illustrate the method.

IMAGE-SPACE WAVE-EQUATION TOMOGRAPHY

Image-space wave-equation tomography is a non-linear inverse problem that tries to find
an optimal background slowness that minimizes the residual field, ∆I, defined in the image
space. The residual field is derived from the background image, I, which is computed with
a background slowness. The general form of the residual field is (Biondi, 2008)

∆I = I− F(I), (1)

where F is a focusing operator, which measures the focusing of the migrated image. In
particular, in the Differential Semblance Optimization (DSO) method (Shen, 2004), the
focusing operator takes the form:

F(I) = (1−O) I, (2)

where 1 is the identity operator and O is the DSO operator either in the subsurface offset
domain or in the angle domain (Shen, 2004).

Under `2 norm, the tomography objective function can be written as follows:

J =
1
2
||∆I||2 =

1
2
||I− F(I)||2. (3)

The gradient of J with respect to the slowness s is

∇J =
(
∂I
∂s
− ∂F(I)

∂s

)∗
(I− F(I)) , (4)

where ∗ denotes the adjoint.

The linear operator ∂I
∂s

∣∣
s=bs, which defines a linear mapping from the slowness perturba-

tion ∆s to the image perturbation ∆I, can be computed by expanding the image I around
the background slowness ŝ. Keeping only the zeroth and first order terms, we get the linear
operator ∂I

∂s

∣∣
s=bs as follows:

∆I =
∂I
∂s

∣∣∣∣
s=bs ∆s = T∆s, (5)
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where ∆I = I − Î, Î is the background image computed with the background slowness ŝ
and ∆s = s− ŝ. T = ∂I

∂s

∣∣
s=bs is the wave-equation tomographic operator. The tomographic

operator can be evaluated either in the source and receiver domain (Sava, 2004) or in the
shot-profile domain (Shen, 2004).

In the shot-profile domain, both source and receiver wavefields are downward continued
with the one-way wave equations (Claerbout, 1971){ (

∂
∂z + iΛ

)
D(x,xs, ω) = 0

D(x, y, z = 0,xs, ω) = fs(ω)δ(x− xs)
, (6)

and { (
∂
∂z + iΛ

)
U(x,xs, ω) = 0

U(x, y, z = 0,xs, ω) = Q(x, y, z = 0,xs, ω)
, (7)

where D(x,xs, ω) is the source wavefield for a single frequency ω at image point x = (x, y, z)
with the source located at xs = (xs, ys, 0); U(x,xs, ω) is the receiver wavefield for a single
frequency ω at image point x for the source located at xs; fs(ω) is the frequency dependent
source signature, and fs(ω)δ(x− xs) defines the point source function at xs, which serves
as the boundary condition of Equation 6. Q(x, y, z = 0,xs, ω) is the recorded shot gather
for the shot located at xs, which serves as the boundary condition of Equation 7. Λ is the
square-root operator

Λ =
√
ω2s2(x)− |k|2, (8)

where s(x) is the slowness at x; k = (kx, ky) is the spatial wavenumber vector. The image
is computed by applying the cross-correlation imaging condition:

I(x,h) =
∑
xs

∑
ω

D(x− h,xs, ω)U(x + h,xs, ω), (9)

where the overline stands for complex conjugate; D(x,xs, ω) is the source wavefield for a
single frequency ω at image point x = (x, y, z) with the source located at xs = (xs, ys, 0);
U(x,xs, ω) is the receiver wavefield and h = (hx, hy, hz) is the subsurface half-offset.

The perturbed image can be derived by the application of the chain rule to Equation 9:

∆I(x,h) =
∑
xs

∑
ω

(
∆D(x− h,xs, ω)Û(x + h,xs, ω)+

D̂(x− h,xs, ω)∆U(x + h,xs, ω)
)
, (10)

where D̂(x−h,xs, ω) and Û(x+h,xs, ω) are the background source and receiver wavefields
computed with the background slowness ŝ(x); ∆D(x − h,xs, ω) and ∆U(x + h,xs, ω) are
the perturbed source wavefield and perturbed receiver wavefield, which are the results of
the slowness perturbation ∆s(x).

To evaluate the adjoint of the tomographic operator, T∗, we first apply the adjoint of
the imaging condition to get the perturbed source and receiver wavefields, ∆D(x+h,xs, ω)
and ∆U(x + h,xs, ω), as follows
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∆D(x,xs, ω) =
∑
h

∆I(x,h)Û(x + h,xs, ω)

∆U(x,xs, ω) =
∑
h

∆I(x,h)D̂(x− h,xs, ω). (11)

The perturbed source and receiver wavefields satisfy the following one-way wave equa-
tions, linearized with respect to slowness:

(
∂
∂z + iΛ

)
∆D(x,xs, ω) =

 −iωr
1− |k|2

ω2bs2(x)

D̂(x,xs, ω)

∆s(x)

∆D(x, y, z = 0,xs, ω) = 0

, (12)

and 
(

∂
∂z + iΛ

)
∆U(x,xs, ω) =

 −iωr
1− |k|2

ω2bs2(x)

Û(x,xs, ω)

∆s(x)

∆U(x, y, z = 0,xs, ω) = 0

. (13)

When solving the optimization problem, the gradient of the objective function is ob-
tained by computing the perturbed wavefields using the adjoint of the imaging operator
(equation 11), where the image perturbation results from the application of a focusing op-
erator (equation 1) on the background image; then the scattered wavefields are obtained
by applying the adjoint of the one-way wave equations 12 and 13; and, finally, the adjoint
scattering operator cross-correlates the upward propagated the scattered wavefields with
the modified background wavefields (term in the parenthesis on the right-hand side of equa-
tions 12 and 13). Figure 1 displays the image-space wave-equation tomography flowchart.
The gray box on the left represents the process of obtaining the image perturbation, while
the gray box on the right corresponds to the application of the adjoint of the wave-equation
tomography operator. WE stands for wavefield extrapolation. The light gray boxes con-
tain the wavefields, images and slowness perturbation. The processes and operators are
represented as white boxes. More detailed information on how to evaluate the forward and
adjoint operators can be found in Tang et al. (2008).

PRESTACK EXPLODING-REFLECTOR MODELING

The general idea of prestack exploding-reflector modeling (Biondi, 2006) is to model the
data and corresponding source function that are related to only one event in the subsurface.
In this case, a single unfocused subsurface-offset-domain common-image gather (SODCIG)
containing a single reflector is used as the initial condition for recursive upward continuation
with the following one-way wave equations:{ (

∂
∂z − iΛ

)
QD(x, ω;xm, ym) = ID(x,h;xm, ym)

QD(x, y, z = zmax, ω;xm, ym) = 0
, (14)

and { (
∂
∂z − iΛ

)
QU (x, ω;xm, ym) = IU (x,h;xm, ym)

QU (x, y, z = zmax, ω;xm, ym) = 0
, (15)
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Figure 1: Image-space wave-equation tomography flowchart. The gray box on the left rep-
resents the process of obtaining the image perturbation, while the gray box on the right cor-
responds to the application of the adjoint of the wave-equation tomography operator.[NR]
claudio1/. ISWET
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where ID(x,h;xm, ym) and IU (x,h;xm, ym) are the isolated SODCIGs at the horizontal
location (xm, ym) for a single reflector, and are suitable for the initial conditions for the
source and receiver wavefields, respectively. As Biondi (2006) discusses, a rotation of the
image gathers according to the apparent geological dip must be performed prior to modeling.
By collecting the wavefields at the surface, we obtain the areal source data QD(x, y, z =
0, ω;xm, ym) and the areal receiver data QU (x, y, z = 0, ω;xm, ym) for a single reflector and
a single SODCIG located at (xm, ym). Λ is the square-root operator defined by

Λ =
√
ω2ŝ2(x)− |k|2,

where s(x) is the slowness at x and k = (kx, ky) is the spatial wavenumber vector.

Since the size of the migrated image volume can be very large in practice, and there
are usually many reflectors in the subsurface, modeling each reflector and each SODCIG
may generate a data set even larger than the original data set. One strategy to reduce
the cost is to model several reflectors and several SODCIGs simultaneously (Biondi, 2006);
however, this process generates unwanted crosstalk. As discussed by Guerra and Biondi
(2008), random phase encoding can be used to attenuate the crosstalk.

One important characteristic of the prestack exploding reflector modeling is that, for
velocity model building, the wavefields can be upward propagated to a certain depth level
or depth horizon, provided that the velocity model above is sufficiently accurate. Therefore,
a target-oriented strategy can be applied to derive the velocity model below the that depth.

IMAGE-SPACE PHASE-ENCODED WAVEFIELDS

The randomly encoded areal source and areal receiver wavefields can be computed as follows:{ (
∂
∂z − iΛ

)
Q̃D(x,pm, ω) = ĨD(x,h,pm, ω)

Q̃D(x, y, z = zmax,pm, ω) = 0
, (16)

and { (
∂
∂z − iΛ

)
Q̃U (x,pm, ω) = ĨU (x,h,pm, ω)

Q̃U (x, y, z = zmax,pm, ω) = 0
, (17)

where ĨD(x,h,pm, ω) and ĨU (x,h,pm, ω) are the encoded SODCIGs. They are defined as:

ĨD(x,h,pm, ω) =
∑

xm,ym
ID(x,h, xm, ym)β,

ĨU (x,h,pm, ω) =
∑

xm,ym
IU (x,h, xm, ym)β,

(18)

where β = eiγ(x,xm,ym,pm,ω) is chosen to be the random phase-encoding function, with
γ(x, xm, ym,pm, ω) being a uniformly distributed random sequence in x, xm, ym and ω; the
variable pm is the index of different realizations of the random sequence. Recursively solving
Equations 16 and 17 gives us the encoded areal source data Q̃D(x,pm, ω) and encoded areal
receiver data Q̃U (x,pm, ω), which can be collected at any depth.

In image-space wave-equation tomography, the image-space phase-encoded areal data
sets are downward continued using the one-way wave equation. The background image is
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produced by cross-correlating the two wavefields and summing images for all realizations
pm, as follows:

Ime(x,h) =
∑

pm,ω D̃(x,pm, ω)Ũ(x,pm, ω). (19)

The initial condition for modeling simultaneous events is set by regularly selecting SOD-
CIGs in the prestack image. The amount of crosstalk in the image Ime(x,h) can be con-
trolled by choosing a convenient sampling interval for SODCIGs used simultaneously for
the modeling. For instance, if only one reflector is present and the correct velocity is used,
no crosstalk is generated if the SODCIG interval is greater than twice the maximum sub-
surface offset of the prestack image. In the extreme case, when an incorrect velocity is used
and the reflector’s energy spreads through the whole range of subsurface offsets, crosstalk is
not generated if the the SODCIG interval is greater than four times the maximum subsur-
face offset. In the presence of more than one reflector, crosstalk between reflectors occurs,
regardless of the distance between SODCIGs input to modeling. By phase-encoding the
reflectors, we can mitigate the crosstalk.

To phase-encode the reflectors it is necessary to pick some significant reflectors in the
prestack migrated data. This implies a horizon-based approach for the prestack exploding-
reflector modeling. In velocity-model updating, the idea of using some key reflectors to
extract the residual-moveout information is an established strategy (Stork, 1992; Kosloff
et al., 1996; Jiao et al., 2008).

The perturbed image is obtained by applying the chain rule to Equation 19. The
slowness perturbation is computed by applying the adjoint of the tomographic operator,
T∗, to the image perturbation.

NUMERICAL EXAMPLES

We test the image-space wave-equation tomography using image-space encoded data on a
smoothed version of the Marmousi model, computed by applying a 200 m 2D-median filter
to the slowness model. One-way data were synthesized considering a reflectivity computed
from the Marmousi stratigraphic velocity model. We modeled 376 shots, ranging from 0
to 9000 m, with 24 m spacing. We used split-spread acquisition geometry, with maximum
offset of 6600 m and receiver spacing of 24 m.

Figure 2(a) shows the true slowness model. The background velocity model is equal to
the correct velocity model above 2400 m depth and above the anticline with apex at (x =
6000 m, z = 1850m). Therefore, the slowness perturbation is zero in this portion of the
model. Below these horizons, the background model is characterized by a smoother version
of the original Marmousi model, computed with a 400 m 2D-median filter and scaled down
by a factor of 5%. Figure 2(b) shows the background slowness. By using this background
slowness model, we assume that a layer striping approach has been used and that the
model is accurately defined up to a certain horizon, as usually occurs in projects of velocity
model building. The slowness perturbation, computed by taking the difference between the
correct and background slownesses, is shown in Figure 3(a). In the part where the slowness
perturbation is different from zero, the ratio between the true and the background slowness
ranges approximately from 0.8 to 0.92 (Figure 3(b)). Notice that the minimum depth is
1500 m. Henceforth, all the figures will be displayed with a minimum depth of 1500 m.
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Figure 2: a) Correct slowness; b) Background slowness.[ER] claudio1/. islow

Figure 3: a) Slowness perturbation; b) Ratio between the true and the background slow-
nesses.[ER] claudio1/. dslow
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To compute the image-space phase-encoded data, we picked 10 reflectors in the non-
zero slowness perturbation part, in the prestack image computed with the 376 original
shots using the background slowness model. Figure 4 shows the background image (Figure
4a) computed with shot-profile migration. The panel on the left corresponds to the zero-
subsurface-offset section, and the panel on the right is the SODCIG at CMP position 5500
m. Notice the effects of using an inaccurate background slowness. The reflector at (7000
m, 2500 m) is pulled up, as are the subjacent reflectors. In the SODCIG, the energy is not
focused at the zero subsurface offset.

Figure 4(b) shows the picked reflectors used to model the image-space phase-encoded
data. This image is used as input for the rotation of the reflectors in the SODCIGs with
respect to the apparent geological dip, and the results are used as the initial conditions to
model the image-space phase-encoded data, as discussed by Biondi (2006, 2007). Figure
5 shows the initial conditions for the prestack modeling. Figure 5(a) shows the initial
condition for modeling the receiver wavefield, and Figure 5(b) shows the initial condition
for modeling the source wavefield.

Figure 4: Zero-subsurface offset section (panel on the left) and SODCIG at 5500 m (panel
on the right) showing: a) background image, and b) windowed image used to compute
image-space-encoded data.[CR] claudio1/. bimg1

Two image-space phase-encoded data sets were synthesized using different parameters.
One contains one random realization of phase-encoded areal shots initiated simultaneously
with SODCIG sampling interval of 264 m and encoded according to the CMP position and
reflector number, generating 11 areal shot gathers. The other data set corresponds to two
random realizations modeled with SODCIG sampling interval of 840 m, composed of 70 areal
shot gathers. Because in the velocity inversion we consider the maximum subsurface offset
to be 192 m, this data set is expected to generate less crosstalk. In some comparisons,
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we use just one random realization (35 areal shots) of the second data set. We use the
two random realizations when comparing the results of the non-linear optimization of the
slowness model. Henceforth, the image-space phase-encoded data sets are called areal shots.

Figure 5: Zero-subsurface offset section (panel on the left) and SODCIG at 5500 m (panel
on the right) showing: a) initial condition for modeling the receiver wavefield, and b) initial
condition for modeling the source wavefield.[CR] claudio1/. rimg1

In the slowness optimization problem, we compute the image perturbation by applying
the DSO operator, O, to the background image in the subsurface-offset domain. The
corresponding objective functional is

J =
1
2
||OÎ||2 =

1
2
||hÎ||2. (20)

Since the DSO operator is independent of the slowness, the gradient of J with respect to
the slowness s is

∇J =
(
∂I
∂s

∣∣∣∣
s=bs
)∗

O∗OÎ = T∗O∗OÎ. (21)

Given that the computation of the DSO objective functional is fully automated, it can
be minimized by using quasi-Newton methods. Here, we specifically use the constrained
L-BFGS algorithm (Nocedal and Wright, 2000).

To guarantee smoothness of the wave-equation tomography gradient, we use a B-spline
representation with nodes located every 960 m in the x-direction and 16 m in the z-direction.

Figure 6 shows the image perturbation computed by applying the forward tomographic
operator, T, and using the background slowness of Figure 2(b) and the known slowness
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perturbation of Figure 3. Figure 6a shows the image perturbation computed in the shot-
profile domain for the 376 shots; Figure 6b shows the image perturbation computed in the
image-space phase-encoded domain using 11 areal shots; and Figure 6c shows the image
perturbation computed in the image-space phase-encoded domain using 35 areal shots.
Notice that the dispersed crosstalk is stronger in Figure 6b than in Figure 6c.

Figure 6: Zero-subsurface offset section (panel on the left) and SODCIG at 5500 m (panel on
the right) showing: a) image perturbation in the shot-profile domain; b) image perturbation
computed with 11 areal shots; and c) image perturbation computed with 35 areal shots.[CR]
claudio1/. dimg1

Figure 7 illustrates the normalized slowness perturbations obtained by applying the
adjoint tomographic operator T∗ to the image perturbations of Figure 6. Compare with the
correct slowness perturbation of Figure 3. Figure 7a is the predicted slowness perturbation
found by back-projecting Figure 6a using all 376 shot gathers; Figure 7b shows the back-
projection of Figure 6b using 11 areal shots; and Figure 7c shows the back-projection of
Figure 6c using 35 areal shots. Notice that we do not use a B-spline representation for
the slowness perturbations. In general, the predicted slowness perturbation with image-
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space phase-encoded gathers shows a structure similar to that obtained with the original
shot gathers. The differences can be credited, at first order, to the occurrence of residual
crosstalk in the image-space phase-encoded perturbed image and to a sub-optimal number
of selected reflectors for the prestack exploding-reflector modeling.

Figure 7: Normalized slowness perturbation obtained by applying the adjoint tomographic
operator T∗ on the image perturbations in Figure 6. a) Slowness perturbation computed
from Figure 6a. b) Slowness perturbation computed from Figure 6b. c) Slowness perturba-
tion computed from Figure 6c.[CR] claudio1/. dsadj

Finally, we compare the optimized slowness models with the correct slowness model of
Figure 2(a). After 5 non-linear iterations for both the 11 areal shots and 35 areal shots (one
random realization) of the 70-gather image-space phase-encoded data set the optimization
stopped because the difference between the objective functional of successive iterations was
smaller than the machine precision. The number of function evaluations was 28 for the 11
areal shots, and 27 for the 35 areal shots. We also computed 2 non-linear iterations with a
total of 6 function evaluations using the two random realizations of the 70 areal shots. To
verify the accuracy of the resulting optimized slowness models, we also migrated the original
shot gathers with the three optimized slownesses and also with the correct slowness.

Figure 8 displays the evolution of the objective functional with the non-linear iterations
for the 11 areal shots (Figure 8(a)) and 35 areal shots (Figure 8(b)). For comparison, the
value of the objective functional for the true velocity is also shown as dashed lines. The
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values are normalized according to the value of the objective functional of the first iteration
for each case. The objective functional was reduced in 22% and 36% for the 11 areal
shots and for the 35 areal shots, respectively. Notice that those values are 23% and 47%,
respectively, when using the true slowness model. The smaller difference between the final
optimized value of the objective functional and the objective functional computed with the
true slowness model for the optimization with the 11 areal shots, can be partially credited
to the more severe crosstalk generated by this data set than the 35 areal shots. Even if
the correct slowness model is used, residual crosstalk is amplified when applying the DSO
operator.
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Figure 8: Evolution of the objective functional with the non-linear iterations. The dashed
lines represent the value of the objective functional for the true slowness model. a) Nor-
malized objective functional for the 11 areal shots. b) Normalized objective functional for
the 35 areal shots.[NR] claudio1/. plot

Figure 9 shows the optimized slownesses and, for comparison purposes, the true slowness.
Figure 9(a) displays the slowness model; Figure 9(b) is the slowness model obtained with
the 11-gather image-space phase encoded data; Figure 9(c) is the slowness model obtained
with the 35-gather image-space phase encoded data; and Figure 9(d) is the slowness model
obtained with the 70-gather image-space phase encoded data. In general, the predicted
slownesses are reasonable. The predicted slowness using the 11 areal shots shows slightly
lower values than the other two predicted slownesses. Notice that the detailed slowness
variation present in the true slowness is not recovered in the optimized slownesses, due
to the B-spline representation of the gradient of the wave-equation tomography objective
functional. In addition, as we are solving for the deeper portion of the model with dipping
reflectors, it is likely that deficient illumination prevents us to obtain a more accurate
slowness model. However, the slowness model obtained with the 70 areal shots recovers the
low slowness values on the left of model better than the other two predicted slownesses.

Figure 10 shows the histograms of the ratio between the true and background interval
slowness (continuous line) and between the true and predicted interval slownesses obtained
with the 11 (fine dash), 35 (fine dot), and 70 areal shots (large dash) below the depth of
2400 m.
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Figure 9: True and optimized slownesses. a) True slowness model; b) Slowness model
obtained with the 11-gather image-space phase-encoded data. c) Slowness model obtained
with the 35gather -image-space phase-encoded data. d) Slowness model obtained with the
70-gather image-space phase-encoded data.[CR] claudio1/. sfperm
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Figure 10: Histograms of the slowness ratios between the true and background interval slow-
ness (continuous line) and between the true and predicted interval slownesses obtained with
the 11 (fine dash), 35 (fine dot), and 70 areal shots (large dash).[CR] claudio1/. hsfperm

The mean and standard deviation of the corresponding distributions are summarized
in Table 1. In general, the predicted slownesses vary between 94% to 100% of the true
slowness. The background slowness varies between 110% to 116% of the true slowness.

Slowness ratio mean σ

background 0.884 0.025
11 gathers 1.030 0.033
35 gathers 1.027 0.032
70 gathers 1.013 0.027

Table 1: Mean and standard deviation of the interval slowness ratio.

Figure 11 displays the zero-subsurface-offset section after migration of the 376 original
shot gathers using the true slowness model (Figure 11(b)), the predicted slowness using 11
areal shots (Figure 11(c)), the predicted slowness using 35 areal shots (Figure 11(d)), and
the predicted slowness using 70 areal shots (Figure 11(e)). For comparison, we also display in
Figure 11(a) the zero-subsurface-offset section after migration with the background slowness
of Figure 2(b). Notice that reflectors in the central portion of Figure 11(a) are pulled up
when comparing to Figure 11(b). The image obtained with the optimized slowness model
computed with the 11 areal shots (Figure 11(c))presents pushed down reflectors around
(4000 m, 2500 m) as a consequence of the lower values of the optimized slowness. In
addition, in this image the undulating character of the reflector at (7000 m, 2600 m) reflects
some velocity inaccuracy, when compared to Figures 11(b) and (e).

From top to bottom, Figure 12 displays SODCIGs at 1500 m, 3500 m, 5500 m and 7500
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m after migration of the 376 original shot gathers, using the background slowness of Figure
2(b) in the first row, using the true slowness model in the second row, using the predicted
slowness with 11 areal shots in the third row, using the predicted slowness with 35 areal
shots in the fourth row, and using the predicted slowness with 70 areal shots in the fifth row.
The subsurface-offset ranges from -192 m to 192 m. The analysis of the SODCIGs in Figures
12(c) to (e) shows that better focusing is achieved when more image-space phase-encoded
gathers are used in the wave-equation tomography.

Figure 13 displays the angle-domain common-image gathers (ADCIGs) taken at the
same CMP position as SODCIGs of Figure 12. From top to bottom, Figure 13 displays
ADCIGs after migration using the background slowness in the first row, using the true
slowness model in the second row, using the predicted slowness with 11 areal shots in the
third row, using the predicted slowness with 35 areal shots in the fourth row, and using
the predicted slowness with 70 areal shots in the fifth row. Notice that migration with the
predicted slowness using 70 areal shots shows virtually no residual moveout. For the case
of predicted slowness using 11 and 35 areal shots some residual moveout occurs for CMP
position 5500 m. As can be seen if Figure 13, the angular coverage for the dipping deep
reflectors we consider in the slowness inversion ranges from −15◦ to 15◦. For the reflectors
at the central portion of the model it varies between −25◦ to 25◦. This limited angular
coverage decreases the resolution of the slowness estimate.

The accuracy of the optimized slowness improves when using more phase-encoded gath-
ers in the wave-equation tomography, or, in other words, when the crosstalk in the perturbed
image is less severe, as Figures 6 and 7 suggest. Figure 14 shows the perturbed image com-
puted by applying the DSO operator on the image migrated with the background slowness of
Figure 2(b). The panel on the left corresponds to the subsurface-offset -144 m and the panel
on the right is the SODCIG taken at 5500 m. Figure 14(a) shows the perturbed image using
11 areal shots; Figure 14(b) shows the perturbed image using 35 areal shots; and Figure
14(c) shows the perturbed image using 70 areal shots. Notice how the signal-to-noise ratio
improves as more phase-encoded gathers are used. The SODCIG of the perturbed image of
Figure 14(a) presents coherent events, related to unattenuated crosstalk, curving upward
at z = 2700 m; these events are not present in Figures 14(b) and (c). If these events are
sufficiently incoherent along the subsurface-offset sections, a two-dimensional filter could be
applied to attenuate them. In that case, a new objective function should be defined. This
deserves future investigation.

CONCLUSIONS

We present a cost-effective method to perform image-space wave-equation tomography using
image-space phase-encoded shot gathers. One important advantage is that we are able to
synthesize a much smaller data set while still keeping necessary velocity information for
migration velocity analysis; hence the computational cost of performing image-space wave-
equation tomography can be significantly reduced. Our results show that using the image-
space phase-encoded wavefields in the image-space wave-equation tomography problem can
provide reliable optimized slowness model, given that crosstalk is sufficiently attenuated.
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Figure 11: Zero-subsurface-offset section after migration of the 376 original shot gathers
using: a) the true slowness model; b) the predicted slowness model of Figure 9(a); c) the
predicted slowness model of Figure 9(b); and d) the predicted slowness model of Figure
9(c).[CR] claudio1/. fimg1
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Figure 12: Subsurface-offset gathers after migration of the 376 original shot gathers. From
top to bottom: in the first row, using the background slowness model; the second row, using
the true slowness model; in the third row, using the predicted slowness model of Figure 9(b);
in the fourth row, using the predicted slowness model of Figure 9(c); and in the fifth row,
using the predicted slowness model of Figure 9(d).[CR] claudio1/. fimg11
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Figure 13: ADCIGs after angle transformation of the SODCIGs of Figure 12. From top to
bottom: in the first row, using the background slowness model; the second row, using the
true slowness model; in the third row, using the predicted slowness model of Figure 9(b);
in the fourth row, using the predicted slowness model of Figure 9(c); and in the fifth row,
using the predicted slowness model of Figure 9(d).[CR] claudio1/. fang1
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Figure 14: Perturbed images computed with the DSO operator. a) Perturbed image using
11 areal shots. b) Perturbed image using 35 areal shots. c) Perturbed image using 70 areal
shots.[CR] claudio1/. dso
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Seismic tomography with co-located soft data

Mohammad Maysami and Robert G. Clapp

ABSTRACT

There is a wide range of uncertainties present in seismic data. Limited subsurface
illumination is also common, specially in areas with salt structures. These shortcomings
are only a few of many different reasons that makes seismic tomography an under-
determined problem with a large null space. We can use additional information to
reduce the uncertainty and constrain this large null space. The additional information,
also known as co-located soft (secondary) data, can be the result of integrating a non-
seismic data from the same subsurface area. A measure of structural similarity between
the two given data fields can create a link between the different types of data. We use
cross-gradient functions to incorporate this structural information, given by secondary
data, into the inverse problem as a constraint.

INTRODUCTION

Seismic data contain a wide range of uncertainties which directly affects the quality of seis-
mic images. Previous studies have tried to extract more information from raw seismic data
to reduce the uncertainty in the seismic-imaging problem (Yilmaz, 2001; Aki and Richards,
2002). Since velocity analysis plays a fundamental role in seismic imaging, uncertainties in
velocities lead to significant inaccuracies in seismic images. Without an accurate velocity
estimate, seismic reflectors are misplaced, the image is unfocused, and seismic images can
easily mislead earth scientists (Claerbout, 1999; Clapp, 2001). Defining a reliable velocity
model for seismic imaging is a difficult task, especially when sharp lateral and vertical ve-
locity variations are present. Moreover, velocity estimation becomes even more challenging
when seismic data are noisy (Clapp, 2001).

In areas with significant lateral velocity variations, reflection tomography methods,
where traveltimes are mapped to slowness, are often more effective than conventional
velocity-estimation methods based on measurements of stacking velocities (Biondi, 1990;
Clapp, 2001). However, reflection tomography may also fail to converge to a geologically
reasonable velocity estimation when the wavefield propagation is complex.

Unfortunately, the reflection tomography problem is ill-posed and under-determined.
Furthermore, it may not converge to a realistic velocity model without a priori information,
e.g., regularization constraints and other types of geophysical properties, in addition to
seismic data (Clapp, 2001). Better velocity estimation can be achieved by integrating co-
located soft data, such as non-seismic geological data, in the reflection tomography problem.

Lack of an analytical relationship between different measured geological properties limits
our ability to use co-located soft data. Besides the conventional probabilistic relations,
similarity-measurement tools can be used to enforce the structural information contained
in soft data into seismic velocity estimates. Based on these tools, differences in two images
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are classified as structural differences and non-structural differences. Since gradient fields
are a good choice for geometrical (structural) comparisons, the cross-gradient function is
one useful similarity-measurement tool. This is true because the variations of geophysical
properties can be described by a magnitude and a direction (Gallardo and Meju, 2004,
2007).

Here we use the cross-gradient function to integrate a given set of soft data—the re-
sistivity field measured by magnetotelluric (MT) sounding in our case—into the reflection
tomography problem. This integration requires consideration of differences in frequency
in seismic and resistivity data. In the following sections we study the behavior of cross-
gradient functions in different cases and then give an overview of how an understanding of
these differences can be used to improve velocity estimates given by seismic tomography.

THE CROSS-GRADIENT FUNCTION: A STRUCTURAL
SIMILARITY MEASURE

Integration of soft data into the seismic tomography problem can reduce model uncer-
tainty and result in a better velocity estimation, especially in areas with complex struc-
ture. Different geophysical methods probs the same structures in the Earth’s subsurface.
Among the techniques for integrating different types of geological data, structural similarity-
measurement tools may be a good choice for our tomography problem. The cross-gradient
function is one tool that measures the structural similarity between any two fields. Follow-
ing Gallardo and Meju (2004), we can define the cross-gradient function for the tomography
problem as

g = ∇r×∇s, (1)

where r and s can represent any two model parameters. In our case, they represent resistivity
and slowness, respectively. Zero values of the cross-gradient function correspond to points
where spatial changes in both geophysical properties, i.e., ∇r and ∇s, align. However, the
function is also zero where the magnitude of spatial variations of either field is negligible,
e.g., where either property is smooth. Note that the cross-gradient function is a non-linear
function of r and s if both are unknowns. In a 2-D problem, g simplifies to a scalar function
at each point, given by

g =
∂s
∂x

∂r
∂z
− ∂s
∂z

∂r
∂x

, (2)

where the model parameters are given in the x − z plane. To compute the cross-gradient
function, we can further simplify it by using first-order forward-differences approximations
of the first derivative operators.

Figures 1(a) and 1(b) show the smooth Marmousi synthetic 2-D velocity model (Versteeg
and Grau, 1991) and its cross-gradient with itself, respectively. The cross-gradient of a field
with itself is called the auto-gradient hereafter. Note that the auto-gradient of a field
should be zero everywhere; however, since the figures are prepared with a first-order linear
approximation of the cross-gradient function, it is not zero, especially in areas with sharp
edges.

Although we expect different types of geophysical methods to result in similar structural
maps, in practice each method maps the subsurface through different filters and frequency
contents. Typical frequencies in magnetotelluric data are much lower than those of seismic



SEP–138 Constrained seismic tomography 119

data (Kaufman and Keller, 1981). This difference in the frequency content of two fields
may affect how the cross-gradient represents the structural similarity of two fields. To
investigate the effect of different spatial frequency content, we prepared Figure 1, in which
the cross-gradient of the Marmousi velocity model and a smooth version of it is computed.
In Figure 1(d), we have increased the smoothing factor. This increase is equivalent to a
lower cut-off spatial frequency for a lowpass filter. Note that because of the relatively sharp
edges in the original velocity model, the cross-gradients in Figures 1(c) and 1(d) seem to
include some structure as well as higher amplitudes as compared with Figure 1(b). However,
this synthetic example is an extreme case of complexity and sharp edges. As shown by the
results for the Pillow velocity model in Figure 2, in simpler cases of subsurface structure, the
cross-gradient with a smooth version of the velocity model leads to an acceptable similarity
indicator. The amplitude may be improved by using a higher-order linear approximation of
the cross-gradient computation. These figures in general may imply that the cross-gradient
function can be used as a constraint for joint data inversion problems or to integrate a
priori information from other fields into the seismic tomography problem.

REFLECTION TOMOGRAPHY

By definition, tomography is an inverse problem, in which a field is reconstructed from
its known linear path integrals, i.e., projections (Clayton, 1984; Iyer and Hirahara, 1993).
Tomography can be represented by a matrix operator T, which integrates slowness along
the raypath. The tomography problem can then be stated as

t = T s, (3)

where t and s are traveltime and slowness vector, respectively (Clapp, 2001). The tomog-
raphy operator is a function of the model parameters, since the raypaths depend on the
velocity field. Consequently, the tomography problem is non-linear. A common technique
to overcome this non-linearity is to iteratively linearize the operator around an a priori es-
timation of the slowness field s0 (Biondi, 1990; Etgen, 1990; Clapp, 2001). The linearization
of the tomography problem by using a Taylor expansion is given by

t ≈ Ts0 +
∂T
∂s

∣∣
s=s0

∆s. (4)

Here, ∆s = s − s0 represents the update in the slowness field with respect to the a priori
slowness estimation, s0. Equation 4 can be simplified as

∆t = t−Ts0 ≈ TL∆s, (5)

where TL = ∂T
∂s

∣∣
s=s0

is a linear approximation of T. A second, but not lesser, difficulty
arises because the locations of reflection points are unknown and are a function of the
velocity field (van Trier, 1990; Stork, 1992).

Clapp (2001) attempts to resolve some of the difficulties caused by the non-linearity
of the seismic tomography problem by introducing a new tomography operator in the tau
domain and by using steering filters. In addition to geological models, other types of geo-
physical data can also be extremely important for yielding improved velocity estimates. In
the following section, we show how the cross-gradient function can be used to add con-
straints to the seismic tomography problem in order to decrease the uncertainties in the
estimated velocity model.
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(a) (b)

(c) (d)

Figure 1: Frequency sensitivity of the cross-gradient function: (a) The Mar-
mousi velocity model; (b) its auto-gradient. Cross-gradient values of the Mar-
mousi velocity model and its (c) smooth and (d) very smooth copies. [ER]
mohammad1/. marm-S0vel,marm-S0xg,marm-S1xg,marm-S2xg
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(a) (b)

(c) (d)

Figure 2: Frequency sensitivity of the cross-gradient function: (a) The Pil-
low velocity model; (b) its auto-gradient. Cross-gradient values of the Pil-
low velocity model and its (c) smooth and (d) very smooth copies. [ER]
mohammad1/. pilw-S0vel,pilw-S0xg,pilw-S1xg,pilw-S2xg
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APPLICATION OF THE CROSS-GRADIENT FUNCTION IN
SEISMIC TOMOGRAPHY

Figure 3 shows a velocity map and corresponding resistivity map of a synthetic 2-D model.
That includes a water velocity of about 1.5 km

s at the top and a semi-circular fault in the
middle of the ocean bottom. There are also laterally smooth velocity anomalies in the
model. The resistivity profile and velocity profile are connected using the Archie/time-
average cross-property relation (Carcione et al., 2007) with arbitrary parameter values.

(a) (b)

Figure 3: Synthetic sinusoidal model with (a) two velocity anomalies and corresponding
(b) resistivity model. [ER] mohammad1/. vel-t,softdata1-0

We use the resistivity map as soft data to constrain the tomography problem with the
cross-gradient function. In this case, we can write the cross-gradient function given in
equation 2 as a linear operator G on the slowness field, s0 + ∆s. We can then extend the
linearized tomography problem by employing G as an additional constraint. The objective
function, P(∆s), of this extended problem becomes

P(∆s) = ||∆t−TL∆s||2 + ε21 ||G(s0 + ∆s)||2, (6)

where ε1 is a problem-specific weight factor to regularize the tomography problem (Clapp,
2001).

Figure 4 shows the initial velocity and the estimated velocities found by solving the
tomography problem both with steering filters and the cross-gradient constraint. The
results show that steering filters yield a good result for low frequency features such as smooth
lateral velocity anomalies; however, it ignores high-frequency structures of the velocity
model. On the other hand, the cross-gradient functions are able to provide better estimates
for high-frequency features of the velocity model, such as sharp salt boundaries and faults.
Steering filters assume a priori knowledge of the model parameters, while the cross-gradient
function uses the co-located soft data field to build this information. The combination of
these two method may be an optimal tool for addressing the velocity estimation problem
in more general subsurface structures.
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(a) (b)

(c)

Figure 4: Velocity estimates by seismic tomography: Initial velocity estimate (a) and
estimated velocity (b) with steering filers and (c) with cross-gradient constraint on soft-
data. [CR] mohammad1/. vel-0,vel-ds0,velx-dsx0
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CONCLUSIONS AND FUTURE WORK

We have reviewed the issues involved in solving a typical seismic tomography problem and
how we can address some of them by introduction of additional information. We also dis-
cussed our motivations for using the cross-gradient function to incorporate this additional
information. The preliminary sensitivity analysis on two synthetic velocity models shows
that the cross-gradient functions are a potential tool to integrate different types of geo-
physical data into the tomography problem. Finally, the comparison between estimated
velocities by use of steering filters and cross-gradients functions suggest that we may use
these two types of constraints to resolve more general cases of velocity models, including
sharp boundaries and smooth anomalies.

This method may lead to improved subsurface interpretations in regions mapped using
more than one geophysical method. Figures 5(a) and 5(b) show a CMP gather of seismic
data from a marine field dataset and co-located inverted MT resistivity data, respectively.
We hope to improve the velocity estimations given by the seismic data itself by including
the co-located smooth resistivity map in the tomography problem. Note that the frequency
contents of seismic and resistivity data are different, and the resistivity field provides only
a low frequency estimation of the subsurface structure. However, we hope to enforce a
reasonable geological structure on the output of the seismic tomography problem by using
this smooth image as the constraint.

(a) (b)

Figure 5: Field data provided by WesternGeco company: (a) a seismic CMP gather
from field data and (b) The inverted resistivity map from the MT survey. [NR]
mohammad1/. wg-cmp2,wg-resist2

This method can be extended to seismic tomography constrained by training images,
where we can also aim for different realizations of the velocity model by altering the co-
located data or training image.
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Automatic velocity picking by simulated annealing

Yunyue (Elita) Li and Biondo Biondi

ABSTRACT

Manual velocity picking is an inevitable and tedious process in the petroleum indus-
try. An ideal velocity model is both geologically significant and geophysically smooth.
Velocity picking can be phrased as a nonlinear optimization problem with multiple
contradictory objectives. In this paper, we develop an automatic velocity picking tech-
nique based on the Simulated Annealing (SA) Algorithm. Accuracy and smoothness of
the velocity model are used as objective functions. To improve the convergence of the
algorithm, we include prior knowledge of the velocity model in the initialization and
the constraints. The algorithm is adapted for this problem and demostrated using a
2-D field example.

INTRODUCTION

Measuring errors in velocity is one of the key steps in the processing of seismic data. An
accurate velocity model produces accurate depth migration and optimal stack response and
can be used directly as the lithology indicator. Residual migration has been shown to be a
powerful tool for performing velocity error analysis because of its low computational cost
(Rothman et al., 1985; Sava, 2003). After residual migration, we have a cube of residual
migration images as a function of ρ, the ratio of true velocity to current velocity. Semblance
panels corresponding to each value of ρ are computed to evaluate the focusing of the residual
migration. However, manual velocity picking is required to obtain the updated velocity
model.

An ideal velocity model is both geologically significant and geophysically smooth. It
is easy to pick the peaks (maximum values) of the semblance panels for each CMP at
each depth. The peak ρ values correspond to the optimal focusing update of the velocity
model; however, those values often have large variations both horizontally and vertically. To
solve the nonlinear velocity inversion problem, Singh et al. (2008) proposed a customized,
multiobjective evolutionary algorithm. The simulated annealing algorithm is also a global
optimization method and is capable of coping with the nonlinear relationship between the
seismic data and the velocity model.

The simulated annealing algorithm is a Monte Carlo approach for minimizing multivari-
ate functions. The term “simulated annealing” derives from the roughly analogous physical
process of heating and then slowly cooling a substance to obtain a strong crystalline struc-
ture. In the simulation, a minimum of the cost function corresponds to this ground state of
the substance. The simulated annealing process gradually lowers the temperature in stages
until the system freezes and no further changes occur.

In this paper, we customize the simulated annealing algorithm to automatically pick the
semblance panels and give an optimized velocity model which is both semblance focused
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and smooth. The algorithm is briefly explained and its objective functions are introduced.
We perform experiments on different sets of initialization and constraint parameters, the
results and the convergence of which are compared. To test the accuracy of the velocity
models, we apply them to the residual migration cube.

SIMULATED ANNEALING ALGORITHM

The simulated annealing (SA) algorithm is the computational analog of slowly cooling a
metal so that it adopts a low-energy, crystalline state. It is a provably convergent optimizer.
Geman and Geman (1984) provided a proof that simulated annealing, if the annealing is
sufficiently slow, converges to the global optimum. In geophysics, SA has been employed to
solve the problems of statics (Rothman, 1985), waveform inversion (Sen and Stoffa, 1991)
and ray tracing (Bona et al., 2009). Here we propose the application of the simulated
annealing algorithm to automatic velocity picking.

We initialize the system at a high temperature. At this stage the particles are then free
to move around by a small pertubation; as the temperature is lowered, however, they are
increasingly confined due to the high energy cost of movement. At each temperature T, SA
perturbs the system randomly until it reaches equilibrium. The new state of the perturbed
system is accepted according to the metropolis algorithm:

P = min(1, e−
(E(ρ′) − E(ρ))

T ), (1)

where ρ is the current velocity model, ρ′ is the perturbed velocity model, and E is the
objective function presented later in the chapter. As shown in the equation, a higher T
introduces a higher probability that an uphill perturbation will be accepted, which means
that SA can draw samples from the whole population. As T decreases, only perturbations
leading to smaller increases in E are accepted, so that only limited exploration is possible
as the system settles to the global minimum. The pseudo code of the algorithm is given in
Table 1.

The simulated annealing algorithm is popular and has been well-developed for single-
objective optimization. Traditionally, multiobjective optimization can be converted into a
single-objective optimization by different fix-up approaches such as the weighted-sum or
ε-constraint method. In our case, we use a composite-objective function:

E(ρ) = ωsemb
1

Semb(ρ) + ε
+ ωsmooth ∇ρ, (2)

where Semb(ρ)−1 is the inverse of semblance and is a measurement of focusing; ε is a
arbitrary small number to avoid diverging when Semb(ρ) = 0; and ∇ρ is the residual
after passing the velocity model through the Laplacian operator and is a measurement of
smoothness. ωsemb and ωsmooth are the weights for these two measurements, respectively,
making E(ρ) is the linear combination of these two objective functions.

There are different ways to compose this single objective function. By using the inverse
of semblance and residual of Laplacian we cast the optimization as a minimization problem.
This combined objective function is then used as the energy or cost to be minimized in an
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Table 1: Algorithm - Simulated Annealing

Inputs:
{Tk}Kk=1 Sequence of temperature values
{Lk}Kk=1 Sequence of epoch durations
ρ Initial velocity model

SA loop:
1: do itemp = 1, K
2: do iepoch = 1, LK

3: ρ′ : = perturb(ρ)
4: δE: = E(ρ′) − E(ρ)
5: rand: = rand(0,1)
6: if rand < min(1, exp(-δE/Tk))
7: ρ = ρ′

8: end if
9: end do

10: end do

SA optimizer. For the case we discuss here, the fixed weights are chosen according to the
relative importance of the objective functions.

REPRESENTATION OF THE VELOCITY MODEL

Although we are picking ρ instead of picking actual velocities, discussing the representation
of the velocity model is still helpful to better understand the shape and size of model
parameters. Kirkpatrick et al. (1983) report that the run time of simulated annealing
is related almost linearly to the number of parameters being estimated. Thus, a proper
presentation of velocity model which requires fewer parameters will greatly decrease the
computational cost of SA. Generally, two widely used classes of velocity models are blocky
and smooth velocity models. Blocky models represent the geologically stratified sedimentary
rocks, while smooth models have many numerical advantages. Both have been utilized for
velocity optimizations using global methods (Jervis et al., 1996; Docherty et al., 1997;
Mansanné, 2000).

Here, we are optimizing the residual migration parameter ρ rather than velocity itself.
Regarding the initial velocity model, ρ values at different location might be independent
with each other, suggesting it is better for us to use a grid to represent the ρ model. At
this stage, we optimize the ρ model point by point using grid samplings.

When perturbing the system, we select one sample in the velocity model randomly, and
change the velocity at that point to a random velocity value within a reasonable range.
The main obstacle for a practical application of such a global optimization method is the
computational cost. The larger the parameter space that must be searched and the greater
the number of parameters, the more expensive the method tends to be. Thus, the prior
knowledge could be both useful for speed and convergence. There are two slots where the
prior knowledge can be inserted into the algorithm: initialization and constrains. However,
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experiments show that incorporating the prior knowledge into initialization is more efficient
than into constrains. Thus, we initialize the system by the semblance peaks and randomly
perturbing the system by changing the value to any possible ρ value defined by residual
migration. Weights for the two objective functions are chosen arbitrarily. The results are
presented in the next section.

2-D VELOCITY MODEL EXAMPLE

We apply the simulated annealing algorithm to the ELF7D data set. This dataset is com-
plicated not only because of the salt dome, but also the complicated geological structure
caused by the rising of the salt.

To optimize the velocity model, we use grid samplings of 63 × 266 m, and the number
of grid points is 832. We start from a residual migration semblance cube. The residual
migration parameter ρ ranges from 0.925 to 1.0745. The aim of the algorithm is to produce
a smooth and accurate velocity model in accordance with the semblance cube. We initialize
the system with the ρ values corresponding to semblance peaks, and randomly perturb the
system through changing the ρ value to any possible ρ value defined by the residual migra-
tion. To create a smooth velocity model, we choose a much larger weight for smoothness
than for semblance.

The result of the simulated annealing algorithm is shown in Figure 1. The model
generated by 3200 iterations is much smoother than the initial model, but its main structure
is still present in the final velocity model.

The top panel of Figure 2 shows the composite cost function while cooling. The cost
function fluctuates up and down when the temperature is high, but the general trend is
always decreasing. When the temperature is lower, the cost function goes down more
steadily. As seen in the plot, the uphill perturbations are accepted less and less frequently
by the Metropolis algorithm along the cooling path. Generally, the cost decreases much
faster during the first iterations. As the annealing proceeds, the cost becomes more stable,
until complete stability is reached at crystallization. The bottom two plots in Figure 2
show the cost curve of semblance and smoothness, respectively. Started from the minimum
solution for semblance, simulated annealing maintains the increase of semblance within a
factor of 2 while significantly enhancing the smoothness.

Figure 3 and Figure 5 show the migration images before and after SA velocity analysis,
respectively. Figure 4 and Figure 6 show the corresponding angle domain common image
gathers (ADCIGs). It can be seen that the corners of the geological structure are focused
and the boundaries of the salt body are connected after the velocity update.

FUTURE STEPS

Parallel computing

As Geman and Geman (1984) pointed out, simulated annealing can be implemented in
parallel processes. In theory, using N processors would reduce run time by a factor of N.
Additionally, parallel computing can also break the large problem down into small problems.
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Figure 1: Initial velocity model (top). Velocity model after 3200 iterations (bottom). The
SA velocity is much smoother and still has the structure of the initial velocity model. [ER]
elita1/. velocity-semb
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Figure 2: The plot on the top is the composite cost function; the plot in the middle is
the cost of semblance; the plot at the bottom is the cost of smoothness. SA succeeds
in controlling the increase of semblance when significantly enhancing smoothness. [ER]
elita1/. costpart
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Figure 3: Migration image before performing SA velocity analysis. [ER] elita1/. stack0

Then the computation time is reduced to the same length of time that the small problems
require.

Pareto optimal front

Automatic velocity picking is a multiobjective optimization problem. In this paper, we
use a composite-objective function to find the optimal result. In fact, for multiobjective
optimization, there exists a set of solutions known as Pareto optimal: no other solutions
are feasible, which would decrease some objective without causing a simultaneous increase
in at least one other objective. Several attempts (Pereyra, 2009; Nam and Park, 1999) have
been made to explore the Pareto Front of multiobjective optimization. The next step of
our project is to progress rapidly to the Pareto-optimal front, and then to finalize the result
along the front in accordance with some constraints.

CONCLUSIONS

Simulated annealing is an effective global optimization method to cope with the nonlin-
ear velocity picking problem. We cast two contradictory objective functions into a single
objective function by a weighted-sum criterion. The weights for each function are chosen
according to their importance. Experiments show that including prior information into
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Figure 4: Corresponding angle domain common image gathers of figure 3. [ER]
elita1/. cigplane0
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Figure 5: The residual migration image using the SA velocity model. Structures are well
focused and the salt boundaries are connected. [ER] elita1/. stack1
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Figure 6: Angle domain common image gathers according to SA velocity. They are not flat
in the complex area. The smiling events above water bottom can be corrected by further
contrails. [ER] elita1/. cigplane1
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the initialization is important both speed and convergence. The results demostrate the
robustness of the algorithm.
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Least-squares migration/inversion of blended data

Yaxun Tang and Biondo Biondi

ABSTRACT

We present a method based on least-squares migration/inversion to directly image
data collected from recently developed wide-azimuth acquisition geometries, such as
simultaneous shooting and continuous shooting, where two or more shot records are
often blended together. We show that by using least-squares migration/inversion, we
not only enhance the resolution of the image, but more importantly, we also suppress the
crosstalk or acquisition footprint, without any pre-separation of the blended data. We
demonstrate the concept and methodology in 2-D and apply the data-space inversion
scheme to the Marmousi model, where an optimally reconstructed image, free from
crosstalk artifacts, is obtained.

INTRODUCTION

High-quality seismic images are extremely important for subsalt exploration, but data col-
lected from conventional narrow-azimuth towed streamers (NATS) often produce poor sub-
salt images due to insufficient azimuth coverage. Recently developed wide-azimuth towed
streamers (WATS) (Michell et al., 2006) and multi-azimuth towed streamers (MATS) (Keg-
gin et al., 2006; Howard and Moldoveanu, 2006) acquisition technologies have greatly im-
proved subsalt illumination, and hence better subsalt images are obtained. However, ac-
quiring marine WATS or MATS data is expensive. One main reason is the inefficiency
of the conventional way of acquiring data, which requires waiting long enough between
shots to prevent interference (Beasley et al., 1998; Beasley, 2008; Berkhout, 2008). As a
consequence, the source domain is often poorly sampled to reduce the survey time.

To gain efficiency, simultaneous shooting (Beasley et al., 1998; Beasley, 2008; Hampson
et al., 2008) and continuous shooting, or more generally, blended acquisition geometry
(Berkhout, 2008), have been proposed to replace the conventional shooting strategy. In
the blended acquisition geometry, we try to keep shooting and recording continuously, so
that waiting between shots is minimized and a denser source sampling can be obtained.
However, this shooting and recording strategy results in two or more shot records blending
together and brings processing challenges. A common practice for processing these blended
data is to first separate the blended shot gathers into individual ones in the data domain
(Spitz et al., 2008; Akerberg et al., 2008), called ”deblending” by Berkhout (2008). Then
conventional processing flows are applied to these deblended shot gathers. The main issue
with this strategy is that it can be extremely difficult to separate the blended gathers when
the shot spacing is close and many shots are blended together.

In this paper, we present an alternative method of processing these blended data sets.
Instead of deblending the data prior to the imaging step, we propose to directly image them
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without any pre-separation. The simplest way for direct imaging would be migration; how-
ever, migration of blended data generates images contaminated by crosstalk. The crosstalk
is due to the introduction of the blending operator (Berkhout, 2008), which makes the cor-
responding combined Born modeling operator far from unitary; thus its adjoint, also known
as migration, gives poor reconstruction of the reflectivity. A possible solution is to go be-
yond migration by formulating the imaging problem as a least-squares migration/inversion
(LSI) problem, which uses the pseudo-inverse of the combined Born modeling operator to
reconstruct the reflectivity of the subsurface.

We extend the LSI theory from the conventional acquisition geometry (Nemeth et al.,
1999; Clapp, 2005; Valenciano, 2008; Tang, 2008b) to the blended acquisition geometry
and develop inversion schemes in both data space and model space. The former minimizes
a data-space defined objective function, while the latter minimizes a model-space defined
objective function. By comparing the pros and cons of both inversion schemes, we show
that the data-space approach is preferred over the model-space approach if the combined
Born modeling operator is far from unitary; that is, its normal operator, the Hessian, has
many non-negligible off-diagonal elements. Hence an approximate Hessian with a limited
number of off-diagonal elements cannot capture the characteristics of the crosstalk, making
it less effective in removing the crosstalk in the model space. Big Hessian filters, which suffi-
ciently capture the information of the crosstalk, are too expensive for practical applications.
Therefore, the data-space inversion approach, which does not require explicitly computing
the Hessian, becomes more attractive. We demonstrate our ideas with simple synthetic
examples, and we also test the data-space inversion scheme on the Marmousi model to
illustrate how the crosstalk is suppressed through inverting the combined Born modeling
operator. Application to 4-D (time-lapse) inversion using blended data sets is discussed in
a companion paper by Ayeni et al. (2009).

This paper is organized as follows: we first describe the problem of directly imaging
the blended data through migration; then we develop the theory of LSI in both data space
and model space for blended data, and compare the pros and cons of the two domains for
imaging blended data. Finally, we apply the data-space inversion approach to the Marmousi
model to test its performance on a complex model.

PROBLEMS WITH DIRECT MIGRATION

Within limits of the Born approximation of the acoustic wave equation, the seismic data
can be modeled with a linear operator as follows:

d = Lm, (1)

where d is the modeled data, L is the forward Born modeling operator, and m denotes
the reflectivity, a perturbed quantity from the background velocity. Equation 1 models the
data for the conventional acquisition geometry, i.e., without interference between different
shots. For the blended acquisition geometry, however, two or more shot records are often
blended together, creating one or more super-areal shot record(s). This blending process
can be described by a linear transform as follows:

d̃ = Bd, (2)
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where B is the so-called blending (Berkhout, 2008) or encoding (Romero et al., 2000; Tang,
2008a) operator, and d̃ is the set of super-areal shot records after blending. Substitut-
ing equation 1 into equation 2 leads to the modeling equation for the blended acquisition
geometry:

d̃ = BLm = L̃m, (3)

where L̃ = BL is defined as the combined Born modeling operator.

There are many choices of the blending operator; which one produces the optimal imag-
ing result might be case-dependent and is beyond the scope of this paper. In this paper,
we mainly consider two different blending operators: a linear-time-delay blending operator
and a random-time-delay blending operator. The first operator seems to be common and
easy to implement in practice for acquiring marine data, while the second one is interesting
and has been partially adopted in acquiring both land and marine data with simultane-
ous shooting (Hampson et al., 2008). For example, Figure 1 shows a scattering reflectivity
model with a constant velocity of 2000 m/s. Figure 2 and Figure 3 show the snapshots
of the corresponding blended source wavefields. For both cases, 41 point sources with an
equal spacing of 100 m are blended into one composite source. Figure 4 shows the modeled
blended data. Given the complexity of the super-areal shot gathers shown in Figure 4, it
might be very difficult or even impossible to deblend them.

Figure 1: A reflectivity model containing many point scatterers. [ER] yaxun1/. pts-refl

Figure 2: Source wavefield after linear-time-delay blending. [CR]
yaxun1/. pts-wfds-planes-2
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Figure 3: Source wavefield after random-time-delay blending. [CR]
yaxun1/. pts-wfds-randts

(a) (b)

Figure 4: Modeled blended shot gather. (a) Linear-time delay blending and (b) random-
time-delay blending. [CR] yaxun1/. pts-trec-planes-2,pts-trec-randts
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We can directly use the adjoint of the combined modeling operator, which is also widely
known as the migration operator, to reconstruct the reflectivity as follows:

m̃mig = L̃′d̃obs = L′B′Bdobs, (4)

where the superscript ′ denotes the conjugate transpose and the subscript obs denotes ob-
served data. Contrary to the imaging formula in conventional acquisition geometry, now
we have an extra B′B in our imaging formula, which has a direct impact on the imaging
quality of blended data. If B′B is close to unitary, i.e., B′B ≈ I with I being the identity
matrix, then direct migration of blended data would produce exactly the same results as
migration of conventional data, and the blending process would produce little impact on the
final image we obtain. However, in reality, B′B is often far from unitary, because B is usu-
ally a short matrix (its number of rows is much smaller than its number of columns); thus
its normal operator, B′B, is rank deficient. In other words, there are many non-negligible
off-diagonal elements in B′B. As a consequence, direct migration using equation 4 would
produce crosstalk artifacts. An example is demonstrated in Figure 5 and Figure 6, which il-
lustrate the migrated images for the blended data shown in Figure 4; the images are severely
degraded by the crosstalk artifacts. For comparison, Figure 7 shows the crosstalk-free image
by migrating the data synthsized with the conventional acquisition geometry (when B = I).

Figure 5: Migration of linear-time-delay blended data. [CR] yaxun1/. pts-mig-planes-2

Figure 6: Migration of random-time-delay blended data. [CR] yaxun1/. pts-mig-randts
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Figure 7: Migration of the data acquired with the conventional acquisition geometry. [CR]
yaxun1/. pts-mig-shtpro

DIRECT IMAGING THROUGH INVERSION

A way to reduce the crosstalk is to go beyond migration by formulating the imaging problem
as a LSI problem. The motivation behind LSI is that the pseudo-inverse of the combined
modeling operator L̃ should be able to optimally reconstruct the reflectivity; hence the
image would be minimally affected by the crosstalk artifacts. The LSI can be performed
either in the model space or in the data space, each of which has its own pros and cons. We
will analyze both of them for imaging the blended data.

LSI in the model space

The least-squares solution of equation 3 can be formally written as follows:

m = H̃−1L̃′d̃obs = H̃−1m̃mig, (5)

where H̃ = L̃′L̃ = L′B′BL is the Hessian for the blended acquisition geometry. However,
equation 5 has only symbolic meaning, because the Hessian is often singular and its inverse
is not easy to obtain directly. A more practical method is to reconstruct the reflectivity m
through iterative inverse filtering by minimizing a model-space objective function defined
as follows:

J(m) = ||H̃m− m̃mig||22 + ε||Am||22, (6)

where || · ||2 stands for the `2 norm, A is a regularization operator that imposes prior
information that we know about the model m, and ε is a trade-off parameter that controls
the strength of regularization.

The advantage of the model-space formulation is that it can be implemented in a target-
oriented fashion, which can substantially reduce the size of the problem and hence the com-
putational cost (Valenciano, 2008). However, it requires explicitly computing the Hessian
operator, which is expensive without certain approximations. As demonstrated by Valen-
ciano (2008), for a typical conventional acquisition geometry, i.e., when B = I, the Hessian
operator L′L is diagonally dominant for areas of good illumination, but for areas of poor
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illumination, the diagonal energy spreads along its off-diagonals. The spreading is limited
and can almost be captured by a limited number of off-diagonal elements. That is why
Valenciano (2008) suggests computing a truncated Hessian filter to approximate the exact
Hessian for inverse filtering. Doing this makes the cost of the model-space inversion scheme
affordable for practical applications. Figure 8(a) shows the local Hessian operator located
at x = 0 m and z = 750 m in the subsurface (a row of the entire Hessian matrix) for the
previous scattering model with the conventional acquisition geometry. The origin of this
plot denotes the diagonal element of the Hessian, while locations not at the origin denote
the off-diagonal elements of the Hessian. As expected, the Hessian is well focused around
its diagonal part, and hence can be approximated by a filter with a small size. However,
for the blended acquisition geometry, the combined modeling operator L̃ becomes far from
unitary, and hence the Hessian H̃ has non-negligible off-diagonal energy, which can spread
over many of the off-diagonal elements. This phenomenon is confirmed by Figure 8(b) and
Figure 8(c), which show the local Hessian operators at the same image point for different
blended acquisition geometries. It is clear that a filter with a small size could not capture
all the important characteristics of the crosstalk in the migrated image; therefore inverse
filtering would fail to remove the crosstalk. Figure 9 shows the model-space inversion result
with a small Hessian filter (41 × 41 in size) for both blended acquisition geometries. The
crosstalk is not removed at all, and the inverted images become even worse.

For comparison, Figure 10 shows the inversion result with the full Hessian for a model
with only one scatterer in the subsurface (the blending parameters are the same as those for
the multiple scattering model). The full Hessian includes all possible off-diagonal elements,
so it accurately predicts the crosstalk pattern. The inversion successfully removes the
crosstalk. However, the full Hessian is too expensive to compute even though it is target-
oriented, and the cost of computing many off-diagonals can quickly outweight the achieved
savings of performing the inversion in a target-oriented fashion. Therefore, we seek an
inversion approach that does not require explicitly computing the Hessian, so that we do
not have to worry about the size of the Hessian filter. This important consideration leads
us to the following data-space inversion approach.

LSI in the data space

The data-space LSI minimizes the following objective function:

F (m) = ||L̃m− d̃obs||22 + ε||Am||22. (7)

The data-space objective function F (m) can be minimized through gradient-based optimiza-
tion schemes, which iteratively reconstruct the model parameters. The advantage of this
data-space formulation is that it does not require explicitly building the Hessian operator;
hence all crosstalk information is captured implicitly. However, the data-space formulation
lacks flexibility and can not be implemented in a target-oriented fashion. Its cost is another
concern, because each iteration costs about the same as two migrations, making it chal-
lenging for large scale applications. The cost can be significantly reduced by using proper
preconditioners, which may speed up the convergence considerably.
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(a)

(b)

(c)

Figure 8: The local Hessian operator located at x = 0 m and z = 750 m in the
subsurface. (a) Conventional acquisition geometry, (b) linear-time-delay blended ac-
quisition geometry, and (c) random-time-delay blended acquisition geometry. [CR]
yaxun1/. pts-hess-super-shtpro,pts-hess-super-planes-2,pts-hess-super-randts
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(a)

(b)

Figure 9: Comparison between migration and model-space LSI with a small Hessian (41×41
in size) for the model containing multiple scatters. (a) Linear-time-delay blended acquisition
geometry and (b) random-time-delay blended acquisition geometry. In both (a) and (b),
the left panel shows the migrated result, while the right panel shows the inverted result.
[CR] yaxun1/. pts-imag-invt-planes-2,pts-imag-invt-randts
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Figure 10: Comparison between migration and model-space LSI with a full Hessian
(401 × 151 in size) for a single-scatterer model. (a) Linear-time-delay blended acquisi-
tion geometry and (b) random-time-delay blended acquisition geometry. In both (a) and
(b), the left panel shows the migrated result, the center panel shows the local Hessian op-
erator (a row of the full Hessian), and the right panel shows the inverted result. [CR]
yaxun1/. pts-single-decon-planes-2,pts-single-decon-randts



SEP–138 Direct imaging of blended data 149

NUMERICAL EXAMPLES

We test our data-space inversion scheme on the Marmousi model. Figure 11 shows the
reflectivity and velocity model used for the Born modeling under the blended acquisition
geometry. A total of 51 shots are modeled with a uniform spacing of 100 m, ranging
from 4000 m to 9000 m. The receiver spread ranges from 4000 m to 9000 m with a 10 m
sampling and is fixed for all shots. As in the previous example of the scattering model,
we also simulate linear-time-delay and random-time-delay blended acquisition geometries.
Figure 12(a) and Figure 12(b) show the corresponding blended gathers. In both cases, all
51 gathers are blended into one super-areal shot gather.

Figure 13 shows the local Hessian operators for the blended acquisition geometries at
different spatial locations in the subsurface. Note that the Hessian operators are far from
unitary and contain many non-negligible off-diagonal elements, which contribute to the
crosstalk in the migrated images.

The migration and data-space LSI results are shown in Figure 14 and Figure 15. In
the inversion results, a horizontal Laplacian operator that imposes horizontal continuities
of the reflectivity is used as the regularization operator A. For both blended acquisition
geometries, migration produces poor images (Figure 14(a) and Figure 15(a)), which are seri-
ously contaminated by crosstalk artifacts. The data-space LSI, on the contrary, successfully
removes the crosstalk and we get good reconstruction of the reflectivity in the subsurface
(Figure 14(b) and Figure 15(b)).

(a) (b)

Figure 11: The Marmousi model. (a) Reflectivity model; (b) background velocity model.
[ER] yaxun1/. marm-refl,marm-vmod

DISCUSSION

Imaging through LSI in blended acquisition geometries is an underdetermined problem;
hence there are an infinite number of solutions that fit the observed data equally well.
Therefore, regularization is very important for constraining the corresponding solution. In
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(a) (b)

Figure 12: Synthesized blended shot gather for (a) linear-time-delay
blended acquisition and (b) random-time-delay blended acquisition. [CR]
yaxun1/. marm-trec-planes-2,marm-trec-randts
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(a)

(b)

Figure 13: The local Hessian operators (rows of the full Hessian) at different locations for
blended acquisition geometries. Panel (a) shows the results for linear-time-delay blending,
while panel (b) shows the results for random-time-delay blending. In both (a) and (b),
left, center and right panels are the local Hessians located at x = 6750 m, z = 1500
m; x = 7500 m, z = 1000 m; and x = 6000 m, z = 2500 m, respectively. [CR]
yaxun1/. marm-hess-super-planes-2,marm-hess-super-randts
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(a)

(b)

Figure 14: Comparison between (a) migration and (b) data-space
LSI for the linear-time-delay blended acquisition geometry. [CR]
yaxun1/. marm-imag-planes-2,marm-lsm-planes-2
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(a)

(b)

Figure 15: Comparison between (a) migration and (b) data-space LSI for the random-time-
delay blended acquisition geometry. [CR] yaxun1/. marm-imag-randts,marm-lsm-randts
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the Marmousi example, a simple regularization operator that imposes horizontal smooth-
ness seems to be working well. However, this choice may not be optimal, because it may
wash out dipping reflectors. Regularization operators that better predict the inverse model
covariance, for example, by imposing continuities along reflection angles and geological dips
(Clapp, 2005), or promoting sparseness in the image domain (Tang, 2009), should be able to
reduce the null space and further improve the inversion result. How to incorporate accurate
prior information to constrain the inversion remains a research area for further investigation.

CONCLUSIONS

We present a method based on LSI to directly image the subsurface using blended data
sets. This method does not require any pre-separation of the blended shot gathers, and the
crosstalk is effectively removed by formulating the imaging problem as a least-squares inverse
problem. The inversion examples on the Marmousi model show that LSI can successfully
remove the crosstalk that migration generates and optimally reconstruct the reflectivity in
the subsurface.
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Joint inversion of simultaneous source time-lapse seismic
data sets

Gboyega Ayeni, Yaxun Tang, and Biondo Biondi

ABSTRACT

We present a joint inversion method, based on iterative least-squares migration, for
imaging simultaneous source time-lapse seismic data sets. Non-repeatable shot and re-
ceiver positions introduce undesirable artifacts into time-lapse seismic images. We con-
jecture that when data sets are acquired with several simultaneously shooting sources,
additional artifacts will result from relative shot-timing non-repeatability. These ar-
tifacts can be attenuated by joint inversion of such data sets without any need for
initial separation. Preconditioning with non-stationary dip filters and with temporal
smoothness constraints ensures stability and geologically consistent time-lapse images.
Results from a modified Marmousi 2D model show that the proposed method yields
reliable time-lapse images.

INTRODUCTION

Time-lapse (4D) seismic is an established technology for monitoring hydrocarbon reser-
voirs. It is central to most field development and management plans, and many successful
applications have been published (Whitcombe et al., 2004; Zou et al., 2006). However, in
many time-lapse seismic applications, inaccuracies in replication of acquisition geometries
for different surveys (non-repeatability) is a recurring problem. Although modern acquisi-
tion techniques can improve repeatability of shot-receiver positions, field conditions usually
prevent perfect repeatability.

Recently, several authors have suggested acquisition with multiple simultaneously shoot-
ing seismic sources. Although, not a new technology (Womack et al., 1990; Beasley et al.,
1998), modern acquisition and imaging techniques now make simultaneous source (or blended)
acquisition both appealing and practical. Some advantages of this acquisition method in-
clude:

• Improved shot-sampling: reduces shot-interpolation requirements in conventional narrow-
azimuth data.

• Lower acquisition cost: enables acquisition of several azimuths in 3D wide-azimuth
data sets at lower cost.

• Longer offsets and full-azimuth: enables better imaging and improved AVO informa-
tion.

• Shorter acquisition time-window: makes acquisition practical where operational, cli-
matic, political or other uncontrollable factors could have prevented it.

157
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Different processing schemes have been proposed for simultaneous source data sets. Most
of these schemes rely on separation of the data sets into different shot components before
standard processing (Hampson et al., 2008; Spitz et al., 2008). Processing schemes that
require no separation have also been suggested (Berkhout et al., 2008; Tang and Biondi,
2009). However, there has been little discussion on the implications of this acquisition
technique for time-lapse seismic.

We introduce the term relative shot-timing non-repeatability to describe a potential
source of artifacts in simultaneous source time-lapse seismic data sets. Because current
simultaneous source acquisition designs generally rely on randomized shot-timings, it will
be difficult to accurately reproduce the relative shot-receiver positions and at the same time
maintain the relative shot-timing for different surveys. Shot-receiver non-repeatability, to-
gether with the predicted relative shot-timing non-repeatability, will lead to strong degrada-
tion of time-lapse seismic images. Because of the complexity introduced by non-repeatability
of both shot-receiver positions and relative shot-timing, conventional cross-equalization
methods for time-lapse seismic data sets will fail. Therefore, we explore least-squares in-
version methods of such data sets.

Iterative data-space linear least-squares migration/inversion can improve structural and
amplitude information in seismic images (Nemeth et al., 1999; Kühl and Sacchi, 2003;
Plessix and Mulder, 2004; Clapp, 2005). An extension of image-space least-squares inversion
(Valenciano, 2008) to time-lapse imaging has been shown to improve time-lapse seismic
images (Ayeni and Biondi, 2008). In this paper, we propose a data-space joint inversion
method for imaging simultaneous source time-lapse seismic data sets. The proposed method
combines the cost-saving advantages of both simultaneous source acquisition and phase
encoded migration (Romero et al., 2000). We further demonstrate that preconditioning
with non-stationary dip filters and temporal smoothness constraints further improves the
time-lapse seismic images.

We assume a known, slowly changing background baseline velocity. Because a close
approximation of the background velocity is essential, we propose baseline data acquisition
with separate or few simultaneous sources and monitor data acquisition with several simul-
taneous sources. We assume careful processing of the baseline data such that the data can
be used for velocity estimation and the image can be used for dip estimation or interpreta-
tion. Furthermore, we assume that the shot-receiver positions and relative shot-timing are
known for all surveys. Integration of background velocity and geomechanical changes into
the joint inversion formulation is ongoing and will be discussed elsewhere.

In this paper, we first discuss Born modeling of phase-encoded data as an approxima-
tion of simultaneous source acquisition. Then, using a phase-encoded modeling/migration
formulation, we discuss joint linear least-squares inversion of multiple simultaneous source
seismic data sets. We also summarize a spatio-temporal preconditioning scheme based on
spatial non-stationary dip-filters and temporal leaky integration. Finally, using a modified
version of the 2D Marmousi model (Versteeg, 1994), we show that solving the preconditioned
joint inversion problem yields optimal time-lapse seismic images.
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LINEAR PHASE-ENCODED BORN MODELING

Within limits of the Born approximation of the acoustic wave equation, the seismic data d
recorded by a receiver at xr due to a shot at xs is given by

d(xs,xr, ω) = ω2
∑
x

fs(ω)G(xs,x, ω)G(x,xr, ω)m(x), (1)

where ω is frequency, m(x) is the reflectivity at image points x, fs(ω) is the source waveform,
and G(xs,x, ω) and G(x,xr, ω) are respectively the Green’s functions from shot xs to x and
from x to xr.

By considering randomized simultaneous source data as a special case of linear phase-
encoded shot gathers, equation (1) is modified to include a concatenation of phase-shifted
shots, from s = q to s = p:

d(xspq ,xr, ω) =
q∑

s=p

a(γs)ω2
∑
x

fs(ω)G(xs,x, ω)G(x,xr, ω)m(x), (2)

where xspq defines the positions of the encoded sources, and

a(γs) = eiγs = eiωts , (3)

and γs, the linear time-delay function, depends on the delay time ts at shot s.

Relative shot-timing non-repeatability arises due to the uncertainty (Folland and Sitaram,
1997) associated with correct positioning of shots and receivers while maintaining the correct
time delays ts between shots. This is particularly true for the blended acquisition geometry
(Berkhout, 2008), where several (20 or more) shots are encoded into a single record.

LINEAR LEAST-SQUARES MIGRATION/INVERSION

We re-write the linear modeling operation in equation (1) in matrix-vector form as follows:

d = Lm, (4)

where L is the modeling operator and m is the earth reflectivity. The encoding (or blending)
operation in equation (2) is then defined as:

d̃ = BLm = L̃m, (5)

where d̃ is the encoded data, B is the encoding (or blending) operator, and L̃ is the combined
modeling and encoding operator.

Given two surveys (baseline and monitor), acquired over an evolving earth model at
times t = 0 and t = 1 respectively, we can write

d̃0 = L̃0m0,

d̃1 = L̃1m1,
(6)

where m0 and m1 are the baseline and monitor reflectivities, and d̃0 and d̃1 are the encoded
seismic data sets. Note that the modeling operators L̃0 and L̃1 in equation (6) can define
both different acquisition geometries and different relative shot-timings.
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By applying the adjoint operators to the data sets, we obtain the migrated images:

ḿ0 = L̃
∗

0 d̃0,

ḿ1 = L̃
∗

1 d̃1,
(7)

where ḿ0 and ḿ1 are the migrated baseline and monitor images respectively, and the
symbol

∗
denotes the conjugate transpose of the modeling operators. The raw time-lapse

seismic image ∆m̃ is the difference between the migrated images:

∆ḿ = ḿ1 − ḿ0. (8)

Because of differences in relative shot-timings, cross-term artifacts (Romero et al., 2000;
Tang and Biondi, 2009) will be different for each migrated data set. Conventional equaliza-
tion methods (Rickett and Lumley, 2001; Calvert, 2005) will be inadequate to remove these
artifacts.

The quadratic cost functions for equation (6) are

S(m0) = ‖L̃0m0 − d̃0‖2,
S(m1) = ‖L̃1m1 − d̃1‖2,

(9)

which when minimized gives the inverted baseline m̂0 and monitor m̂1 images:

m̂0 = (L̃
∗

0L̃0)−1L̃
∗

0d0,

m̂1 = (L̃
∗

1L̃1)−1L̃
∗

1d1,
(10)

This is the so-called data-space least-squares migration/inversion method.

Joint-inversion

Instead of solving the two equations in equation (6) independently, we combine them to
form a joint system of equations[

L̃0 0
0 L̃1

] [
m0

m1

]
=

[
d̃0

d̃1

]
, (11)

for which a solution is obtained by minimizing the objective function

S(m0,m1) =

∣∣∣∣∣
∣∣∣∣∣
[

L̃0 0
0 L̃1

] [
m0

m1

]
−

[
d̃0

d̃1

]∣∣∣∣∣
∣∣∣∣∣
2

. (12)

Neglecting numerical stability issues, the computational cost of minimizing equations 12
is the same as the cost of minimizing the two objective functions in equation 5. Because
several shots are encoded and directly imaged, the computational cost of this approach
is considerably reduced relative to non-encoded (or single source) data sets. Equivalent
formulations for conventional time-lapse seismic data sets have been shown by previous
authors (Ajo-Franklin et al., 2005; Ayeni and Biondi, 2008).
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Regularization and Preconditioning

Seismic inversion is an ill-posed problem. Therefore, regularization operators are required
to stabilize the inversion and to prevent divergence to unrealistic solutions. A regularized
least squares solution m̂ is obtained by minimizing a modified objective function:

S(m) = ‖L̃m− d̃‖2 + ε2‖Rm‖2, (13)

where ε is a damping factor that determines the strength of the regularization operator R.
In this paper, we consider a fixed, heuristically determined, damping factor computed as a
function of the data as follows:

ε =
max|d̃|

100
. (14)

Relevant examples of regularization criteria for geophysical inverse problems include
model smoothness (Tikhonov and Arsenin, 1977), temporal smoothness (Ajo-Franklin et al.,
2005), and horizontally smooth angle gathers (Clapp, 2005).

Minimizing equation (13) is equivalent to solving the problem[
L̃
εR

]
m =

[
d̃
0

]
. (15)

Fast iterative convergence can be obtained by preconditioning the regularization (Claerbout
and Fomel, 2008). This is equivalent to making the variable substitution

m = R−1p = Ap, (16)

so that equation (15) becomes [
L̃A
εI

]
p =

[
d̃
0

]
, (17)

where A is the preconditioner, and p is the preconditioned variable. By selecting an in-
vertible regularization operator R = A−1, we can solve the preconditioned problem (equa-
tion (17)) at fewer iterations than the regularized problem (equation (15)).

For the current problem, we require two regularization constraints (spatial and tempo-
ral). The spatial regularization operator is a system of non-stationary dip filters applied
on the helix (Claerbout and Fomel, 2008). These symmetric filters, built from puck filters
(Hale, 2007; Claerbout and Fomel, 2008), are then factored into causal dip filters using
Wilson-Burg factorization (Fomel et al., 2003). The preconditioner, implemented as a heli-
cal polynomial division, uses dips estimated from plane-wave destruction (Fomel, 2002) to
determine the appropriate filters for each model point. The temporal preconditioner is a
bi-directional leaky integration operator which penalizes sudden changes over time.

The preconditioned joint inverse problem is[
 LÅ
εI

]
p =

[
d
0

]
, (18)
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where

 L =

[
L̃0 0
0 L̃1

]
, (19)

Å = AT, (20)

with

A =
[

A0 0
0 A1

]
, (21)

and

T =
[

I Λ
Λ I

]
. (22)

The operators A0 and A1 are preconditioners for the baseline and monitor images, re-
spectively, while I is identity and Λ is a diagonal operator containing the leak rates λ.
Equation (18) is directly extendable to an arbitrary number of surveys. The proposed
method, joint preconditioned least squares inversion (J-PLSI ) refers to the definition in
equation (18). We solve equation (18) using a conjugate gradient algorithm.

Cascaded covariance-based preconditioning

We have specialized the spatial and temporal preconditioners such that the dip-discrimination
(or range) of the filters decreases as a function of iteration, while the temporal integration
leak rate increases as a function of iteration. This preconditioning approach (which should
be applicable to other inversion problems) ensures that close to the solution, the data fitting
goal is given more weight relative to the regularization goal.

In addition, because non-stationary deconvolution by polynomial division can become
unstable at sharp boundaries, the filter range at any image point is a function of dip contrast-
dependent covariance. Details of this preconditioning approach is outside the scope of this
paper and will be discussed elsewhere.

NUMERICAL EXAMPLE

We demonstrate J-PLSI using a modified section of 2D Marmousi model (Figure 1). The
objective is to image the seismic amplitude changes at the reservoir using simultaneous
source data sets. We assume seismic amplitude changes only within the reservoir and
neglect geomechanical changes.

The data consist of two sets of 29 encoded shot records over the 8x8 m grid model at
different production stages. In this example, because we use a known background baseline
velocity model, both data sets are fully encoded. The random encoding function, with a
maximum delay of 1 s, is different for each data set. Shot positions vary randomly between
surveys with a maximum displacement of 32 m, whereas the receiver array is the same for
both surveys and fixed for all shots. Dips were computed from a single source migrated
baseline image (not shown).

Figures 2 shows the baseline and monitor data sets. The downgoing baseline and monitor
source wavefields at time 0.52 s are shown Figure 3. The single and simultaneous source
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(a)

Figure 1: 2D Marmousi velocity model.[ER] gayeni1/. marm-vel

migrated monitor images are shown in Figures 4(a) and 4(b), respectively. The inverted
simultaneous source monitor image obtained from J-PLSI is shown in Figure 4(c). Figure 5
shows the migrated and inverted time-lapse images. Note that the cross-term artifacts in the
migrated time-lapse image (Figure 5(b)) are significantly attenuated in the inverted image
(Figure 5(c)). The weighted RMS difference (non-repeatability) between the migrated and
inverted images are shown in Figure 6.

DISCUSSION AND CONCLUSIONS

We have presented a joint least-squares wave-equation inversion method (J-PLSI) for imag-
ing simultaneous source (or blended) time-lapse seismic data sets. Because it is difficult to
repeat both the shot-receiver positions and relative shot-timing for different surveys, there
will be significant non-repeatability in simultaneous source data sets. J-PLSI directly in-
verts the simultaneous source data sets without need for prior separation, combining the
cost savings advantages of simultaneous source acquisition and phase-encoded migration.

Direct migration of simultaneous source data generates strong cross-term artifacts (Fig-
ure 4(b)) relative to conventional single source data (Figure 4(a)). It is unlikely that con-
ventional cross-equalization methods will adequately attenuate these cross-term artifacts
while preserving the production-related time-lapse amplitude changes. J-PLSI attenuates
the artifacts giving images with better resolution and more balanced amplitudes than mi-
gration (Figure 4). This translates to relatively high-quality, high-resolution time-lapse
images (Figure 5(c)).

Because simultaneous source acquisition reduces the overall data acquisition cost and
the acquired data can be efficiently processed, we recommend shorter survey intervals. By
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(a)

(b)

Figure 2: Encoded (a) baseline and (b) monitor data sets.[CR]
gayeni1/. marm-encoded-dat-1,marm-encoded-dat-2
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(a)

(b)

Figure 3: Downgoing source wavefields at 0.52 s for (a) the base-
line and (b) monitor data sets. Note the difference in shot-timing.[CR]
gayeni1/. marm-encoded-wav-1,marm-encoded-wav-2
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(a)

(b)

(c)

Figure 4: (a) Single source migrated monitor image. Simulta-
neous source (b) migrated and (c) inverted monitor images.[CR]
gayeni1/. marm-nocoded-mig-2,marm-encoded-mig-2,marm-encoded-inv-2
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acquiring time-lapse seismic data sets in this manner and processing them using the J-PLSI
method, we can get closer to the goal of continuous seismic reservoir monitoring. The J-
PLSI formulation also provides a suitable framework for simultaneous inversion of multiple
seismic and other reservoir monitoring data (e.g. production).

J-PLSI provides gives good-quality inverted time-lapse images at a fraction of cost of
least-squares migration of single source data sets. Therefore, it can be applied to conven-
tional single source time-lapse data sets, specifically encoded for computational cost savings.
Where such an approach is taken, similar encoding schemes can be used for all data sets
and the suitable encoding scheme (Romero et al., 2000) can be chosen to minimize the
cross-term artifacts.

FUTURE DIRECTIONS

A more robust minimization such as L1 will likely yield better quality results than those
shown in this paper. We anticipate that a combination of L1-minimization (including both
data and model re-weighting) with our preconditioners will lead to a robust inversion scheme
for simultaneous source time lapse data sets.
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(c)

Figure 5: (a) Single source migrated time-lapse image. Simultaneous source (b) mi-
grated and (c) inverted time-lapse images. Note the cross-term artifacts in (b).[CR]
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(a)

(b)

Figure 6: Weighted RMS difference between the baseline and monitor images ob-
tained via (a) migration and (b) inversion. Note that inversion attenuates the non-
repeatbaility RMS energy and preserves preserving the production-related change.[CR]
gayeni1/. marm-encoded-mig-rep-lab,marm-encoded-inv-rep-lab
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Target-oriented least-squares migration/inversion with
sparseness constraints

Yaxun Tang

ABSTRACT

I pose the seismic imaging problem as an inverse problem and present a regularized
inversion scheme that tries to overcome three main practical issues with the standard
least-squares migration/inversion (LSI) approach, i.e., the high computational cost,
the operator mismatch, and the poorly constrained solution due to a limited surface
acquisition geometry. I show that the computational cost is considerably reduced by
formulating the LSI problem in a target-oriented fashion and computing a truncated
Hessian operator using the phase-encoding method. The second and third issues are
mitigated by introducing a non-quadratic regularization operator that imposes sparse-
ness to the model parameters. Numerical examples on the Marmousi model show that
the sparseness constraint has the potential to effectively reduce the null space and pro-
duce an image with high resolution, but it also has the risk of over-penalizing weak
reflections.

INTRODUCTION

Migration is an important and robust tool for imaging subsurface structures using reflec-
tion seismic data. However, migration operator is only the adjoint of the forward Born
modeling operator (Lailly, 1983), which produces reliable structural information of the sub-
surface (assuming an accurate background velocity is known), but blurs the image because
of the non-unitary nature of the Born modeling operator. To deblur the migrated image
and correct the effects of limited acquisition geometry, complex overburden and bandlim-
ited wavefields, the imaging problem can be treated as an inverse problem, which, instead
of using the adjoint operator, uses the pseudo-inverse of the Born modeling operator to
optimally reconstruct the reflectivity. This inversion-based imaging mehtod is also widely
known as least-squares migration (Nemeth et al., 1999; Kuhl and Sacchi, 2003; Clapp, 2005;
Valenciano, 2008).

The standard least-squares migration/inversion (LSI) approach tries to minimize an ob-
jective function defined in the data space, which compares the mismatch between the mod-
eled and the observed primaries (Nemeth et al., 1999; Kuhl and Sacchi, 2003; Clapp, 2005).
The objective function is then minimized with a gradient-based optimization solver, which
iterates until an acceptable image is obtained. However, the data-space inversion scheme
lacks flexibility and cannot be implemented in a target-oriented fashion. Full-domain migra-
tion/demigration has to be carried out within each iteration; and the optimization converges
slowly without a proper preconditioner. Therefore, the data-space inversion scheme is com-
putationally challenging for large-scale applications.
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One way to reduce the computational cost is by solving the LSI problem in a target-
oriented fashion (Yu et al., 2006; Valenciano, 2008). This can be achieved by minimizing an
objective function defined in the model space, instead of the data space. The target-oriented
model-space formulation allows us to invert only areas of particular interest, such as subsalt
regions, where potential reservoirs are located and migration often fails to provide reliable
images. Solving the LSI in the model space requires explicitly computing the Hessian, the
normal operator of the forward Born modeling operator. The full Hessian, however, is
expensive to compute without certain approximations. Fortunately, as demonstrated by
Valenciano (2008) and Tang and Biondi (2009), for a typical conventional acquisition geom-
etry (shot records do not interfer), the Hessian matrix is sparse and diagonally dominant
for most areas. Thus a truncated Hessian with a limited number of off-diagonal elements
(the number is usually very small) can be used to approximate the exact Hessian for inverse
filtering.

The truncated Hessian can be computed by storing the Green’s functions (Valenciano,
2008), which, however, may bring considerable computational issues (e.g. disk storage,
I/O and etc.), because the Green’s functions can be huge for practical applications, espe-
cially in 3-D. To reduce the computational overburden, this paper computes the Hessian
using the phase-encoding method (Tang, 2008b). As demonstrated by Tang (2008b) and
Tang (2008a), computing the phase-encoded Hessian does not require storing any Green’s
functions and it is also more efficient: the cost for computing the receiver-side randomly
phase-encoded Hessian is about one shot-profile migration, and if a mixed simultaneous
phase-encoding strategy is used, the cost is about one plane-wave source migration.

Besides the computational cost, two main issues, i.e., the operator mismatch and the
underdetermined nature of the seismic inverse problem, make the practical application of
LSI less effective. The first issue often arises when our modeling operator is not sufficient to
predict the physics of the data, for example, anisotropy or elasticity presents in the data but
is not accurately modeled by our numerical operators. This can cause data-inconsistency
problems. The second issue is due to the limited surface seismic acquisition geometry, which
makes the inversion have an infinite number of solutions that fit the observed data equally
well. Regularization is therefore important to stabilize the inversion and make it converge to
geologically reasonable solutions. In this paper, I exploit the application of a non-quadratic
regularization operator that imposes sparsness to the model space (Sacchi and Ulrych, 1995;
Ulrych et al., 2001). The model-space sparsity is achieved by minimizing the model residual
in the `1 or Cauchy norm, whose distribution is longer-tailed than the Gaussian distribution
(the `2 norm), hence it penalizes weak energy and leads to spiky solutions (Amundsen, 1991).
The application of the sparseness constraint to seismic imaging has also been reported by
Tang (2006) and Wang and Sacchi (2007), who use it to regularize prestack image gathers.
In this paper, however, I use it to regularize the prestack image (zero subsurface offset) to
enhance the resolution of the inverted reflectivity. I compare the one-way wave-equation
inversion results on the Marmousi model regularized using the sparseness constraint with
those regularized using a standard `2 norm damping. The experiments have been carried
out on data sets synthesized using both one-way wave-equation Born modeling and two-way
acoustic wave-equation finite-difference modeling. The first case represent the ideal scenario,
where our modeling operator (one-way wave-equation propagator for this case) matches all
the physics in the data. I show that both inversion schemes work well under this situation,
and sparseness constrained inversion can offer slightly higher resolution. The second case is
much more challenging for both schemes, because our modeling operator can not model all
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the complexities present in the data (e.g., amplitudes, multiples and etc.). My experiments
show that under this difficult situation, the sparseness-constrained approach provides us a
better inversion result for the Marmousi model, which suggests the importance of accurate
model covariance (or the a priori information) for the LSI problem.

This paper is organized as follows: I first briefly review the theory of target-oriented
LSI and phase-encoded Hessian, then I discuss the sparseness constraint which minimizes
the model residual in the Cauchy norm. Finally I apply the regularized inversion scheme
to the Marmousi model.

TARGET-ORIENTED LEAST-SQUARES MIGRATION

Within limits of the Born approximation of the acoustic wave equation, the seismic data
can be modeled with a linear operator as follows

d = Lm, (1)

where d is the modeled data, L is the Born modeling operator and m denotes the reflectivity
of the subsurface (a perturbed quantity from the background velocity). The simplest way
is to use the adjoint of the Born modeling operator to image the reflectivity m as follows:

mmig = L′dobs, (2)

where the superscript denotes the conjugate transpose and the subscript obs denotes ob-
served data. However, migration produces unreliable images in areas of poor illumination.
To get an optimally reconstructed image, we can invert equation 1 in the least-squares sense.
The least-squares soltuion of equation 1 can be formally written as follows

m = H−1mmig, (3)

where H = L′L is the Hessian operator. Equation 3 has only symbolic meaning, because
the Hessian is often singular and its inverse is not easy to obtain directly. A more practical
method is to reconstruct the reflectivity m through iterative inverse filtering by minimizing
a model-space objective function defined as follows:

J(m) = ||Hm−mmig||22, (4)

where ||·||2 denotes the `2 norm. Each component of the Hessian matrix H can be computed
with the following equation, which is obtained by evaluating the operator L′L (Plessix and
Mulder, 2004; Valenciano, 2008):

H(x,y) =
∑
ω

ω4
∑
xs

|fs(ω)|2G(x,xs, ω)G′(y,xs, ω)

×
∑
xr

w(xr,xs)G(x,xr, ω)G′(y,xr, ω), (5)

where ω is the angular frequency, and fs(ω) is the source function; G(x,xs, ω) andG(x,xr, ω)
denote Green’s functions connecting the source location xs = (xs, ys, 0) and receiver loca-
tion xr = (xr, yr, 0) to the image point x, respectively. We have similar definitions for
G(y,xs, ω) and G(y,xr, ω), except that they define the Green’s functions connecting the
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source and receiver locations to another image point y in the subsurface. Throughout this
paper, we assume the Green’s functions are computed by means of one-way wavefield ex-
trapolation (Claerbout, 1985; Stoffa et al., 1990; Ristow and Rühl, 1994). But Green’s
functions obatined with other methods, such as the ray-based approach, the two-way wave-
equation-based approah and etc., can also be used under this framework. The weighting
factor w(xs,xr) denotes the acquisition mask matrix (Tang, 2008a) defined as follows:

w(xr,xs) =


1 if xr is within the recording

range of a shot at xs;
0 otherwise .

(6)

When x = y, we obtain the diagonal elements of the Hessian; when x 6= y, we obtain the
off-diagonal elements. A target-oriented truncated Hessian is obtained by computing the
Hessian for x’s that are within the target zone and a small number of y’s that are close to
each x (Valenciano, 2008).

HESSIAN BY PHASE ENCODING

The truncated Hessian operator can be computed by using equation 5, but direct implemen-
tation of equation 5 requires storing a huge number of Green’s functions (especially in 3-D),
which may bring computational challenges for large-scale applications. An alternative and
also more efficient way is to compute the Hessian using the so-called phase-encoding method
(Tang, 2008b,a), where equation 5 is structured into a similar form as that of the wave-
equation migration, except for a modified boundary condition for the receiver wavefield
and a modified imaging condition which correlates four wavefields instead of two. Doing so
makes storing Green’s functions unnecessary, and the cost for computing a target-orineted
wave-equation Hessian becomes comparable to one migration.

As further discussed by Tang (2008a), the phase-encoded Hessian is equivalent to the
imaging Hessian in the generalized source and receiver domain, a transformed domian that
is obtained by linear combination of the encoded sources and receivers. Different phase-
encoded Hessian therefore can be obtained through different encoding strategies: if the
encoding is performed in the source domain, we get the source-side encoded Hessian; if the
encoding is performed in the receiver domain, we get the receiver-side encoded Hessian; if the
encoding is performed in both source and receiver domain, we get the source- and receiver-
side simultaneously encoded Hessian. One shortcoming of the encoding method, however,
is that it also introduces undesired crosstalk artifacts, which may affect the convergence of
the model-space based inversion (Tang, 2008b). The crosstalk artifacts can be effectively
suppressed by carefully choosing the phase-encoding functions. As demonstrated by Tang
(2008b,a), plane-wave-phase encoding or random-phase encoding or a combination of the
two can effectively attenuate the crosstalk.

Figure 1 compares diagonal parts of the exact Hessian (Figure 1(a)) obtained using
equation 5 and the phase-encoded Hessians (Figure 1(b) for the receiver-side randomly
phase-encoded Hessian and Figure 1(c) for the simultaneously phase-encoded Hessian with
a mixed encoding strategy) for a simple model with a constant velocity of 2000 m/s. The
acquisition geometry consists of 201 shots from −1000 m to 1000 m with a 10 m sampling
and 201 receivers also spanning from −1000 m to 1000 m with a 10 m sampling. Figure 2
compares the off-diagonal elements (a row of the truncted Hessian matrix) for image point
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at x = 0 m, z = 800 m. The size of the filter is 21 × 21 in x and z directions. The
comparisons show that besides lower computational cost, the phase-encoded Hessians are
good approximations to the exact truncated Hessian.

(a) (b)

(c)

Figure 1: The diagonal part of the Hessian for a constant-velocity model. (a) The exact
Hessian; (b) the receiver-side randomly phase-encoded Hessian and (c) the simultaneously
phase-encoded Hessian with a mixed phase encoding which combines both random and
plane-wave encoding functions. [CR] yaxun2/. hess-exact,hess-random,hess-simul-mixed

REGULARIZATION WITH SPARSENESS CONSTRAINTS

Inverting the linear system defined by equation 4 is difficult, because it is underdetermined
due to the incomplete subsurface illumination caused by the limited surface acquisition
and complex overburden. Another difficulty arises when our Born modeling operator L is
not sufficient to model all the complexities in the observed data dobs. For example, the
commonly used one-way wave-equation propagator is based on acoustic assumption and
cannot handle waves beyond 90 degrees; its amplitude is also not accurate for wide angles
propagations (Zhang et al., 2005). The operator mismatch can make the inversion unstable.
Of course, adding more data and using more accurate modeling operators can always help,
but a more cost effective way would be introducing regularization operators that impose
the a priori information to stabilize the inversion and make it converge to a geologically
reasonable solution. A widely used regularization is the `2-norm damping, which minimizes
the energy of the model parameters by introducing a secondary objective function, and the
overal objective function to minimize becomes

J(m) = ||Hm−mmig||22 + ε||m||22, (7)
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(a) (b) (c)

Figure 2: The off-diagonal elements of the Hessian for a image point (a row of
the Hessian). (a) The exact Hessian; (b) the receiver-side randomly phase-encoded
Hessian and (c) the simultaneously phase-encoded Hessian with a mixed phase en-
coding which combines both random and plane-wave encoding functions. [CR]
yaxun2/. hess-exact-offd1,hess-random-offd1,hess-simul-mixed-offd1

where ε is a trade-off parameter that controls the strength of regularization. The `2-norm
damping assumes the statistic of the reflectivity has a Gaussian distribution, which often
leads to a relatively smooth solution. If we assume that the reflectivity is made up of
spikes (Oldenburg et al., 1981), then the short-tailed Gaussian distribution assumption
becomes unappropriate. To obtain a spiky or sparse solution, a long-tailed distribution
such as exponential (the `1 norm) or Cauchy (the Cauchy norm) distribution should be
used (Sacchi and Ulrych, 1995). The objective function with a regularization in the Cauchy
norm reads

J(m) = ||Hm−mmig||22 + εS(m), (8)

where S(m) is a non-quadratic regularization function defined as follows:

S(m) =
∑
x

log(1 +m2(x)/σ2), (9)

in which σ2 is a scalar parameter of the Cauchy distribution that controls the sparsity of
the model. The objective function 8 can be minimized under `2 norm with the iterative
reweighted least-squares (IRLS) technique (Darche, 1989; Nichols, 1994; Scales and Smith,
1994; Guitton, 2000), which equivalently minimizes the following non-linear objective func-
tion:

J(m) = ||Hm−mmig||22 + ε||Qm||22, (10)

where Q is a model dependent diagonal operator defined as follows:

Q = diag

(
1√

1 +m2(x)/σ2

)
. (11)

The detailed implementation of IRLS can be found in Darche (1989); Nichols (1994); Scales
and Smith (1994); Guitton (2000).
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NUMERICAL EXAMPLES

I test both regularized target-oriented inversion schemes (equation 7 and 8) on the Mar-
mousi model. Two data sets are synthesized: the first one is generated using one-way
wave-equation Born modeling, while the second one is generated using two-way acous-
tic wave-equation finite-difference modeling. Figure 3(a) shows the stratigraphic velocity
model used for the two-way wave-equation modeling. Figure 3(b) and Figure 3(c) show the
corresponding background velocity model (the low frequency component of Figure 3(a))
and the reflectivity model (the high frequency component of Figure 3(a)) for the one-way
wave-equation Born modeling. For both data sets, I model 251 shots ranging from 4000
m to 9000 m with a 20 m sampling. The receiver spread is fixed for all shots and spans
from 4000 m to 9000 m with a 10 m sampling. Figure 4 compares the modeled shot gathers
located at 6500 m. Note the amplitude differences between both data. Also note that some
complexities present in two-way finite-difference modeled data are not modeled using the
one-way Born modeling.

The target zone selected for inversion tests is outlined with a small box in Figure 3(a),
a close-up look is also shown in Figure 5(a). The target zone is where the reservoir locates.
The target-oriented Hessian is computed using the receiver-side random-phase encoding
(Tang, 2008b,a). The smooth background velocity model (Figure 3(b)) and the Fourier
finite-difference (FFD) one-way extrapolator (Ristow and Rühl, 1994) are used for migrat-
ing both one-way and two-way data and also for the Hessian computation. Figure 5(b)
illustrates the diagonal elements of the phase-encoded Hessian for the target area (the am-
plitude is normalized). Note the uneven illumination due to the limited acquisition geometry
and complex velocity model. Figure 6 shows the truncated local Hessian filters for three
different image points (three rows of the truncted Hessian). The size of the filter is 31× 31
in x and z directions, which seems to be big enough to capture most of the energy in the
Hessian matrix.

Figure 7 shows the inversion results on the one-way wave-equation Born-modeled data.
This example represents the ideal case for one-way wave-equation inversion, since our mod-
eling operator can ”explain” all the physics present in the ”observed” data (Figure 4(a)).
As expected, migration produces a blurred image (Figure 7(b)); the regularized inversion
schemes optimally deblur the migrated image, and the reflectivity is better recovered (Fig-
ure 7(c) and Figure 7(d)). Note that both inversion schemes enhance the spatial resolution.
Also note that regularization with the sparseness constraint produces slightly higher res-
olution than regularization with the standard `2-norm damping and Figure 7(d) is closer
to the true reflectivity shown in Figure 8(a). This suggests that the sparseness constraint
better predicts the model covariance, so that it more effectively reduces the null space and
provides more accurate inversion result.

More interesting and also more instructive examples are shown in Figure 8, where both
regularized inversion schemes are applied to the data synthesized using the two-way wave-
equation finite-difference modeling (Figure 4(b)). In this case, the one-way wave-equation
migrated image (Figure 8(b)) is much noisier than the corresponding result using the one-
way Born data (Figure 7(b)); the amplitudes are also more distorted. This phenomenon is
due to the operator mismatch, where the internal multiples and wide angle propagations
cannot be modeled by the one-way Born modeling operator. Consequently, they contribute
to the artifacts shown in Figure 8(b). The operator mismatch also influences the inversion
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(a)

(b)

(c)

Figure 3: The Marmousi model. Panel (a) is the stratigraphic velocity model used for
two-way wave-equation finite-difference modeling. Panels (b) and (c) are the background
velocity model and reflectivity model used for one-way wave-equation Born modeling. [ER]
yaxun2/. marm-vmod-stra,marm-vmod,marm-refl
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(a) (b)

Figure 4: Comparison between shots synthesized using (a) one-way wave-equation
Born modeling and (b) two-way wave-equation finite-difference modeling. [CR]
yaxun2/. marm-trec-one-way,marm-trec-two-way

results, as shown in Figure 8(c) and Figure 8(d). The inverted images are noisier and have
more artifacts compared to the results obtained on the one-way Born data. But noticeable
improvement on resolution over migrated image (Figure 8(b)) can still be identified. Note
that inversion regularized with the sparseness constraint seems to provide a less noisy image
with slightly higher spatial resolution than the inverted image regularized with the `2-norm
damping. This example suggests that when we have operator mismatch issues for inverse
problems, it is important to add regularization operators that more accurately predict the
model covariance. In this particular example, although promoting sparsity may not be the
best regularization, it does better predicts the model covariance than the `2-norm damping,
hence it produces a better result even when our operator is not able to fully explain the
observed data.

DISCUSSION

This paper presents a sparseness constrained LSI scheme that promotes sparsity of the
reflectivity. This is a reasonable assumption if the reflectivity is indeed spiky; however, if the
reflectivity changes smoothly, the sparseness constraint may lead to a biased solution. The
parameters σ and ε that control the strength of sparsity and the amount of regularization
should also be chosen with extreme care. Because by promoting sparsity, we run the risk
of penalizing true reflections that have very weak energy, over-regularization may lead to
too-sparse solutions, forfeiting the ability to image weak reflections.
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(a)

(b)

Figure 5: (a) The stratigraphic velocity model for the target zone. (b) The diagonal of the
Hessian for the target zone. [CR] yaxun2/. marm-stra-target,marm-hess-diag-target

(a) (b) (c)

Figure 6: The local Hessian filters at (a) x = 5250 m, z = 2800 m, (b)
x = 6500 m, z = 2600 m and (c) x = 8400 m, z = 2400 m. [CR]
yaxun2/. marm-hess-offd-target-1,marm-hess-offd-target-2,marm-hess-offd-target-3
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(a) (b)

(c) (d)

Figure 7: Target-orineted inversion of the one-way wave-equation Born-modeled data.
(a) The true reflectivity, (b) migration, (c) inversion regularized with `2 norm damping
(equation 7) and (d) inversion regularized with the sparseness constraint (equation 8). [CR]
yaxun2/. marm-refl-target,marm-imag-one-way-target,marm-invt-one-way-target-l2,marm-invt-one-way-target-l1

(a) (b)

(c) (d)

Figure 8: Target-orineted inversion of the two-way wave-equation finite-difference modeled
data. (a) The true reflectivity, (b) migration, (c) inversion regularized with `2 norm damping
(equation 7) and (d) inversion regularized with the sparseness constraint (equation 8). [CR]
yaxun2/. marm-refl-target,marm-imag-two-way-target,marm-invt-two-way-target-l2,marm-invt-two-way-target-l1
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Recent study in curvelet (Kumar and Herrmann, 2008) and seislet (Fomel, 2006) trans-
forms show that seismic images tend to have a sparse representation in these new domains,
where a few number of coefficients are sufficient to describe images with complex structures.
This feature makes these new domains good candidates for adding sparseness constraints.
Therefore, promoting sparsity in either curvelet or seislet domain may potentially avoid the
issues discussed before and lead to geologically more reasonable solutions. This remains a
research area for further investigation.

CONCLUSIONS

I have presented a regularized least-squares inversion scheme to image the reflectivity. This
inversion scheme allows us to perform inversion in a target-oriented fashion, and the total
cost is about two migrations (one for computing the migrated image, the other for computing
the phase-encoded Hessian). Examples on the Marmousi model show that regularization
that promotes sparsity in the image domain help to reduce the null space and to mitigate the
effects of operator mismatch. Inversion with the sparseness constraint can lead to a better
solution with higher resolution than that regularized with the standard `2-norm damping.
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Target-oriented joint inversion of incomplete time-lapse
seismic data sets

Gboyega Ayeni and Biondo Biondi

ABSTRACT

We propose a joint inversion method, based on linear least-squares wave-equation inver-
sion, for imaging incomplete time-lapse seismic data sets. Such data sets can arise from
presence of production facilities or intentional sparse sampling. These data sets gener-
ate undesirable artifacts that degrade the quality of time-lapse seismic images, making
them unreliable indicators of production-related changes in reservoir properties. To
solve this problem, we pose time-lapse imaging as a joint linear inverse problem that
utilizes concatenations of target-oriented approximations to the least-squares imaging
Hessian. Using a subset of the 2D Marmousi model, we show that the proposed method
gives reliable time-lapse seismic images from incomplete seismic data sets.

INTRODUCTION

There is a wide range of published work on the most important aspects of time-lapse seis-
mic imaging. Some of these works include studies of seismic properties of reservoir fluids
(Batzle and Wang, 1992), processing and practical applications (Rickett and Lumley, 2001;
Calvert, 2005), and successful case studies (Lefeuvre et al., 2003; Whitcombe et al., 2004;
Zou et al., 2006). Because of many successful applications, time-lapse seismic imaging is
now an integral part of many reservoir management projects.

A recurring problem in many field time-lapse seismic applications is the presence (and
sometimes changing locations) of production and development facilities. Such facilities pre-
vent perfect geometry repetition for different surveys and can pose a major challenge when
they are directly located above producing reservoirs. In order to circumvent this problem,
it is common practice to undershoot the facilities using two or more boats. However, the
undershoot approach does not work in all situations, mainly because the shot/receiver offset
distributions cannot be perfectly matched.

Incomplete time-lapse seismic data sets also arise from intentional subsampling of seis-
mic data sets. Such regularly (Calvert and Wills, 2003; Smit et al., 2006) or randomly
(Arogunmati and Harris, 2007) subsampled data sets reduce the overall acquisition cost re-
quirement for multiple seismic surveys. Successful field application of regularly sub-sampled
time-lapse data sets has been demonstrated by previous authors (Calvert and Wills, 2003;
Smit et al., 2006). Although regularly sampled data sets removes unnecessary redundancy
in time-lapse data sets and can sufficiently sample low frequency spatial changes in reservoir
properties, high frequency changes will likely not be captured. Acquiring seismic data sets
randomly can ensure that all parts of the evolving reservoir are sampled, but with different
densities/folds for any given survey. Randomly sampled data sets can be interpolated and
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then processed as full-volume data sets (Arogunmati and Harris, 2007), or they can be di-
rectly used to reconstruct the reservoir using compressive sampling (Candes and Romberg,
2007; Candes and Wakin, 2008) principles.

We propose a joint inversion method, based on an iterative least-squares inversion of
the linearized wave-equation, for direct imaging of randomly sparse/incomplete time-lapse
seismic data sets. The method utilizes a system of non-stationary filters derived from an
explicitly computed target-oriented approximation (Valenciano, 2008) to the linear least-
squares wave-equation Hessian. A joint inversion scheme enables incorporation of structural
constraints (e.g., reservoir location and geometry) and temporal constraints (e.g., smooth
temporal changes) in time-lapse image estimation. The proposed method, regularized joint
inversion of multiple images (RJMI), and related methods have been applied to other time-
lapse seismic imaging problems (Ajo-Franklin et al., 2005; Ayeni and Biondi, 2008; Ayeni
et al., 2009).

We assume that the background baseline velocity model is known and that it changes
slowly between surveys. Large velocity changes and geomechanical shifts can be handled by
including an event alignment step prior to or during inversion. Integration of geomechanical
shifts into the joint inversion formulation is ongoing and will be discussed elsewhere. A solu-
tion of the joint inversion problem using a robust (reweighted least-squares) L1-framework
is also ongoing.

In this paper, using matrix-vector notations, we first review linear wave-equation mod-
eling, iterative least-squares migration/inversion, and the RJMI method. Then, using a
subset of the 2D Marmousi model (Versteeg, 1994), we show that RJMI gives good quality
time-lapse images from incomplete seismic data sets.

Least-squares inversion of time-lapse seismic data sets

Within limits of the Born approximation of the linearized acoustic wave equation, synthetic
seismic data set d is obtained by the action of a modeling operator L on the earth reflectivity
m:

d = Lm. (1)

Given two data sets (baseline and monitor), acquired over an evolving earth model at
times 0 and 1 respectively, we can write

d0 = L0m0,
d1 = L1m1,

(2)

where m0 and m1 are the baseline and monitor reflectivities, and d0 and d1 are the data
sets modeled by L0 and L1.

Applying the adjoint operators L̄T
0 and L̄T

1 to d0 and d1 respectively, we obtain the
migrated baseline m̃0 and monitor m̃1 images:

m̃0 = L̄T
0 d0,

m̃1 = L̄T
1 d1,

(3)

where L̄T
i denotes conjugate transpose of Li. The raw time-lapse image ∆m̃ is the difference

between the migrated images:
∆m̃ = m̃1 − m̃0. (4)
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Because incomplete seismic data sets leads to high non-repeatability, m̃0 and m̃1 must
be cross-equalized before ∆m̃ is computed. The high level of non-repeatability makes it
difficult to adapt existing cross-equalization methods (Rickett and Lumley, 2001; Calvert,
2005; Hall, 2006) to randomly sampled time-lapse seismic data sets. The RJMI method
takes the data acquisition geometry and sampling into account and hence can correct for
the non-repeatability of the data sets.

We define two quadratic cost functions for the modeling experiments (equation 2):

S(m0) = ‖L0m0 − d0‖22,
S(m1) = ‖L1m1 − d1‖22,

(5)

which, when minimized, give the least-squares solutions m̂0 and m̂1, where

m̂0 = (L̄T
0 L0)†L̄T

0 d0,
m̂1 = (L̄T

1 L1)†L̄T
1 d1,

(6)

and (·)† denotes approximate inverse.

Because seismic inversion is ill-posed, model regularization is often required to ensure
stability and convergence to a geologically consistent solution. For many seismic monitoring
objectives, the known geology and reservoir architecture provide useful regularization infor-
mation. Including baseline and monitor regularization operators (R0 and R1 respectively)
in the cost functions gives

S(m0) = ‖L0m0 − d0‖22 + ε20‖R0m0‖2,
S(m1) = ‖L1m1 − d1‖22 + ε21‖R1m1‖2,

(7)

which have the solutions

m̂0 = (L̄T
0 L0 + ε20R

T
0 R0)†L̄T

0 d0,
m̂1 = (L̄T

1 L1 + ε21R
T
1 R1)†L̄T

1 d1.
(8)

where εi is a regularization parameter that determines the strength of the regularization
relative to the data fitting goal. Although there is a wide range of suggested methods for
selecting εi, in most practical applications, the final choice of the parameter is subjective.
Unless otherwise stated, we use a fixed, heuristically determined, data-dependent regular-
ization parameter given by

εi =
max|di|

50
. (9)

Estimating m̂0 or m̂1 by minimizing equation 7 is the so-called data-space least-squares
migration/inversion method (Clapp, 2005).

Substituting equation 3 into equation 8, and re-arranging the terms, we get

[H0 + R00] m̂0 = m̃0,
[H1 + R11] m̂1 = m̃1,

(10)

where Hi = L̄T
i Li is the Hessian, and Rii = ε2i R

T
i Ri is the regularization term. Equation

10 can be solved using iterative inverse filtering leading to the so-called model-space least-
squares migration/inversion method (Valenciano, 2008). We summarize linearized (Born)
wave-equation data modeling and the least-squares Hessian derivation in Appendix A.
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Throughout this paper, our discussion of the Hessian refers to its target-oriented approxi-
mation defined in equation A-5.

An inverted time-lapse image, ∆m̂, can be obtained as the difference between the two
images, m̂0 and m̂1:

∆m̂ = m̂1 − m̂0. (11)

In this paper, we refer to the method of computing the time-lapse image using equation 11
as separate inversion.

Joint inversion of multiple images

In order to solve a single joint inversion problem in which the baseline and monitor images
are simultaneously estimated, we combine the two expressions in equation 2 to get[

d0

d1

]
=
[

L0 0
0 L1

] [
m0

m1

]
, (12)

which can be solved by minimizing the cost function

S(m0,m1) =
∣∣∣∣∣∣∣∣[ L0 0

0 L1

] [
m0

m1

]
−
[

d0

d1

]∣∣∣∣∣∣∣∣2
2

, (13)

to obtain the solution[
m̂0

m̂1

]
=
[

L̄T
0 L0 0
0 L̄T

1 L1

]†[ L̄T
0 0
0 L̄T

1

][
d0

d1

]
, (14)

where † is the pseudo refers to the pseudo-inverse.

The RJMI method differs from separate inversion, because it enables inclusion of both
spatial regularization (as in separate inversion) and temporal regularization (e.g., Tikhonov)
so that the cost function becomes

S(m0,m1) =
∣∣∣∣∣∣∣∣[ L0 0

0 L1

] [
m0

m1

]
−
[

d0

d1

]∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣[ ε0R0 0
0 ε1R1

] [
m0

m1

]∣∣∣∣∣∣∣∣2 +
∣∣∣∣∣∣∣∣[ −ζ0Λ0 ζ1Λ1

] [ m0

m1

]∣∣∣∣∣∣∣∣2 ,
(15)

where Λi is the temporal regularization, and ζi is a relative temporal regularization parame-
ter that determines the strength of the temporal constraint. Similar formulations have been
applied to seismic tomography (Ajo-Franklin et al., 2005) and medical imaging problems
(Zhang et al., 2005). However, for our problem, a direct minimization of equation 15 with
an iterative solver is computationally expensive:

cost ∝ 2×Nsurv ×Niter × Cmig, (16)

where Nsurv is the number of data sets, Niter is the number of iterations, and Cmig is the
cost of on migration. Although it is possible to reduce the computational cost by encoding
the data sets (Ayeni et al., 2009), conventional single-record shot-profile implementation is
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too expensive for practical applications. Because several iterations are usually required to
reach a useful solution, and because inversion is usually repeated several times to fine-tune
parameters, the overall cost of this scheme makes it impractical. One advantage of the
RJMI method is that modifications can be made to inversion parameters and the inversion
repeated at several orders of magnitude more cheaply than iterative least-squares data-
space migration/inversion. This cost reduction comes because the migration and modeling
(demigration) operations are replaced by a single sparse-matrix convolution.

Minimizing equation 15 leads to the solutions m̂0 and m̂1:[
m̂0

m̂1

]
=
([

L̄T
0 L0 0
0 L̄T

1 L1

]
+
[

RT
0 R0 0
0 RT

1 R1

]
+
[

Λ
′T
0 Λ0 −Λ

′T
0 Λ1

−Λ
′T
1 Λ0 Λ

′T
1 Λ1

])†[
m̃0

m̃1

]
,

(17)
which can be obtained via iterative recursive filtering:([

H0 0
0 H1

]
+
[

R00 0
0 R11

]
+
[

Λ00 −Λ01

−Λ10 Λ11

])[
m̂0

m̂1

]
=
[

m̃0

m̃1

]
, (18)

where
Rij = εiR′

iεjRj

Λij = ζiΛ′
iζjΛj

. (19)

Following the same procedure, equation 18 can be directly extended to an arbitrary
number of surveys (Ayeni and Biondi, 2008). Note that it is unnecessary to explicitly form
the Hessian operators in equations 18 because they are composed of simple combinations
of H0 to HN for N surveys. Also, Rij and Λij are not explicitly computed, but instead,
the regularization operators Ri and Λi (and their adjoints) are applied at each inversion
step. Depending on the problem size, computational domain and available a priori in-
formation, the spatial and temporal regularization operators can be applied over several
dimensions (e.g., stacked-image, subsurface offset, subsurface scattering-angles, etc.). We
have implemented these operators for any arbitrary number of surveys using sparse convo-
lution operators. Unless otherwise stated, equation 19 is solved with a conjugate gradient
algorithm.

NUMERICAL EXAMPLES

We consider two incomplete synthetic time-lapse seismic examples aimed at imaging seismic
amplitude changes using incomplete time-lapse seismic data sets. Both examples are based
on a modified section of the Marmousi model (Figure 1) with the target reservoir located
at a shallower depth than the original Marmousi reservoir. In both examples, we neglect
geomechanical changes above the reservoir.

In both cases, the baseline data set consists of 111 surface shots spaced at 80 m and 551
receivers spaced at 16 m. In the first example, the monitor data sets were modeled with
gaps in data created by obstructions along the survey line (Figure 2). The monitor data
sets in the second example consist of randomly sampled shot and receiver axis (Figure 3).
We avoid a multiple attenuation requirement by using a Born single-scattering modeling
algorithm. We migrated the data sets with the oneway wave-equation, using 184 frequencies
and computed the target-oriented Hessian with 72 frequencies.
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We compare the results from migration, normalization with the Hessian diagonal, sep-
arate, and joint inversion for the target area in Figure 1. Normalization with the Hessian
diagonal is one implementation of the so-called true-amplitude migration (Gray, 1997). In
both examples, the same spatial regularization parameters were used for the separately and
jointly inverted results. Where applicable, the regularization operators are Laplacian in
x-direction and first-order gradient in time.

Figure 1: Modified section of the Marmousi velocity model showing the reservoir location.
The gray box shows the target area.[ER] gayeni2/. vel-pick3

Undershoot problem

This example demonstrates the undershoot problem , where obstructions caused by latter
development facilities prevent complete recording of monitor data sets. Here, we consider
an obstruction with changes in its location and size (Figure 2) for the three monitor data
sets. This is a common scenario in seismic monitoring applications where the construction,
addition and alteration of production facilities create obstructions. In each monitor survey,
neither shot nor receivers were located within the undershoot area (Figure 2).

Migrated images of the target area for all four data sets are shown in Figure 4(a), and
the corresponding Hessian diagonals (so-called illumination) in Figures 4(b). Figure 4(c)
shows the cumulative time-lapse image of the target area obtained from the full data sets,
and Figure 4(d) shows the illumination ratio between monitor and baseline data sets. The
migrated, normalized, separately and jointly inverted time-lapse images are shown in Fig-
ure 5. Note that time-lapse images obtained from joint inversion [Figure 5(d)] contain fewer
artifacts relative to those from migration, normalization and separate invertion [Figures 5(a)
to 5(c)].
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(a) (b) (c)

(d)

Figure 2: Surface shot-geophone coverage maps for the (a) baseline and (b)-(d) monitor
surveys. White indicates locations with shot-receiver coverage whereas black gaps indicate
the undershoot positions. The gray box indicates the surface location of the target area in
both this Figure and also in Figure 3.[ER] gayeni2/. map0-h,map1-h,map2-h,map3-h
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(a) (b) (c)

(d)

Figure 3: Surface shot-geophone coverage maps for the (a) baseline and (b)-(d) monitor
surveys. White indicates locations with shot-receiver coverage whereas black indicates no
coverage.[ER] gayeni2/. map0-r,map1-r,map2-r,map3-r
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(a) (b)

(c) (d)

Figure 4: (a) Migrated (i) baseline and (ii)-(iv) monitor images. (b) Hessian di-
agonal corresponding to images in (a). (c) Cumulative time-lapse images from full
baseline and monitor shot-receiver coverage [Figure 2(a)]. (d) Illumination-ratio for
each monitor survey [Figures b(ii)-(iv)] relative to the baseline [Figure b(i)].[CR]
gayeni2/. migs-1w-h,illums-hole-1w-h,migs-4d-1w,illums-hole-r-1w-h
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(a) (b)

(c) (d)

Figure 5: Cumulative time-lapse images at four production stages (with in-
creasing production from top to bottom) obtained from (a) migration, (b)
Hessian-diagonal illumination correction, (c) separate inversion, and (d) RJMI.
Compare these results to those from the full data sets [Figure 4(c)].[CR]
gayeni2/. migs-4d-1w-h,invd-4d-1w-h,invs-4d-1w-h,inv2-4d-1w-h
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Sparse data problem

This example demonstrates a particular sparse time-lapse seismic monitoring problem (Aro-
gunmati and Harris, 2007), where sparse randomly-sampled monitor data sets are acquired
at a fraction of the cost of the full survey. Here, we consider a full baseline data set and
three randomly sampled monitor surveys each constituting only 25 percent—at 50 per cent
source and receiver sampling—of the full data set (Figure 3).

Migrated images of the target area are shown in Figure 6(a), and the corresponding
Hessian diagonals in Figure 6(b). Figure 6(c) shows the cumulative time-lapse images of
the target area obtained from the full data sets, and Figure 6(d) the illumination ratio
between monitor and baseline data sets. The migrated, normalized, separately and jointly
inverted time-lapse images are shown in Figure 7. Note that the migrated and normalized
time-lapse images [Figures 7(a) and 7(b)] show no resemblance to the full data results
[Figure 6(c)]. Also, note that time-lapse images obtained from joint inversion [Figure 7(d)]
contain fewer artifacts than those from separate invertion [Figure 7(c)].

DISCUSSION

From the numerical examples, we see that incomplete time-lapse seismic data-sets degrade
time-lapse images [Figures 5(a) and 7(a)]. This image degradation is expected because
the migration does not compensate for the resulting geometry (and hence illumination)
differences in the migrated images (Figures 4(a) and 6(a)).

Normalization with the Hessian diagonal is insufficient to adequately attenuate under-
shoot artifacts [Figure 5(b)] and is markedly insufficient in the sparse data example [Fig-
ure 7(b)]. Although it is possible that specialized regularization methods can attenuate
some of these artifacts, we suspect that most conventional cross-equalization methods will
be inadequate.

Although separate inversion improves the quality of the time-lapse images relative to
migration and normalization, several relatively high-amplitude artifacts persist [Figures 5(c)
and 7(c)]. The high-amplitude artifacts in Figures 5(c) and 7(c) result from a mismatch of
residual artifacts from the independent inversion of the data sets. Recall that the target-
oriented approximation captures limited information contained in a poorly-conditioned full
Hessian matrix. Although the spatial regularization improves the conditioning of the prob-
lem, residual artifacts in final results from each inversion differ and do not tend to cancel
out.

In the undershoot example, joint inversion of all the data sets (using the RJMI method),
improves the time-lapse image quality substantially [Figure 7(d)]. The improvement in the
time-lapse images obtained via RJMI vs. separate inversion result from an inclusion of
temporal constraints in the RJMI inversion. There is also significant reduction in artifacts
in the RJMI sparse data results [Figure 7(d)] relative to separate inversion [Figure 7(c)].
However, in this sparse data example, there are still several residual artifacts in joint inver-
sion results. These artifacts can be further attenuated using stronger regularization (at the
cost of the data-fitting) or choosing a more robust minimization (e.g., L1-minimization by
iterative re-weighting).
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(a) (b)

(c) (d)

Figure 6: (a) Migrated (i) baseline and (ii)-(iv) monitor images. (b) Hessian di-
agonal corresponding to images in (a). (c) Cumulative time-lapse images from full
baseline and monitor shot-receiver coverage [Figure 2(a)]. (d) Illumination-ratio for
each monitor survey [Figures b(ii)-(iv)] relative to the baseline [Figure b(i)].[CR]
gayeni2/. migs-1w-r,illums-hole-1w-r,migs-4d-1w2,illums-hole-r-1w-r
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(a) (b)

(c) (d)

Figure 7: Cumulative time-lapse images at four production stages (with in-
creasing production from top to bottom) obtained from (a) migration, (b)
Hessian-diagonal illumination correction, (c) separate inversion, and (d) RJMI.
Compare these results to those from the full data sets [Figure 6(c)].[CR]
gayeni2/. migs-4d-1w-r,invd-4d-1w-r,invs-4d-1w-r,inv2-4d-1w-r
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CONCLUSIONS

We have demonstrated a target-oriented joint inversion method, based an iterative least-
squares migration/inversion, for imaging incomplete time-lapse seismic data sets. By posing
time-lapse imaging as a joint inversion problem, the RJMI method attenuates uncorrected
artifacts caused by gaps in the monitor acquisition geometries. We considered an undershoot
problem, where obstructions prevent perfect repetition of acquisition geometries for different
surveys and a sparse time-lapse data problem, where a random fraction of the monitor data
sets are recorded. In both numerical examples, we showed that joint inversion (within
the RJMI framework) produces time-lapse images of the best quality relative to migration,
normalization with the Hessian diagonal and separate inversion. We recognize that both the
separate and joint inversion results can be improved with stronger spatial regularization,
but it is arguable that such an approach will introduce too much unjustifiable bias into
the inversion. Significant progress made in the field of compressive imaging (Candes and
Romberg, 2007) provides a possible pathway for better image recovery from incomplete
time-lapse seismic data.
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APPENDIX A

LINEAR LEAST-SQUARES MODELING/INVERSION

From the Born approximation of the linearized acoustic wave equation, the synthetic seismic
data ds recorded by a receiver at xr due to a shot at xs is given by

ds(xs,xr, ω) = ω2
∑
x

fs(ω)G(xs,x, ω)G(x,xr, ω)m(x), (A-1)

where ω is frequency, m(x) is reflectivity at image points x, fs(ω) is source waveform, and
G(xs,x, ω) and G(x,xr, ω) are Green’s functions from xs to x and from x to xr respectively.

Taking the true recorded data at xr to be dt, the quadratic cost function is given by

S(m) = ‖ds(xs,xr, ω)− dt(xs,xr, ω)‖22. (A-2)
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As shown by previous authors (Plessix and Mulder, 2004; Valenciano, 2008), the gradient
g(x) of this cost function (summed over all frequencies, sources and receivers) with respect
to reflectivity is the real part of

g(x) =
∑
w

ω2
∑
xs

∑
xr

fs(ω)G(xs,x, ω)G(x,xr, ω)
(
ds − dt

)
, (A-3)

and the Hessian (second derivatives) is the real part of

H
(
x,x′

)
=
∑
w

ω4
∑
xs

|f (s)|2G(xs,x, ω)Ḡ(xs,x′, ω)
∑
xr

G(x,xr, ω)Ḡ(x′,xr, ω), (A-4)

where x′ denotes all image points and Ḡ is the complex conjugate of G. Plessix and Mulder
(2004) and Valenciano (2008) discuss this derivation in detail.

Target-oriented Hessian

The large computational cost of full Hessian (equation A-4) makes explicit computation
impractical. Previous authors (Shin et al., 2001; Rickett, 2003; Guitton, 2004; Plessix
and Mulder, 2004; Valenciano, 2008; Symes, 2008) have discussed possible approximations
that reduce the computational cost or remove the need for explicit computation of the full
Hessian.

Because reservoirs are limited in extent, the region of interest is usually smaller than the
full image space, therefore, the Hessian can be explicitly computed for that region. For our
problem, we follow the target-oriented approximation (Valenciano, 2008) to the Hessian,
which for a target region xT is

H (xT,xT+ax) =
∑
w

ω4
∑
xs

|f (s)|2G(xs,xT, ω)Ḡ(xs,xT+ax , ω)∑
xr

G(xT,xr, ω)Ḡ(xT+ax ,xr, ω), (A-5)

where xT+ax represents a small region around each point within xT. For any image point,
H (xT,xT+ax) represents a row of a sparse Hessian matrix H whose non-zero components
are defined by ax. The term, ax, which can be estimated as a function of the decrease in
amplitude of the Hessian diagonal, defines the filter-size around each image point. Valen-
ciano (2008) discusses the target-oriented Hessian in detail and reviews the computational
savings from this approximation.
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Near surface velocity estimation using early-arrival waveform
inversion constrained by residual statics

Xukai Shen

ABSTRACT

Early-arrival waveform inversions estimate near-surface velocity by matching the mod-
eled and observed waveforms. Velocity estimated by such inversion usually has higher
resolution if higher-frequency parts of early arrivals are used and data are surfficiently
sampled in space. However, for land data, early arrivals usually contain more noise
at higher frequencies, which makes higher-frequency data less reliable for waveform
matching, also sampling is usually sparse due to cost considerations. Surface-consistent
residual statics can correct the traveltime perturbations of deeper reflections caused by
small near-surface velocity heterogeneities, assuming that rays travel vertically through
the near-surface. Under this assumption, residual statics can provide information about
small velocity heterogeneities. In this paper, I formulate the near-surface velocity esti-
mation problem by constraining early-arrival waveform inversion with a modified ver-
sion of receiver residual statics. The synthetic result shows that for inversion of early
arrivals with relatively low frequency content, velocity estimation constrained by resid-
ual statics can provide a more detailed near-surface velocity field and more consistent
reflector locations across migrated images from different shots.

INTRODUCTION

Near-surface velocity can be important for imaging deeper reflectors. The conventional
ways of estimating near-surface velocity are refraction statics (Hampson and Russell, 1984;
Olson, 1984) and turning-ray tomography (White, 1989). These methods pick first breaks,
and then iteratively estimate the near-surface velocity model by tracing rays through it and
minimizing the difference between modeled first breaks and picked first breaks. Waveform
inversion, a more sophisticated method, tries to match the waveform rather than the first-
break traveltimes (Tarantola, 1984; Pratt and Hicks, 1998; Mora, 1987). By matching
the waveform, more information in the data is used, resulting in higher resolution of the
estimated velocity. When the higher-frequency parts of data are used, the estimated velocity
usually has higher resolution (Sirgue and Pratt, 2004). Recently, people have applied this
idea to estimate near-surface velocity by matching the refracted arrivals (C. Ravaut and
Dell’Aversana, 2004) or early arrivals in general (J. Sheng and Schuster, 2006), while both
papers use velocity estimated from refraction statics as the initial solution. Both these
papers report higher resolution of estimated velocity after early-arrival waveform inversion
and better migrated images using the estimated velocity. However, early arrivals in land
data are usually very noisy at higher frequencies. Matching data in the presence of such
noise is difficult and is likely to introduce errors in estimated velocity. Another important
factor that affects the resolution of waveform inversion is receiver sampling. If receiver
sampling is dense enough, then the wavefield perturbation caused by small scale velocity
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anomalies will be observed and can be used to invert for these small scale velocity features.
Otherwise, these small perturbations are missing and result in lower resolution of estimated
velocity. To obtain high-resolution velocity without using noisy high-frequency data and in
the absence of densely sampled receiver data, I propose to use the receiver residual statics
differences as a constraint in the early-arrival waveform inversion.

I define receiver residual-statics difference (RRSD) as the static shift between adjacent
traces within the same shot. There are two ways of obtaining such measurements, one is
to measure it from all shot gathers, and for each receiver location, such measured RRSDs
are usually not exactly the same across different shots; the other way is to calculate it
from near surface velocity using the surface-consistent concept. The surface-consistency
concept is built on the assumption that rays reflected from deep reflectors travel verti-
cally in the near surface. Conventional residual statics methods use the concept to derive
surface-consistent receiver/source residual statics for each receiver/source location. The
two kind of RRSDs defined here share some similarities with the conventional residual stat-
ics. The measured RRSDs from all shot gathers are not surface-consistent, however, they
quantitatively show how reflection events in each shots are affected by near surface velocity
anomalies. The modeled RRSDs from near surface velocities are derived from near-surface
velocity, and thus are surface-consistent, but they are not so closely related to reflection
events in recorded data. By forcing certain similarities between the modeled RRSDs and
measured RRSDs, the vertically traveling ray assumption can be used to connect near-
surface velocity and measured RRSDs analytically. Many authors (Rothman, 1985; Ronen
and Claerbout, 1985) have noticed similarity between the results of conventional surface-
consistent residual-statics estimations and the structures of near-surface velocity anomalies
. In the case of RRSD, these similarities reflect the traveltime difference of vertical rays
at adjacent receiver locations. By forcing similarities between the measured RRSDs and
modeled RRSDs in the least square sense, discrete time sampling of modeled RRSDs from
near surface velocity can be avoided. On the other hand, if conventional residual statics are
used here, such traveltime differences between each pair of adjacent traces become discrete,
which are usually not realistic.

The paper is organized as follows: I first set up the inverse problem mathematically
with both waveform fitting goals and RRSD fitting goals. I then test the algorithm on a
synthetic example. Last, I conclude with possible improvements and future directions.

THEORY

The overall fitting goal can be written as{
WeFbp (D(m)− dobs) ≈ 0
ε (T(m)− δτobs) ≈ 0

(1)

where m is the model, which consists of near-surface slowness (inverse of near surface
velocity); dobs are data, which consist of the recorded wavefield; We is a weighting function
that windows out early arrivals; Fbp is the bandpass operator to selectively use the different
frequency content of recorded early arrivals; D is the constant-density two-way acoustic
wave-equation operator that generates synthetic early arrivals from source and near-surface
velocity; and δτobs is the measured RRSD from all shot and receiver locations. T is the
operator that calculates RRSD, assuming vertically traveling rays in the near surface; and
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ε is a number that balances the relative weighting of the two fitting goals, since the data in
these equations are in different spaces and the first equation is the the major fitting goal. In
the synthetic example shown here, I do not estimate the source wavelet, and source wavelet
estimation will be added later. Next I will describe each fitting goal in more detail

Waveform inversion has been extensively studied, and there are many references on
how to implement the algorithm (Mora, 1987; Tarantola, 1984; Pratt and Hicks, 1998).
To match early arrivals, the only additional difference is the weighting of both recorded
data and modeled data. The weighting acts as a window that mutes anything that is not
an early arrival. In addition, to selectively use the different frequency content of recorded
early arrivals, both recorded data and synthetic data will be band passed before applying
the weighting function. Since the objective function of waveform inversion is more linear
with respect to velocity at lower frequencies. The waveform inversion I use is a time-domain
method, where all the wave propagation is done in the time domain, using an explicit finite-
difference scheme with 6th order accuracy in space and 2nd order accuracy in time.

The second fitting goal in equation 1 is to minimize the misfit between the modeled
RRSD and measured RRSD. Notice that for each receiver location, there is only one modeled
RRSD, which is modeled from near-surface velocity assuming vertically traveling rays. On
the other hand, there are many measured RRSD at each receiver location; the number
of measurements equals the number of shots that were recorded at that receiver location.
By having many measurements at each receiver location, the fitting goal is more robust in
the presence of potentially biasing noise. The current algorithm minimizes the misfit in
the least-square sense. I model the RRSD in two steps: first I calculate the traveltime of
vertical rays through near-surface velocity; then I take the difference of all these modeled
RRSDs along the receiver axis, which is the x-axis in the 2D case. Then the second fitting
goal can be written more specifically as follows:

ε (DxIzm− δτobs) ≈ 0 (2)

where Iz is the vertical integration operator, m is the slowness (inverse of velocity), Dx is
the difference operator along the x axis, and is dimensionless; the other symbols are the
same as in equation 1.

To update the velocity, I use the nonlinear conjugate gradient method. I first calculate
the gradient of equation 1, and then I calculate the step length using a method similar to
that proposed by Mora (1981).

SYNTHETIC EXAMPLE

I test the algorithm on a synthetic velocity example which is a modified version of the
Amoco-Statics94 synthetic velocity model. To create the model, I first window out a small
part of the whole velocity model, then retain some near-surface features and replace the
deeper part of the velocity model with a constant velocity gradient plus a reflector (Figure
1a). An enlarged view of the near-surface part is shown in Figure 3a. I then compare the
velocity-estimation algorithm with and without the RRSD constraint. I also compare the
images produced by the two velocity-estimation methods.

The major feature of the synthetic near-surface velocity model is a weathered layer with
rapidly varying thickness. Immediately below this weathered layer, there is a reflector that
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Figure 1: (a) The true velocity field with a 5 m spacing grid. (b) One typical synthetic shot
record. [CR] xukai1/. simu

Figure 2: RRSD measured from all shot and receiver locations. [CR] xukai1/. RRSD
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gently dips upwards towards the right. Also notice that the velocity of the weathered layer
gradually decreases from left to right. The deep reflector is located at about 3.2 km depth.
The size of the velocity model is 2000 m in x and 3450 m in z with the spacing of both x
and z being 5 m. I generate 15 synthetic shots from x = 120 m to x = 1860 m with 120
m shot spacing, using the first derivative of the Gaussian as the source wavelet. The peak
frequency of the source wavelet is 25 Hz. The receiver spacing is 40 m with nearest offset of
100 m, and the recording time sampling is 2 ms. A typical shot is shown in Figure 1b. For
the measured RRSD, the time sampling is 2 ms. RRSD measurements from all 15 shots
are shown in Figure 2. Although measurements at the same receiver location from different
shots are not the same, they follow approximately the same trend. For near-surface velocity
estimation, the z and x spacings are both 10 m. The starting velocity model is a smooth
version of the true near-surface velocity model (Figure 3a). I smooth it in such a way that
the bottom of the weathered layer loses all details, and the dipping reflector below it follows
the same shape as the smoothed bottom of the weathered layer and no longer dips to the
right.

Influence of receiver sampling on velocity estimation result

As mentioned before, receiver spacing will affect the resolution of estimated velocity by
early-arrival waveform inversion. Here I run the early-arrival waveform inversion without
the RRSD constraints for two cases, one with receiver sampling of 10 m , the other with
receiver sampling 40 m. The estimated near-surface velocity is shown in Figure 4. It can be
seen that estimated velocity with receiver spacing of 10 m has higher resolution compared
with the result using 40 m spacing receiver data.

Figure 3: (a) The true near-surface velocity model with a 10 m spacing grid. (b) The
starting velocity model for velocity estimation. [CR] xukai1/. velstart

RRSD constrained velocity estimation result

To simulate more realistic settings, I use data recorded on 40 m receiver spacing in this
synthetic example. From the starting model, I estimate the velocity by three variations of
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Figure 4: Early-arrival waveform inversion without RRSD using data recorded on different
receiver spacing. (a) Estimated velocity with 10 m receiver spacing. (b) Estimated velocity
with 40 m receiver spacing. [CR] xukai1/. velinvdifsamp

Figure 5: (a) Estimated velocity without RRSD constraints. (b) Estimated velocity with
RRSD constraints. (c) Estimated velocity with starting model improved by RRSD con-
straints alone [CR] xukai1/. velinv
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the alogrithm. In the first variation, I apply the algorithm without the RRSD constraints
using early arrivals from 6 Hz to 10 Hz to obtain a velocity model that is closer to the true
velocity model, then I use early arrivals from 9 Hz to 14 Hz to estimate the velocity also
without RRSD constraints. The final estimated velocity for this case is shown in Figure 5a.
For the second variation, the first step is the same as that of the first variation, in the second
step, I use early arrivals from 9 Hz to 14 Hz to estimate the velocity with RRSD constraints.
The final estimated velocity for this case is shown is Figure 5b. For the third variation, I
first use the RRSD constraints alone to estimate a velocity field from the starting model,
then I follow the same two step method in the first variation. The final result for this case
is shown in 5c. It can be seen that with RRSD constraints, the estimated velocity has more
sharply defined layer boundaries, and the reflector immediately below the bottom of the
weathered layer is more correctly positioned, while using velocity estimated by the RRSD
constraints alone for the following early-arrival waveform inversion results in an estimated
velocity that is almost the same as using early-arrival waveform inversion on the original
starting model. The starting residual early arrivals and the final residual early arrivals for
the second pass of case one, case two and case three are shown in Figure 6, Figure 8 and
Figure 7, respectively. Also, the RMS early-arrivals residual for the three variations is shown
in Figure 9. Notice that both the early-arrival residual and its RMS are consistently smaller
in the case of velocity estimation with RRSD constraints, while they are almost the same
for the other two variations. Another way to say this is that the RRSD constraints help to
speed the convergence of the velocity-estimation process, while the starting model derived
by RRSD constrains alone does not result in much improvements in the final estimated
velocity.

Figure 6: Early-arrival residuals for velocity estimation without RRSD; both panels
are clipped to the same value. (a) Starting residuals. (b) Final residuals. [CR]
xukai1/. resdwithout

Next, I compare the migrated images using these three velocities. All the images shown
include only the part containing the deep reflector, since this is usually the area of interest.
First I migrate each individual shot, and put all 15 images into a cube, to see if the reflector
is consistently at the same depth (Figure 10). It can be seen that for migrated images using
the velocity estimated without RRSD constraints, the reflector in different images is not
consistently at the same depth. However, in the images using the velocity estimated with
RRSD, the reflector depth is more consistent across different images. While the images
using the estimated velocity with starting model improved by RRSD constraints alone is
almost the same as 10b. When I stack all the images together (Figure 11), images using
velocity estimated with RRSD constraints are slightly more continuous laterally since the
reflector from images of different shots are more consistently positioned . Thus migrated
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Figure 7: Early-arrival residuals for velocity estimation with RRSD; both panels are clipped
to the same value. (a) Starting residuals. (b) Final residuals. [CR] xukai1/. resdwith

Figure 8: Early-arrival residuals for velocity estimation with starting model improved by
RRSD constraints alone; both panels are clipped to the same value. (a) Starting residuals.
(b) Final residuals. [CR] xukai1/. resdinit

Figure 9: Change of RMS early-arrival residuals as a function of iteration. Solid curve
is for estimation without RRSD, dashed curve is for estimation with RRSD, dotted
curve is for estimation with starting model improved by RRSD constraints alone. [CR]
xukai1/. RMSresd
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images using estimated velocity from RRSD are more consistent in depth.

Figure 10: Migrated images of all 15 shots, showing only the deeper part with the reflector.
Front panels are images of one shot. Right panels are images at the same x location from
different shots. Top panels are constant depth image from different shots. (a) Migrated with
true near-surface velocity model. (b) Migrated with estimated velocity without RRSD con-
straints; notice that different shots do not put the reflector at the same depth. (c) Migrated
with estimated velocity with RRSD constraints. Notice in this case the reflector depth is al-
most the same as that migrated with the true velocity. (d) Migrated with estimated velocity
with starting model improved by RRSD constraints alone.[CR] xukai1/. imagcube

CONCLUSIONS

In the synthetic example, near-surface velocity estimation with RRSD results in a velocity
estimate with higher resolution and faster convergence. Also the migrated images have deep
reflectors more consistently positioned at the same depth. The algorithm still needs to be
tested on real land data before more general conclusions can be made. For real data, the
noise will more strongly bias the RRSD measurement, in which case, using the L1 norm in
the RRSD constraint might work better. Also, this algorithm works only in places where
near-surface velocities are slower than the deeper velocities. In these places, near-surface
velocity is slower compared with deeper velocities so the vertically traveling rays assumption
is valid. Therefore, when near-surface velocity is higher (e.g. in permafrost), this method
is unlikely to work. Then angle-dependent residual statics (Henley, 2009) can potentially
better define the ray path of reflection events and be used to connect near-surface velocity
with such residual statics.
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Seismic tests at Southern Ute Nation coal fire site

Sjoerd de Ridder and Seth S. Haines

ABSTRACT

We conducted a near surface seismic test at the Southern Ute Nation coal fire site near
Durango, CO. The goal was to characterize and image the coal fire and to help plan any
future surveys. We collected data along two transects. Data from Line 1, which overlies
unburned coal, shows useful frequency content above 100 Hz and a reflection that we
interpret to originate at approximately 11 m depth. Data from Line 2, which crosses the
burn front and many fissures, is of lower quality, with predominantly jumbled arrivals
and some evidence of reflected energy at one or two shot points. It seems that neither
refractions nor reflections image down to the coal layer; in part this is attributed to
the presence of unexpected high-velocity layers overlying the coal. The consequence
is that possible information about the coal is hidden behind the events from shallow
layers. Based on these data, we suggest that further seismic work at the site is unlikely
to successfully characterize the coal fire zone of interest.

INTRODUCTION

In March 2009 personnel from Stanford University, the U.S. Geological Survey and the
Southern Ute Department of Energy collected compressional (P) wave near surface seismic
data along two transects at the site of a coal fire on Southern Ute Nation lands. The
objective of this effort was to determine the utility of seismic methods for imaging the coal
and ash layers of interest at the site, and to assist with planning any future data acquisition
efforts.

The field site is generally open terrain with a gently dipping (∼10◦) ground surface. The
shallowest geology consists of sandstone (highly fractured and fissured in many places); the
sandstone is overlain by a thin layer of soil, of about .5 m, throughout much of the site.
Abundant well data show the coal layer to be about 8 m thick and to be dipping in the
same direction, but a slightly higher angle (∼20◦) than the ground surface. The top is
approximately 5 m deep at the up-slope (up-dip) edge of the site (to the northwest) and
up to 16 m deep in the down-slope part of the site. Open fissures with red-hot rock clearly
visible 0.5 m below the ground surface are one clear indication of the shallow fire. Noxious
gases coming from the vents are another indication.

Numerical simulations of seismic experiments at the site indicated that imaging the
unburned coal could be possible with sufficiently high-frequency source energy if the impacts
of fissures and layering above the coal were minimal (de Ridder and Haines, 2008). A short
site visit enabled the collection of a simple data set. A basic data processing analysis was
performed to assess data quality and identify arrivals. For line 1, located above unburned
coal where no fissures have been mapped, data quality is good and reflections assumed to
be from the sandstone layer that underlies the coal are visible. For line 2, crossing the
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burn front and numerous mapped fissures, data quality is reduced. The reflection might
be visible for one shot point. Velocity estimation indicates that neither refractions nor
reflections image as deep as the coal layer. Two main reasons for the differences between
simulations and field test is the presence of high-velocities layers above the coal, and a
shallow reflector.

SEISMIC DATA

We collected P-wave seismic data along two transects, using conventional hammer-plate-
seismic techniques. The recording arrays consisted of a Geometrics Geode with 24 live
channels and 30 Hz vertical geophones at 3 m spacings. In order to create shot gathers with
a greater number of traces at a narrower spacing, four shots were closely-spaced at each shot
location. By placing these shots at a 0.75-m spacing, and then interleaving the resulting
four 24-channel shot gathers, a 96 channel array was simulated, illustrated schematically in
Figure 1. This approach is a variation on the “walk-away” testing that is commonly used
for acquiring data at a new field site. The interleaving technique assumes that geology does
not vary too rapidly along the transect. Any lateral geological variation would violate this
assumption, and cause artifacts in the shot gathers.

Figure 1: Sketch of interleaving ap-
proach. With Y geophones, at a
spacing X, and using N shots at a
spacing of X/N, the interleave tech-
nique results in a shot gathers with
N×Y traces and a spacing of X/N.
Geology is assumed to be fairly con-
stant in the lateral direction. [NR]
sjoerd3/. reflection-interleave

Five or six shot locations were recorded along each line, rather than a shot between
each pair of geophones. The shot locations are evenly distributed along the line, with one
shot point off the end of each line to observe longer-offset arrivals. Each shot gather is the
result of stacking approximately 5 hammer impacts, after manual data checking for trigger
errors and other problems. It should be noted that for most data in these surveys, the noise
reduction benefits of stacking are minimal; data quality for each individual hammer impact
is good.
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Figure 2: Site map with fis-
sures (thin lines), wells (full tri-
angles), thermocouples (open tri-
angles) and seismic lines (thick
lines). Courtesy of Taku Ide. [NR]
sjoerd3/. seismic-lines

Line 1: Unburned coal and no fissures

The first transect was recorded along a line running approximately NE-SW in an area
thought to overlie purely unburned coal (based on boreholes at each end of the line). Being
oriented roughly along the geologic strike, the topography along the line is generally flat
and nearly horizontal. No fissures have been mapped in the area of this line. An averaged,
normalized frequency spectrum of data recorded at Line 1 is shown in Figure 3. A fre-
quency wave-number spectrum of the shot recorded at position 72 m along Line 1, at the
southwestern end 10 m SW of well #11, is shown in Figure 4.

Figures 5(a)-5(f) and 6(a)-6(d) show shot gathers from shots at approximately 0 m, 18
m, 48 m, 72 m and 80 m, along Line 1. For each shot the figures contain a raw data section
and a 80-500Hz bandpassed gain controlled section. In general, data quality is good, and
strong energy is recorded to at least 100 Hz. In some shot gathers, a reflection can be
observed. Energy propagates well to the farthest recorded offsets. For all of these line 1
data plots, NE is to the left. The interleaving technique for interpolation worked best for
the shot gather in Figure 6(c). The shot in Figure 5(c) was recorded on a sandstone outcrop
on the road, the data is ringy and the interleaving technique is less successful than for other
shots along this line.

Line 2: Across the burn front and many fissures

The second transect was recorded along a line running approximately NW-SE. The NW
end of the line is within an area above burned coal and the SE end is in an area thought
to be above unburned coal. The line crosses many mapped fissures, particularly toward the
NW end of the line.
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Figure 3: Averaged, normalized
spectra of surveys at line 1 and line
2. [ER] sjoerd3/. Fspectra

Figure 4: Frequency wave-
number spectrum of the shot
recorded at Line 1, at 72 m (see
also Figure 6(b) below). [ER]
sjoerd3/. FKspectrum
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Line 1 shot gathers: a) Raw shot at 0 m, b) shot from (a) 80-500Hz bandpass
and AGC and zoom; c) raw shot at 18 m, d) shot from (c) 80-500Hz bandpass and AGC
and zoom; e) raw shot at 48 m, f) shot from (e) 80-500Hz bandpass and AGC and zoom.
[ER] sjoerd3/. s1-inter-025,s2-inter-025,s1-inter-018,s2-inter-018,s1-inter-009,s2-inter-009
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(a) (b)

(c) (d)

Figure 6: Line 1 shot gathers: a) Raw shot at 72 m, b) shot from (a) 80-500Hz bandpass
and AGC and zoom; c) raw shot at 72 m, d) shot from (c) 80-500Hz bandpass and AGC
and zoom. [ER] sjoerd3/. s1-inter-001,s2-inter-001,s1-inter-0m8,s2-inter-0m8
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Line 2 shot gathers: a) Raw shot at 0 m, b) shot from (a) 80-500Hz bandpass
and AGC and zoom; c) raw shot at 12 m, d) shot from (c) 80-500Hz bandpass and AGC
and zoom; e) raw shot at 24 m, f) shot from (e) 80-500Hz bandpass and AGC and zoom.
[ER] sjoerd3/. s1-inter-225,s2-inter-225,s1-inter-221,s2-inter-221,s1-inter-217,s2-inter-217
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Line 2 shot gathers: a) Raw shot at 50 m, b) shot from (a) 80-500Hz bandpass
and AGC and zoom; c) raw shot at 72 m, d) shot from (c) 80-500Hz bandpass and AGC and
zoom; e) raw shot at 77 m, f) shot from (e) 80-500Hz bandpass and AGC and zoom. [ER]
sjoerd3/. s1-inter-208,s2-inter-208,s1-inter-201,s2-inter-201,s1-inter-2m5,s2-inter-2m5
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Figures 7(a)-8(b) and 8(a)-8(f) show shot gathers from shots at approximately 0 m, 12
m, 24 m, 50 m, 72 m and 77 m, along Line 2. An averaged and normalized frequency
spectrum of data recorded at Line 2 is shown in Figure 3. The data of the shot gather in
Figure 7(a) is rather jumbled due to nearby fissures, the interleaving technique is not so
effective. Data quality is generally worse than for line 1, and is particularly poor for the
NW end of the line. At the SE end of the line, the data more closely resemble those for
line 1, and the previously mentioned reflection may be visible between position 45 m to
60 m in Figure 8(d). The interleaving technique falls apart for these data due to strongly
heterogeneous wave propagation, larger topographical variations, and the many fissures.
There is a high frequency event visible in almost all shot gathers; this is the air wave.
Note how the interleaving technique works quite well for that event, as the event is neither
jumbled nor aliased. For all of these line 2 data plots, NW is to the left.

INTERPRETATION

In two of the better quality shot gathers, Figures 6(b) and 6(d), four different events can be
distinguished. 2 refracted wave events are observed: a direct P wave event and a reflected
wave event. These are annotated in Figures 9 and 10. The interpreted reflection is also
visible at positions greater than about 55 m in Figure 6(d). At small offsets we see very
slow and dispersive ground roll, annotated G.

We performed simple refraction analyses to estimate a velocity profile (Stein and Wyses-
sion, 2003). The direct P-wave and two refractions’ slopes indicate three velocities: v1 = 480
m/s, v2 = 1400 m/s and v3 = 3000 m/s. These are relatively consistent for both figures,
although errors in the range of 30% are possible. The intersection times in Figure 9 indicate
two layer thicknesses of h0 = 1.2 m and h1 = 5.8 m. The intersection times in Figure 9
indicate two layer thicknesses of h0 = 0.9 m and h1 = 9.1 m. These differences are due
both to estimation error and lateral variation of the geology and topography. However, they
suggest two positive velocity discontinuities at approximately 1 m and 8−10 m. Comparing
these depths to the log shown in Figure 11 (depth indicated in feet), suggests that they
are not as deep as the coal and could be associated with the top of the thick sandstone
bed. Perhaps the thin sandstone bed in the shale, or a positive velocity gradient in the
shale, is the reflector. The intersection time of the reflection is approximately 0.02 s, using
a estimated velocity of 1400 m/s. This would indicate a reflector at approximately 14 m
depth.

The frequency wave-number spectrum in Figure 4 shows significant high wave-number
noise. This is partly due to the interleaving technique. The energy associated with reflec-
tions, refractions and surface waves is all located and mixed together below wave-numbers
of .15 m−1 and frequencies below 25 Hz. This offers little opportunity to filter the refrac-
tions and surface waves from the reflection. Applying Normal Move Out (NMO) to flatten
the reflector on the shot gather of Figure 6(b) was consistent with the velocity estimates.

The shot gather after NMO with three different velocities is shown in Figure 12. A
NMO velocity of 1150 m/s seems optimal to flatten the flanks of the interpreted reflector.
This NMO velocity was tested for consistency with the velocities coming from refraction.
Various stacking velocities, vs, and normal incidence travel times, τ , were tested for their
equivalent interval velocity, vi, and layer thicknesses, h.
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1

R2 R2

G

Figure 9: Line 1, shot at southwestern end, 10 m SW of well #11. A possible reflection,
annotated R, appears between positions 30 to 55 m. A direct P-wave is annotated 1, and
two refracted waves are annotated 2 and 3. A possibly hidden reflected event is annotated
R2. Dispersive ground roll G. [NR] sjoerd3/. inter-001-ann
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1

3

2

Figure 10: Line 1, shot on sandstone outcrop, in the road. A direct P-wave event annotated
1, two refracted waves annotated 2 and 3. [NR] sjoerd3/. inter-018-ann
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Figure 11: Well log at well #3. Lithology is indicated below, with depth indicated in feet.
A 9 m thick coal layer is located at approximately 16 m depth. [NR] sjoerd3/. well3
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vs = 480, 1150 τ = 0.0055, 0.02 h = 1.32, 9.55446 v = 480, 1317.86
vs = 450, 1150 τ = 0.005, 0.02 h = 1.125, 9.76681 v = 450, 1302.24
vs = 500, 1150 τ = 0.0055, 0.018 h = 1.375, 8.3722 v = 500, 1339.55
vs = 480, 1150 τ = 0.0075, 0.02 h = 1.8, 8.78955 v = 480, 1406.33

(1)

Most combinations are fairly sensible, but pushing the lower velocity to 1400 m/s also
pushes the slow top layer to 2 m thick. This result is unrealistic considering our data and
field observations. Regardless of exact numbers, it appears that the reflection originates
at a depth of approximately 11 m. Revisiting Figure 9, note a weaker event, R2, that is
possibly a reflection hidden behind the interpreted reflection R. These estimates are rough,
but error is unlikely to exceed 30 %.

Figure 12: Line 1, shot at southwestern end, 10 m SW of well #11. a) No NMO, b) NMO
with vs = 1300, c) vs = 1150, d) vs = 1000. Note that 1150 m/s seems to be the correct
NMO velocity. [ER] sjoerd3/. nmo-fig

CONCLUSIONS

We conducted a seismic test at the Southern Ute Nation coal fire site using minimal equip-
ment. Data quality is at the high end of what can be expected for sledgehammer-source
data. The recorded frequency content is strong up to 100 Hz. The test shots were inter-
preted to contain several refracted events and a reflection event.

The refraction and reflection events are interpreted for a subsurface velocity profile.
The velocities were higher than anticipated by a previous modeling effort (de Ridder and
Haines, 2008). The fast layers that are interpreted to overlie the coal pose a difficulty to
any seismic surveying because they are an impediment to deeper wave propagation. As we
expected, the fissures present a major impediment to wave propagation and substantially
degrade data quality. In addition, the test shots indicate highly dispersive ground roll and
strong statics in the area.

Refraction and reflection analyses suggest a meter-thick layer of a little less than 500
m/s on top, and a layer of about 9-10 meters of a velocity of about 1300−1400 m/s overlying
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a lower layer with a velocity as high as 3000 m/s. The reflection event is originating at a
depth of approximately 11 m, which is well above the coal layer. It might hide possible
reflections from the coal layer.

There are no distinguishable events deep enough to adequately characterize the coal
layer. The major difficulty is unexpected fast layers above the coal, as well as a relatively
strong reflection event from a layer above the coal. It is conceivable that the depth estimates
are inaccurate and the reflection event is from the top of the coal, but this is unlikely. Even
if the reflection happens to be from the top of the coal, it is only clearly visible on only a
few shot gathers. Thus we must conclude that further seismic work at the site is unlikely
to be successful at imaging the targeted coal or ash layer.
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Source signature and static shifts estimations for
multi-component ocean bottom data

Mandy Wong and Shuki Ronen

ABSTRACT

We present an interpretive study to estimate the source signature and source statics
of a field ocean bottom dataset. We use the down-going direct arrival to extract
the source signature at different offsets. The down-going wavefield is obtained from
a simple summation of the pressure (P) and the vertical partical velocity (Z) of the
multi-component data. Such a summation is scaled by a factor that depends on offset
and is estimated directly from the amplitude of the P and Z values in the t−x domain.
In addition, we compare two approaches to estimating the source-side static shifts.
Our static shifts estimation give satisfactory result for an absolute offset up to ±5000
meters.

INTRODUCTION

Many migration algorithms, such as shot-profile, plane wave, and reverse time migration,
require the input of source wavelets as part of the calculation. Ocean bottom data have
a distinct advantage in the estimation of the source wavelet, because an ocean bottom
seismometer and hydrophone can pick up the source signature as direct arrivals through a
relatively homogeneous medium. As shown in figure 1, the source wave path only needs to
go through the water once to reach the receivers.

Figure 1: For ocean bottom data acquisition, the source wavelet is picked up by the down-
going direct arrival data.[NR] mandy1/. DirectSource

Source signatures are offset-dependent because each shot is generated from an array of
airguns and the obliquity of the source wave path directly affects the shape of the wavelet. A
crude way to extract the source signature from a direct arrival is to time-window the pressure
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signal at the receiver. However, this technique is often inaccurate because the source bubble
often overlaps with the recorded primary reflection. A better way to extract the source
signature is to first separate the total data into up-going and down-going wavefields, and
then perform time windowing only on the down-going component. We can do that because
the direct arrival is strictly down-going, as illustrated in figure 1. For multi-component
ocean bottom data, we can perform up-down separation using the pressure (P) and vertical
velocity (Z) wavefields. This method is called PZ summation.

There is significant literature on the method of PZ summation to decompose data into up-
going and down-going wavefields (Amundsen, 1993; Sonneland et al., 1986). Some methods
involve separation in the τ − p or ω − k (Fourier) domain. However, transformation into
other domains poses a problem when the data are aliased or sparsely sampled. In this study,
we perform PZ summation in the physical (t-x) space to avoid this difficulty.

In the next section, we first present the field dataset and discuss some of the challenges.
Futhermore, we estimate the source statics in a common receiver gather. Variations in
shot deployment depth and the water column cause time anomalies that can be approx-
imated as surface-consistent static time shifts. We compare two methods of static time
shift estimation. One method uses the maximum pulse of the source while the other use
cross-correlation. Finally, we discuss and show the result of the source signature extraction
on the field dataset.

OCEAN BOTTOM NODES DATASET

The P (pressure) and Z (vertical velocity) components of an ocean bottom common receiver
gather are shown in Figures 2. Data are acquired using ocean bottom nodes. The typical
water depth in the surveyed area is around 500m with a soft sediment layer of 150m. From
the raw data, we can identify direct arrivals, refraction, and water reverberations. There is
an outcrop at the sea bottom to the left of the ocean bottom node (OBN) receiver. The
dataset is spatially aliased, with 50 meters spacing between shots.

To focus on the source signal, we apply hyperbolic moveout (HMO) at a velocity of 1480m/s
and time-window the data near the direct arrival (Figure 3). Linear moveout performs time-
shifting (∆τ) on each trace. Time shifts are offset-dependent and are calculated as shown
in equation 1:

∆τ =

√
τ2
o +

x2

v2
− τo, (1)

where x is the full offset, v is the water velocity, and τo is the zero-offset arrival time. From
Figure 3, we can see that the direct arrival is not perfectly flat. This non-flatness indicates
shot statics in this common-reciever gather. Shot statics can be caused by variations in
deployment depth and cross-line displacement. Another noticeable feature is that primary
reflections follow almost immediately after the direct arrivals. This causes difficulty, as
primary signal would overlap with the source bubble signal. Next, we present two methods
to estimate the source statics by flattening the HMO output.
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Figure 2: The left plot shows the pressure component and the right plot shows the vertical
velocity component. From the raw data, we can identify direct arrivals, refraction, and
water reverberations.[ER] mandy1/. PZdata

Figure 3: The top plot shows the pressure component and the bottom plot shows the verti-
cal velocity component after hyperbolic moveout correction. The data are time-windowed
around direct arrival.[ER] mandy1/. HMOraw
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STATIC SHIFTS CORRECTION

Correction using maximum pulse alignment

One way to calculate the static shifts correction is by aligning the maximum pulse of the
source signature. A typical air-gun signature, including the effect of the source ghost,
consists of a large pulse and its bubbles, as shown in Figure 4. Since the amplitude of the
initial maximum pulse is much higher than the amplitude of the bubble, we can estimate
the static correction by picking and aligning the time of the maximum pulse. The middle
panel of figure 5 shows the z-component of the resulting direct-arrival after static shifts
correction using this method.

Figure 4: A typical air-gun signature consists of a large pulse and its bubbles. The negative
signal comes from the source ghost. [NR] mandy1/. exshot

Searching for the maximum pulse can be tricky for traces at large offset, as the amplitude
of the pulse attenuates with a longer travel distance. Satisfactory results can be obtained
up to an absolute offset of ±5000m. We have restricted the search neighborhood to be near
the LMO time in order to alleviate this problem. The top panel of figure 6 shows the static
shift calculated at different offsets by aligning the maximum pulse.

Correction using cross-correlation

Another way to estimate static shifts is to observe the cross-correlation of traces at different
offsets with the zero-offset trace. In this way, the lag time that gives maximum cross-
correlation would define the static shifts. The bottom panel of Figure 5 shows the resulting
direct arrival after static shifts corrrection using this method.

To maximize alignment around the direct arrival, we perform cross-correlation only in
the neighborhood of the HMO time. Comparing the result from using the maximum pulse
method and the cross-correlation method, we can see that the former method performs
better. The bottom panel of Figure 6 shows the static shift calculated at different offsets
by using the cross-correlation method. From the figure, we see that the direct arrival are
better lined up in the region of ±1000 meters for the maximum pulse method.

UP-DOWN SEPARATION USING PZ SUMMATION

Traditionally, PZ summation is employed to extract the up-going portion of the wavefield
with the goal of eliminating water reverberation (Rosales and Guitton, 2004). We use the
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Figure 5: (Top) Vertical velocity before static shifts. (Middle) Vertical velocity after static
shifts correction using maximum pulse alignment. (Bottom) Vertical velocity after static
shifts correction using cross-correlation. [ER] mandy1/. Flat

Figure 6: Static shifts estimated at different offsets (Top) using maximum pulse method
and (bottom) cross-correlation method. [ER] mandy1/. SS
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down-going wavefield to estimate the source wavelet at a different offset. For PZ summation,
Barr and Sanders (1989) have derived a relation to model the up-going wavefield as shown
in the following equation:

U(t, x) =
1
2

(
P (t, x) +

ρvp

cosγp

kt(1 + kr)
(1− kr)

Z(t, x)
)
, (2)

where U(t, x) is the up-going wavefield, P (t, x) is the pressure, Z(t, x) is the vertical velocity,
ρ is the water density, vp is the P-wave water velocity, γp is the P-wave refraction angle
at the sea bottom for upgoing wavefield, and kr, kt are the reflection coefficient and the
refraction coefficient of the ocean bottom, respectively. One drawback of equation 2 is that
it assumes that the reflection coefficent of the ocean surface is -1, which is not always true.
We have used a more data-driven approach in which a scaling factor between P and Z is
fitted from the amplitude of their direct arrival, as described by equations 3 and 4.

From equation 2, we can see that the scaling factor in front of Z(t, x) is offset-dependent.
In this study, instead of calculating the scaling factor from equation 2, we fit for it from
the amplitude of the pressure and vertical velocity components, time-windowed around the
direct arrival:

U(t, x) =
1
2

(P (t, x) + scale(x)z(t, x)) ,

D(t, x) =
1
2

(P (t, x)− scale(x)z(t, x)) , (3)

scale(x) =

∑
t∈Ωt
| P (t, x) |∑

t∈Ωt
| Z(t, x) |

, (4)

where scale(x) is the offset dependent scaling factor between pressure and vertical particle
velocity, and Ωt is the time-window near the direct arrival time. Figure 7 shows the scaling
factor computed using equation 4. Figure 8 shows the resulting up-going and down-going
signals after PZ summation. Notice that the up-going signal is much weaker than the down
going signal.

SOURCE SIGNATURE EXTRACTION

After obtaining the down-going wavefield, we can obtain an estimate of the source signature
from the recorded amplitude of the direct arrival. Figure 9 shows several source wavelets at
different offset values. For a near zero-offset wavelet, we can clearly identify the typical parts
of a source wavelet, which include the source ghost and the source bubble. The amplitude
of the large negative pulse is less than that of the large positive pulse. This fact indicates
that the reflection coefficient of the water surface is not exactly -1.

In Figure 9, we see that the amplitude and shape of the source wavelet change drastically
with the offset. Primary reflections overpower some of the source signals. The source bubble
can hardly be identified.
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Figure 7: Scaling factor as a function of offset. It is estimated from the average amplitude
of P over the average amplitude of Z [ER] mandy1/. scale

Figure 8: The top shows the resulting up-going wavefields and the bottom shows the down-
going wavefields after PZ summation. [ER] mandy1/. PZ
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Figure 9: Source wavelets at different offset values. These wavelets are obtained from
the amplitude of the down-going wavefields windowed near direct arrival time. [ER]
mandy1/. slices
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Next, we compare our result with another source wavelet that is independently estimated
in the same survey. We can see the difference in the large negative pulse and the source
bubbles.

Figure 10: Comparison of our zero-offset source wavelet (solid line) with another wavelet
independently estimated in the same survey (dashed line). Our wavelet indicates that the
ocean surface reflection coefficent is not -1. Also, the amplitude of the source bubble is
bigger. [ER] mandy1/. compare

CONCLUSIONS

We performed an interpretive study of a field ocean bottom dataset to extract its source
signature as a function of the offset and to estimate the source statics. Source signatures are
obtained by capturing the direct arrival signal for the down-going wavefields. PZ summation
is performed in the t-x domain with a scaling factor that is fitted from the data. Source
statics are estimated by correcting the deviations from the linear moveout time. We have
used two methods of performing that correction. Shifts estimations are consistent between
the two approaches at small offsets. Our approaches become limited at larger offsets. As
the amplitude of the signature becomes weaker with offset, obtaining the source signature
and estimating the static shifts become difficult.
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Effective medium theory for elastic composites

James G. Berryman

ABSTRACT

The theoretical foundation of a variant on effective medium theories for elastic constants
of composites is presented and discussed. The connection between this approach and
the methods of Zeller and Dederichs, Korringa, and Gubernatis and Krumhansl is
elucidated. A review of the known relationships between the various effective medium
theories and rigorous bounding methods for elastic constants is also provided.

INTRODUCTION

In a series of papers [Berryman (1979, 1980a,b)], a variant on effective medium theories for
elastic composites was developed by the author. In this paper, I will review the derivation of
the effective medium formulas for the elastic constants of composites while elucidating the
relationships between my results and the results from effective medium theories proposed by
others. These results are then compared to known rigorous bounds on the effective elastic
constants.

The general background for theories of elastic composites with special emphasis on earth
sciences applications is provided in the review articles by Watt et al. (1976) and Berryman
(1995). Another review of effective medium theories with an emphasis on connections to
general applied physics applications is given by Elliott et al. (1974). Related work by Willis
(1977, 1981) is also especially useful for some of the cases not considered here, including
anisotropic media and polycrystalline composites.

EFFECTIVE ELASTIC CONSTANTS

Mal and Knopoff (1967) derived an integral equation for the scattered displacement field
from a single elastic scatterer. Let Ωi symbolize the volume of the region occupied by a
single inclusion i. Let the incident field be ~u0(~x) exp(−iωt) and let ~u(~x) exp(−iωt) and
~v(~x) exp(−iωt) be the total field outside and inside the inclusion volume such that

~u(~x) = ~u0(~x) + ~us(~x) for ~x 6∈ Ωi,
~v(~x) = ~u0(~x) + ~vs(~x) for ~x ∈ Ωi.

(1)

The scattered fields are ~us and ~vs. Both ~u(~x) and ~u0(~x) satisfy the same equation:

cm`npq

∂2up

∂xn∂xq
+ ρmω

2u` = 0 (2)

outside the inclusion, while ~v(~x) satisfies

ci`npq

∂2vp

∂xn∂xq
+ ρiω

2v` = 0 (3)
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inside the inclusion. The indices `,n,p,q take the values 1, 2, 3 for the three spatial dimen-
sions, and the Einstein summation convention applies in Equations (2) and (3), and also
throughout this paper. The elastic tensor for the matrix and inclusion are respectively:

cm`npq = λmδ`nδpq + µm (δ`pδnq + δnpδ`q) , (4)

ci`npq = λiδ`nδpq + µi (δ`pδnq + δnpδ`q) ≡ cm`npq + ∆ci`npq, (5)

and ρm and ρi(≡ ρm + ∆ρi) are the respective densities.

Green’s function for a point source in an infinite, isotropic, homogeneous elastic medium
of the matrix material is given by

gpq(~x, ~ζ) =
1

4πρmω2

[
s2

exp (isr)
r

δpq −
∂2

∂xp∂xq

(
exp (ikr)

r
− exp (isr)

r

)]
, (6)

where r = |~x− ~ζ|, k = ω[ρm/(λm + 2µm)]1/2, and s = ω[ρm/µm]1/2 — with k and s being,
respectively, the magnitudes of the wavevectors for compressional and shear waves in the
matrix. Given the form of gpq, Mal and Knopoff (1967) then derive an integral equation for
~u(~x). Since the derivation follows standard lines of argument, I will not repeat it here. The
result is

u`(~x) = u0
`(~x) +

∫
Ωi

d~ζ

[
∆ρiω

2vn(~ζ)−∆cinjpqεpq
∂

∂ζj

]
g`n(~x, ~ζ). (7)

Equation (7) is an exact integral equation for the displacement field in the region exterior
to the scatterer in terms of the displacement and strain fields inside the inclusion volume
Ωi.

To evaluate the integral (7), estimates of the interior displacement and strain fields
are required. Considering the first Born approximation from quantum scattering theory
suggests the estimates for wave speed and strain at ~ζ ∈ Ωi:

~v(~ζ) ' ~u0(~ζ), (8)

and
εpq(~ζ) ' ε0pq(~ζ). (9)

By Equations (8) and (9), I mean to approximate ~v and ε by the values ~u0 and ε0 would
have achieved at position ~ζ if the matrix contained no scatterers. For scatterers with small
volumes, it follows from (7) that ~us(~x) and its derivatives are small quantities for ~x outside
of Ωi. Since the displacement is continuous across the boundary, it follows that Equation
(8) will be a good approximation to ~v(~ζ). However, this argument fails for Equation (9),
because the strains are not continuous across the boundary. Equation (9) should therefore
be replaced by the formula:

εpq = Tpqrsε
0
rs, (10)

where T is Wu’s tensor [Wu (1966)], relating εpq for an arbitrary ellipsoidal inclusion to
the uniform strain at infinity ε0pq. Now, if the wavelength of the incident waves is large
compared to the size of the ellipsoid (i.e., a/λ̄ << 1, where λ̄ is the wavelength), then the
fields both near the ellipsoid and inside scatterer volume Ωi will be essentially static and
uniform [Eshelby (1957)]. Thus, to the lowest order of approximation, it is valid to make
the substitutions (8) and (10). When the ellipsoid is centered at ζi, it follows easily that

us
`(~x) = Ωi

[
∆ρiω

2u0
n(~ζi)g`n(~x, ~ζi)−

(
∆λiTpprsδnj + 2∆uiTnjrs

)
ε0rsg`n,j(~x, ~ζi)

]
, (11)
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where the symmetry properties of T have been used in simplifying the expression. A comma
preceding a subscript indicates a derivative with respect to the as-labelled component.

Equation (11) gives the first order estimate of the scattered wave from an ellipsoidal
inclusion whose principal axes are aligned with the coordinate axes. When the ellipsoid is
oriented arbitrarily with respect to the coordinate axes, Equation (11) must be changed by
replacing Tpqrs everywhere with

Upqrs = `pα`qβ`rγ`sδTαβγδ, (12)

where `αβ are the appropriate direction cosines. For homogeneous, isotropic composites
with randomly oriented ellipsoidal inclusions, the general form of the average tensor as
given by Wu (1966) is

Ūpqrs =
1
3

(P −Q)δpqδrs +
1
2
Q(δprδqs + δpsδqr), (13)

where
P =

1
3
Tppqq and Q =

1
5

(Tpqpq − Tppqq) . (14)

Finally, suppose N inclusions are contained in a small volume of radius a centered at
~ζ0. Assume that the effects of multiple scattering may be neglected at sufficiently low
frequencies (i.e., long wavelengths appropriate for seismology) to the lowest order. Then,
to the same degree of approximation used in Equation (11) (i.e., a/λ̄ << 1), the scattered
wave has the form:

〈us
`(~x)〉m '

N∑
i=1

Ωi

[
∆ρiω

2u0
n(~ζ0)g`n(~x, ~ζ0)−

(
∆λiŪmi

pprsδnj + 2∆µiŪmi
njrs

)
ε0rsg`n,j(~x, ~ζ0)

]
,

(15)
where the superscripts m and i again refer to matrix and inclusion properties, respectively.
Note especially that distinct superscripts i must be used in Equation (15) to specify both
the inclusion material itself, and also the shape of each distinct type of inclusion.

To apply this thought experiment to the analytical problem of estimating elastic con-
stants, consider replacing the true composite sphere with a sphere composed of matrix
material identical to the imbedding material and of ellipsoidal inclusions of the same ma-
terials as those in the true composite, and also in the same proportions. Then, if multiple
scattering effects may be (and are) neglected, the theoretical expression which determines
the elastic constants is

〈us
`(~x)〉∗ = 0, (16)

where the left hand side is given by Equation (15) with matrix-type m = ∗. Equation
(16) states simply that the net (overall) scattering — due to many scatterers – in the
self-consistently determined medium vanishes to lowest order.

If the volume fraction of the i-th component is defined by fi = Ωi/
∑N

j=1 Ωj , then
Equation (16) implies the following formulas:

N∑
i=1

fi(ρi − ρ∗) = 0, (17)
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N∑
i=1

fi(Ki −K∗)P ∗i = 0, (18)

and
N∑

i=1

fi(µi − µ∗)Q∗i = 0. (19)

Equation (17) states that the effective density ρ∗ is just the volume average density (which is
what one might reasonably expect, but nevertheless is not always true for effective medium
theories). Equations (18) and (19) provide implicit formulas for K∗ and µ∗. Such implicit
formulas are typically solved numerically by iteration [Berryman (1980b)]. This step is
usually necessary because the factors P ∗i and Q∗i are themselves both typically functions
of both the unknown quantities K∗ and µ∗. Experience has shown that such iterative
methods often converge in a stable fashion, and usually after a small number of iterations
(typically 10 or less).

The derivation given and final results attained here are very similar to methods discussed
by Elliott et al. (1974) and Gubernatis and Krumhansl (1975). I will therefore refer to the
resulting effective medium method as the “coherent potential approximation” (or CPA), as
is typically done in the physics literature, since the early work of Soven (1967). Equations
(18) and (19) were also obtained independently by Korringa et al. (1979), while using an
entirely different method. In the following sections, I will compare the results obtained from
this effective medium theory to the known rigorous bounds on elastic constants and also to
the results of other effective medium theories.

RIGOROUS BOUNDS ON EFFECTIVE MODULI

In their review article, Watt et al. (1976) discuss various rigorous bounds on the effective
moduli of composites. For example, the well-known Voigt (arthimetic) and Reuss (har-
monic) averages are, respectively, rigorous [Hill (1952)] upper and lower bounds for both
K∗ and µ∗. Generally tighter bounds have also been given by Hashin and Shtrikman (1961,
1962, 1963).

Still tighter bounds have been obtained in principle by Beran and Molyneux (1966)
for the bulk modulus and by McCoy (1970) for the shear modulus. However, the result-
ing formulas depend on three-point spatial correlation functions for the composite and
are therefore considerably more difficult to evaluate than the expressions for the Hashin-
Shtrikman [Hashin and Shtrikman (1961, 1962, 1963)] bounds, which depend only on the
material constants and volume fractions. Miller (1969b,a) evaluated the bounds of Beran
and Molyneux (1966) by treating an isotropic homogeneous distribution of statistically in-
dependent cells. Silnutzer (1972) used the same approach to simplify the bounds of McCoy
(1970) for cell materials. Furthermore, Milton (1981) has shown that the bounds of Beran
and Molyneux (1966) and McCoy (1970) can be simplified somewhat even if the composite
is not a cell material. Nevertheless, the bounds which are most easily evaluated are still
the Hashin-Shtrikman [Hashin and Shtrikman (1961, 1962, 1963)] (HS) bounds, the Beran-
Molyneux-Miller (BMM) bounds, and the McCoy-Silnutzer (MS) bounds. I will compare
these bounds to the estimates obtained from the coherent potential approximation (CPA),
the specific effective medium theory being stressed here.
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To aid in the following comparisons, it is convenient to introduce two functions:

Λ(x) =

(
N∑

i=1

fi

Ki + 4x/3

)−1

− 4
3
x, (20)

Γ(y) =

(
N∑

i=1

fi

µi + y

)−1

− y, (21)

together with a third function that is needed in conjunction with Γ:

F (x, z) =
x

6

(
9z + 8x
z + 2x

)
. (22)

It has been shown previously [Berryman (1980b, 1995)] that Λ(x) and Γ(y) are monotoni-
cally increasing functions of their real arguments. Similarly, I find that

∂F

∂z
=

5x2

3(z + 2x)2
≥ 0 (23)

and
∂F

∂x
=

9z2 + 16xz + 16x2

6(z + 2x)2
≥ 0 if x ≥ 0, & z ≥ 0. (24)

So, when both arguments of F (x, z) are non-negative (which will soon be shown to be the
case in these applications), it follows that F is a monotonically increasing function of both
arguments.

Now, if I define the minimum and maximum moduli among all the constitutents by

K+ = max (K1, . . . ,KN ), K− = min (K1, . . . ,KN ),
µ+ = max (µ1, . . . , µN ), µ− = min (µ1, . . . , µN ),

(25)

then the Hashin-Shtrikman bounds are also given in general by

K±
HS = Λ (µ±) (26)

and
µ±HS = Γ [F (µ±,K±)] . (27)

[Note that the only combinations considered on the right-hand side of (27) are those having
both pluses or both minuses – no mixing of the subscripts.]

The Beran-Molyneux-Miller bounds and the McCoy-Silnutzer bounds are known for
two-phase composites (i.e., N = 2). These bounds can be written in succinct form using
the notation of Milton (1981). By defining two geometric parameters ζ1 = 1 − ζ2 and
η1 = 1 − η2, and two related averages [analogous to the volume fraction weighted average
〈M〉 = f1M1+f2M2] of any modulus M by 〈M〉ζ = ζ1M1+ζ2M2, and 〈M〉η = η1M1+η2M2,
then the bounds can be written very concisely as:

K+
BMM = Λ

(
〈µ〉ζ

)
, (28)

K−
BMM = Λ

(
〈1/µ〉−1

ζ

)
, (29)
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µ+
MS = Γ(Θ/6), (30)

and
µ−MS = Γ(Ξ−1/6), (31)

where

Θ =
[
10 〈µ〉2 〈K〉ζ + 5 〈µ〉 〈2K + 3µ〉 〈µ〉ζ + 〈3K + µ〉2 〈µ〉η

]
/ 〈K + 2µ〉2 (32)

and

Ξ =

[
10 〈K〉2

〈
1
K

〉
ζ

+ 5 〈µ〉 〈2K + 3µ〉
〈

1
µ

〉
ζ

+ 〈3K + µ〉2
〈

1
µ

〉
η

]
/ 〈9K + 8µ〉2 . (33)

For symmetric cell materials, it is known that ζ1 = η1 = f1 for spherical cells, ζ1 = η1 = f2

for disks, while ζ1 = (3f1 + f2)/4, and η1 = (5f1 + f2)/6 for needles.

It is particularly simple to compare these bounds with the results of effective medium
theory when the inclusions are assumed to be spherical in shape. Then, the estimates of
the moduli are given by the self-consistent formulas (which are mutually interdependent):

K∗ = Λ(µ∗) (34)

and
µ∗ = Γ [F (µ∗,K∗)] . (35)

Furthermore, the bounds (28)–(30) simplify in this case and are given by

K+
BMM = Λ (〈µ〉) , (36)

K+
BMM = Λ

(
〈1/µ〉−1

)
, (37)

and
µ+

MS = Γ [F (< µ >,< K >)] . (38)

From the monotonicity properties of the functions (20)–(22), from elementary arguments
relating the estimates to the Voigt and Reuss averages, and also from the fact that all the
arguments of these functions depend on quantities composed of elastic constants averaged
using positive measures such as volume fractions and the related quantities for various
cell-material shapes, I find for the bulk modulus that

Λ(µ−) ≤ Λ
(
〈1/µ〉−1

)
≤ Λ(µ∗) = K∗ ≤ Λ (〈µ〉) ≤ Λ(µ+), (39)

or equivalently that
K−

HS ≤ K
−
BMM ≤ K

∗ ≤ K+
BMM ≤ K

+
HS . (40)

Similarly, by making use of Γ(y) from (21), it follows for the shear modulus that

µ−HS ≤ µ
∗ ≤ µ+

MS ≤ µ
+
HS . (41)

The detailed argument leading to Equation (39) is a little involved: First, I must show that
K∗, µ∗ are bounded by the Hashin-Shtrikman bounds [Berryman (1980a)]. Then, since
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the Hashin-Shtrikman bounds are themselves bounded by the Voigt and Reuss bounds,
Equation (39) follows from

Λ(〈1/µ〉−1) ≤ Λ(µ−HS) ≤ Λ(µ∗) ≤ Λ(µ+
HS) ≤ Λ(〈µ〉). (42)

The arguments just given are valid only for the case of spherical inclusions. The au-
thor knows of no general argument relating the effective medium results to the rigorous
bounds for arbitrary inclusion shapes. However, as will be observed in the following Fig-
ures, numerical examples illustrate the effective medium estimates always lying between the
bounds.
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Figure 1: Estimates of the effective bulk (a) and shear (b) moduli of elastic composites
with constituents K1 = 44.0 GPa, µ1 = 37.0 GPa, K2 = 14.0 GPa, and µ2 = 10.0 GPa as
the volume fraction of type-2 increases. The curves are respectively the CPA (or coherent
potential approximation: a self-consistent estimator) — which is the black solid line, the
Beran-Molyneux-Miller bounds for the bulk modulus and the McCoy-Silnutzer bounds for
the shear modulus — which are the red dashed lines, and the Hashin-Shtrikman bounds —
which are the blue dot-dashed lines. Inclusions are treated as having spherical shape. NR
jim1/. K-SPH,G-SPH

Typical results are presented in Figures 1–3. The values of the constituents’ moduli were
chosen to be: K1 = 44.0 GPa, µ1 = 37.0 GPa, K2 = 14.0 GPa, and µ2 = 10.0 GPa. The
values of K2 and µ2 were chosen as a compromise between two extremes: (a) If K2 and µ2

are too close to K1 and µ1, then the bounds are too close together to be distinguishable on
the plots. (b) If K2 and µ2 are both chosen to be zero, the iteration to the effective medium
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Figure 2: Estimates of the effective bulk (a) and shear (b) moduli of elastic composites
with constituents K1 = 44.0 GPa, µ1 = 37.0 GPa, K2 = 14.0 GPa, and µ2 = 10.0 GPa as
the volume fraction of type-2 increases. The curves are respectively the CPA (or coherent
potential approximation: a self-consistent estimator) — which is the black solid line, the
Beran-Molyneux-Miller bounds for the bulk modulus and the McCoy-Silnutzer bounds for
the shear modulus — which are the red dashed lines, and the Hashin-Shtrikman bounds —
which are the blue dot-dashed lines. Inclusions are treated here as having needle-like shape.
NR jim1/. K-NDL,G-NDL
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Figure 3: Estimates of the effective bulk (a) and shear (b) moduli of elastic composites
with constituents K1 = 44.0 GPa, µ1 = 37.0 GPa, K2 = 14.0 GPa, and µ2 = 10.0 GPa as
the volume fraction of type-2 increases. The curves are respectively the CPA (or coherent
potential approximation: a self-consistent estimator) — which is the black solid line, the
Beran-Molyneux-Miller bounds for the bulk modulus and the McCoy-Silnutzer bounds for
the shear modulus — which are the red dashed lines, and the Hashin-Shtrikman bounds —
which are the blue dot-dashed lines. Inclusions are treated here as having disk-like shape.
NR jim1/. K-DSK,G-DSK
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theory results does not converge for the case of disk-like inclusions [Berryman (1980b)],
although all the other cases converge without difficulties. I find in all cases considered that
the effective medium theory results lie between the rigorous bounds, as stated above.

OTHER EFFECTIVE MEDIUM THEORIES

A great variety of effective medium theories exist for studies of the elastic properties of
composites. Of these theories, the scattering theory presented by Zeller and Dederichs
(1973), Korringa (1973), and Gubernatis and Krumhansl (1975) have the most in common
with the scattering-theory approach presented here. However, the present approach ap-
pears to be unique among the self-consistent scattering-theory variety, being dynamic (i.e.,
frequency dependent), while all the others are based on static or quasi-static derivations.
This difference becomes a very useful advantage if we want to generalize the approach to
finite (nonzero) frequencies, as is required for viscoelastic media. The bounding arguments
presented here do not carry over directly to the frequency dependent case, but they actu-
ally can be generalized — as shown by Gibianksy and Milton (1993), Milton and Berryman
(1997), and Gibiansky et al. (1999).

Another class of effective medium theories studied by Hill (1965), Budiansky (1965), Wu
(1966), Walpole (1969), and Boucher (1974) does not yield the same results as the present
one, except for the case of spherical inclusions. It has been shown elsewhere [Berryman
(1980b)] how the derivation of the approach of Hill, Budiansky, and others can be kinds of
symmetrized to yield the symmetrical results as presented here that I prefer. Since the CPA
class of effective medium theories gives results equivalent to the Hashin-Shtrikman [Hashin
and Shtrikman (1961, 1962, 1963)] bounds when the inclusions are disk-shaped, I conclude
that these results are preferred – since they do satisfy these bounding constraints, while the
alternatives do not. The numerical results show general satisfaction of the bounds.

To elucidate somewhat further the relationship between the static and dynamic deriva-
tions of the effective medium results, I will outline the static derivation next. The integral
equations for the static strain field are given by

εij(~x) = ε0ij(~x) +
∫
d3x′Gijkl(~x, ~x′)∆cklmn(~x′)εmn(~x′), (43)

where Green’s function is

Gijkl(~x, ~x′) =
1
2
(
g0
ik,jl + g0

jk,il

)
, (44)

with the Kelvin solution given by

gpq(~x, ~x′) =
1

4πµm

[
δpq

r
− 1

4(1− νm)
∂2r

∂xp∂xq

]
, (45)

where r = |~x− ~x′| and µm and νm are, respectively, the shear modulus and Poisson’s ratio
of the matrix material. Equation (43) may be rewritten formally as

ε = ε0 +G∆cε, (46)

where G is now an integral operator defined by

Gf =
∫
d3x′G(~x, ~x′)f(~x′). (47)
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Iterating Equation (46), I obtain the well-known Born series

ε = ε0 +G∆cε0 +G∆cG∆cε0 + . . . , (48)

and then summing the Born series formally yields

ε = (I +Gt) ε0 = (I −G∆c)−1 ε0, (49)

where the so-called t-matrix is defined by

t = ∆c (I −G∆c)−1 = ∆c (I +Gt) . (50)

Taking the ensemble average of Equation (49), I have

〈ε〉 = (I +G 〈t〉) ε0 =
〈

(I −G∆c)−1
〉
ε0. (51)

For a single scatterer, Equation (49) is equivalent to Equation (10). Therefore, it is worth
noting that Wu’s (1966) tensor T is formally related to the t-matrix by

T = I +Gt = (I −G∆c)−1 . (52)

Equation (51) is now in a convenient form for use in determining the effective elastic
tensor c∗ of a composite defined by

〈σ〉 = 〈c ε〉 ≡ c∗ 〈ε〉 , (53)

where the averages in Equation (53) are again ensemble averages over possible composites
having similar physical and statistical properties. Using the standard definition c = cm+∆c,
I find that

〈c ε〉 = cm 〈ε〉+ 〈∆c ε〉 = cm 〈ε〉+ 〈t〉 ε0. (54)

From Equation (54), it follows easily that the effective elastic tensor is given by

c∗ = cm + 〈t〉 (I +G 〈t〉)−1 . (55)

The choice of matrix elastic tensor cm is still completely free since the decomposition c =
cm + ∆c is not unique. Thus, I am free to choose, for example, cm = c∗ (i.e., the matrix
material has now exactly the properties of the equivalent composite material), which implies:

〈t〉 ≡ 0. (56)

Equation (56) is an implicit formula determining the effective elastic tensor c∗, and says
that the effective scattering t-matrix averages to zero.

In principle, Equation (56) provides an exact solution for the effective moduli. However,
the total t-matrix itself is generally too difficult to calculate. It turns out to be more
reasonable and more effective [Velicky et al. (1968)] to rearrange the terms of the total t-
matrix into a series of terms with repeated scattering from individual scatterers (ti). Then,
by setting the ensemble average of the individual t matrices to zero

〈ti〉 =
N∑

i=1

fi∆ci (I −G∆ci)
−1 = 0, (57)
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and neglecting terms corresponding to fluctuations in the scattered wave [Velicky et al.
(1968)], a tractable approximation for the estimate of the elastic moduli is obtained.

When the constituents and the composite as a whole are all relatively homogeneous and
isotropic, the tensor Equation (57) reduces to two coupled equations:

N∑
i=1

fi(Ki −K∗)P ∗i = 0, (58)

and
N∑

i=1

fi(µi − µ∗)Q∗i = 0, (59)

where Equations (13), (14), and (52) were used to simplify Equation (57). Note that
Equations (58) and (59) are identical to Equations (18) and (19), thereby establishing the
equivalence of these two approaches in the isotropic case.

SUMMARY AND CONCLUSIONS

I conclude that my preferred choice of effective medium theory (the CPA) satisfies all the
known constraints on a viable theory: (a) it gives correct values and slopes for both large
and small volume fractions of inclusions; (b) numerical evidence indicates that the results
always satisfy the Hashin-Shtrikman bounds, the Beran-Molyneux-Miller bounds, and the
McCoy-Silnutzer bounds; (c) the theory is also known [Berryman (1980b)] to reproduce
Hill’s exact result [Hill (1963)] for composites with uniform shear modulus — which fact is
a fairly simple exercise to check, so that the reader might find it instructive to carry this
through.

The single-scatterer theory is designed to minimize multiple scattering effects while
yielding formulas that are relatively easy to use. Nevertheless, the theory is not exact,
and some potentially significant effects have been neglected. The neglected terms become
more important for propagation of higher frequency elastic waves. But it is important to
note that bounding methods and formulas are also much harder to implement rigorously for
the frequency dependent (viscoelastic) case. This fact is surely one reason that the theory
is seldom applied at significantly higher frequencies than typical seismic frequencies, or in
regions of very much higher viscosity, and wave dissipation and dispersion. So, it is expected
that, for small ranges of frequency — and especially those that are pertinent to exploration
seismology — will naturally be included in the range of useful applications since the seismic
band is fairly narrow. Then the viscoelastic effects can typically be treated without great
additional difficulty. Some future efforts should nevertheless be directed towards extending
this effective medium theory to scattering from clusters of inclusions at finite frequency
— thereby including within the expanded theory more of the important scattering effects
discussed (but then specifically neglected, and therefore not treated in any detail) here.
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Inversion of up and down going signal for ocean bottom data

Mandy Wong, Biondo L. Biondi, and Shuki Ronen

ABSTRACT

We formulate an inversion problem using the up- and down-going signals of ocean bot-
tom data to imaging primaries and multiples. The method involves separating pressure
(P ) and vertical particle velocity (Vz) data into up- and down-going components. After-
ward, the up- and down-going data can be used for inversion with appropiate modeling
operators. To a first-order accuracy, we use mirror imaging to define the up- and
down-going modeling operator. A complete modeling scheme can be defined by the
composition of the over-under modeling operator and the up-down decomposition op-
erator. This scheme effectively models all primaries, water reveberations and multiples.

INTRODUCTION

Traditionally, multiples in seismic surveying are considered as noise to be removed because
most migration algorithims do not account for multiples. Recently, there have been efforts
to use multiples as signals. For example, Berkhout and Verschuur (2003) and Guitton (2002)
image the multiples with shot-profile migration while Shan (2003) transforms multiples into
pseudo-primaries by cross-correlation in the souce-receiver domain.

One motivation to image with multiples is that multiples can provide subsurface information
not found in primaries. The angular and spatial ranges covered by multiples are different
than that of primaries (Figure 1). Ronen et al. (2005); Guimaraes et al. (1998) propose
a mirror imaging technique that takes advantage of this property for ocean bottom and
vertical cable acquisition geometry, respectively. By using receiver ghosts as signals, mirror
imaging provides a much wider aperture in the image space, given the same set of data.
While mirror imaging correctly images multiples by using down-going receiver ghost at
the ocean bottom, the primary signal is imaged separately. On the other hand, Brown
(2004); Brown and Guitton (2005) proposed joint imaging between primaries and multiples
by using least-square inversion. One advantage of joint inversion is that both the primary
and multiple signals are used.

For the case of ocean bottom data, signals can be separated into up- and down-going parts.
Traditioanlly, up- and down-going signals are used for de-ghosting (Canales and Bell, 1996).
Muijs et al. (2007) use this property to formulate prestack depth migration of primary and
surface-related multiple using downward continuation. In this study, we carry on the work
of Brown (2004) and discuss the theory of joint imaging of multiples and primaries using
up- and down-going signals of ocean bottom data.

We will first discuss the geometry of ocean bottom data acquisition. Next, we will consider
the techniques available to separate data into up-going and down-going wavefields. We will
discuss the theory of joint imaging of multiples and primaries using up- and down-going
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Figure 1: The angular and spatial ranges covered by multiples is different than that of
primary. Near the edge of the receiver array, A can only be illuminated by multiple as
primary can only illuminate up to a spatial extend of B.[NR] mandy2/. Fig1

ocean bottom data. Such an inversion scheme requires a good modeling operator for up-
and down-going signals. To a first order accuracy and flat water bottom, we use mirror
imaging to define the two modeling operators. A more accurate modeling scheme requires
an over-under modeling and an up-down decomposition operator. This scheme effectively
images all primaries, water reveberations, and multiples. It also reduces crosstalk leakage
between up- and down-going signals and hence reduces incorrectly placed reflectors. The
testing of this thoery would be the focus of my research for the next quarter.

SEISMIC ACQUISITION OF OCEAN BOTTOM DATA

Although conventional streamers acquisition is well developed in terms of technology and
processing techniques, it has significant limitations. For example, in obstructed oil fields,
working with streamers could be difficult. In addition, streamers are more prone to drift
and to be affected by weather conditon, which may compromise repeatability in time-lapse
reservoir monitoring (4D). These limitations bring out a growing demand for ocean bottom
seismometers (OBS). OBS data acquisition is an alternate approach in which seismometers
are placed at the ocean bottom and shots are fired at the ocean surface.

OBS data acquisition can be done with either ocean bottom cables (OBC) or with nodes
(OBN). Because the OBS method uses geophones and hydrophones, it can measure both
compressional and shear waves. This capability permits separating up- and down-going
waves at the seabed and therefore provides good opportunities for imaging with multiples.

Multi-component streamers (Pharez et al., 2008) also permit separation of up-going and
down-going waves, but because the data are recorded near the sea surface, imaging with
multiples is much more limited than with OBS in deep water.

To understand the events represented by the up-going an down-going signals, consider
Figure 2. For ocean bottom data acquisition, down-going events include direct arrival,
receiver ghosts, and higher-order pegleg multiples. On the other hand, up-going events
include primaries, and pegleg multiples. Since the kinematics of these events are quite
distinct for up-going and down-going signals, an inverse problem can be formulated to fit
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the up and down signals jointly. Before formulating the inverse problem, we will dicuss
methods for separating receiver signals into their up- and down-going parts.

Figure 2: Left: The down-going signal consists of events such as direct arrival, receiver
ghosts, and higher-order pegleg multiples. Right: The up-going signal consists of events
such as primaries and other pegleg multiples. [NR] mandy2/. Fig2

SEPARATION OF UP- AND DOWN-GOING WAVEFIELD

There are two well developed techniques to separate recorded signal into up- and down-
going waves. For multi-component data, such separation can be done with the pressure and
particle velocity recordings. Another way is to have two sets of hydrophones with one set
on top of the other (an over-under arrangement). Although the over-under arrangement is
used near the ocean’s surface, it is an easy way to obtain up- and down-going wavefields for
synthetic data examples.

Separation using pressure and particle velocity recordings

The basic idea of up-down separation using pressure and vertical particle velocity is quite
simple. Hydrophones measure compressional waves (P ) regardless of their direction. Ocean
bottom seismometers measure vertical particle velocity (Vz) that depends on the direction
of the waves measured. Figure 3 illustrates the measurement of a positive pulse coming
from above and from below.

Since the polarity of the P and Vz signal is the same for up-going waves and opposite for
down-going waves, one can decompose the P and Vz measurements into up-going (U) and
down-going (D) pressure components:

P (zr) = [U(zr) +D(zr)] ,
Vz(zr) = [U(zr)−D(zr)] /I, (1)

where zr is the receiver depth and I is an impedance factor that scales vertical velocity
value to pressure value. The impedance can be offset, frequency, wavenumber, or density
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Figure 3: This Figure illustrates pressure P and verticle particle velocity Vz measurement
of a positive pulse coming from above and from below. Down-going events have opposite
polarity while up-going events have the same polarity. [NR] mandy2/. pzfig

dependent depending on the method used. One way to perform PZ summation is in the
Fourier (ω − kx − ky)domain as

U(zr) =
1
2

[
P (zr)− ρω

kz
Vz(zr)

]
,

D(zr) =
1
2

[
P (zr) +

ρω

kz
Vz(zr)

]
, (2)

where ω is frequency in time. kz =
√

w2

v2 − k2
x − k2

y is the vertical wavenumber calculated
from horizontal wave numbers kx and ky. For a complete derivation of equation 2, please
refer to Amundsen (1993).

Separation using over-under recordings

The derivation for decomposing over-under pressure waves into up-going and down-going
signals is best done in the Fourier domain. Denote S1(ω, kx) and S2(ω, kx) to be the
Fourier transformed measurement of compressional waves at depth z1 (over) and z2 (under).
Theoretically, S1(ω, kx) can be viewed as a sum of the up-going U1(ω, kx) and down-going
D1(ω, kx) components. Likewise for S2(ω, kx):

S1(ω, kx) = U1(ω, kx) +D1(ω, kx),
S2(ω, kx) = U2(ω, kx) +D2(ω, kx). (3)

Down-going waves visit the over array (D1) before visiting the under array (D2). Therefore,
D1, when shifted forward in time, would match the signal D2. Similarily, up-going waves
visit the under array first. Therefore, U2, when shifted forward in time would match the
signal U1. This relationship is equivalent to a phase-shift in the Fourier domain:
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eikz∆zD1 = D2,

U1 = eikz∆zU2, (4)

where ∆z = z2 − z1 and kz is the usual dispersion relation. Finally, substituting equation
4 into 3 yields the formula for the up-going and down-going waves at the receivers:

U2 =
S2 − eikz∆zS1

1− e2ikz∆z
,

D2 =
eikz∆zS1 − e2ikz∆zS2

1− e2ikz∆z
.

Data acquisition using over-under arrangement is often used to elimate receiver ghosts
and water reverberation. For a thorough review of this method, please see Sonneland
et al. (1986). Although over-under arrays are rarely placed at the sea floor in real seismic
surveying, this technique allows easy generation of up- and down-going data at the sea
bottom in synthetic examples using the simpler acoustic wave equation.

THE INVERSE PROBLEM FOR IMAGING MULTIPLES USING UP-
AND DOWN-GOING DATA

The inverse problem for imaging multiples using up- and down-going data can be fomulated
as follow. We first break down the recorded data as the superposition of up- d↑ and down-
going d↓ signals at the receivers. This can be done by using PZ data to give up-going and
down-going data as discussed in the PZ summation section above.

[
d↑
d↓

]
= Spz

[
dp

dz

]

The above construction assumes that the vertical particle velocity dz contains mostly pres-
sure (P) waves. A pre-processing step can be included into Spz to separate the P− and
converted S−wave arrivals (Helbig and Mesdag, 1982; Dankbaar, 1985). Next, we denote
the modelling operator for up-going signals at the receivers as L↑. Similarily, denote the
modeling operator for down-going signals at the receivers as L↓. The two modeling operators
provide the up- and down-going modeled data, denoted as dmod

↑ and dmod
↓ ;

dmod
↑ = L↑m,

dmod
↓ = L↓m. (5)

The inverse problem is defined as minimizing the L2 norm of the two data residuals r↑ and
r↓ , with respect to a single model m. The data residuals are defined as the difference
between the recorded data and the modelled data,
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r↑ = d↑ − dmod
↑ = d↑ − L↑m,

r↓ = d↓ − dmod
↓ = d↓ − L↓m, (6)

min
(
‖L↑m− d↑‖22 + ‖L↓m− d↓‖22

)
, (7)

where ‖.‖2 represents the L2 norm. In matrix form, the fitting goal can be written as

0 ≈
[

L↑
L↓

]
m−

[
d↑
d↓

]
.

With the conjugate gradient method, the model update ∆m at each iteration has contri-
butions from both the up-going and down-going parts of the inversion;

∆m = L′↑r↑ + L′↓r↓. (8)

where r↑ = L↑m − d↑ and r↓ = L↓m − d↓ is the up- and down-going part of the residual,
respectively.

The justification for this inverse problem is to reduce the wrong placement of image
point with the use of both d↑ and d↓ signals. Traditional migration scheme only uses d↑
to determine the image since all primary signal can be found in d↑. However, migration of
primaries can give incorrect image point as well. In Figure 4, a primary event with a given
travel time can indicate a correct image point at A and an incorrect image point at B. If we
include the previously ignored information d↓ into a joint inversion, some wrongly placed
image point can be refuted. Joint imaging allow us to use both primaries and multiples
to estimate the image. This can be a distinct advantage because multiples and primaries
illuminate different parts of the sub-surface. For ocean bottom data with sparse receiver
spacing, multiples illuminate more than primaries.

The quality of the inverse problem would depend on the implemetation of the modeling
operator. The next section will discuss how to approximate the modeling operator.

MODELLING OPERATORS

To implement for a modeling operator that maps the image only into up-going signal d↑
or only into down-going signal d↓ at the receiver, we can use wave equation extrapolation,
choosing either an one-way or a two-way wave equation. We can define the modeling
operator with different levels of accuracy. As a first-order of accuracy, we can use the
mirror imaging operator to model the down-going wave as described in the next section.
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Figure 4: An up-going signal with a given travel time can indicate a correctly placed reflector
at A and an incorrectly placed reflector at B. Reflector A will be supported by down-going
data while reflector B will be refuted. [NR] mandy2/. whyupdown

Figure 5: (a) shows the set-up of a first-order modelling operator for the up-going signal.
The air-water interface is removed and filled with a half space of water. (b) shows the set-up
of a first-order modeling operator for down-going signal. The air-water interface is removed
and the receivers is elevated to twice the water depth. [NR] mandy2/. Lmod
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Mirror Imaging modeling opeators

The first-order implementation of L↑, denoted L↑1 performs wave equation modeling in a
model space without the sea surface as shown in Figure 5 (a). Our up-going modeling
operator is now approximated as

L↑ ≈ L↑1. (9)

When the sea surface is removed, waves always return to the receiver going upward. There
are obvious limitations to L↑1. It can only model primaries and internal multiples. Higher
order water reverberations are excluded. Figure 6 shows some events that are captured and
excluded by L↑1.

Figure 6: Left: The first-order up-going operator captures all the primaries and internal
multiples. Right: It does not capture higher-order water reverberations and any pegleg
multiples with a bounce at the sea surface. [NR] mandy2/. upmod

On the other hand, we can use the mirror imaging modeling operator to get a first-order
estimate of down-going signals, denoted L↓1. This operator performs wave equation modeling
by raising the receivers to twice the water depth level as shown in Figure 5 (b). Our down-
going modeling operator is now approximated as

L↓ ≈ L↓1. (10)

The limitation of L↓1 is that it can only image direct arrival and pegleg multiples having only
one bounce from the sea surface. Higher-order water reverberations and pegleg multiples
with two or more bounces from the sea surface are excluded. Figure 7 shows some events
that are captured by L↓1. To do mirror imaging, we had to assume that the sea bottom is
flat.

Complete modeling

To model beyond primaries and first order receiver pegleg multiples, one can use the sepa-
ration operator that maps over-under data to up-going and down-going data,
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Figure 7: Left: The first-order down-going operator captures the direct arrival and pegleg
multiples with only one reflection from the sea surface. Right: It does not capture higher-
order water reverberation and any pegleg multiples with two or more bounces at the sea
surface. [NR] mandy2/. downmod

[
L↑
L↓

]
= SouA,

where A represents the wave equation forward modelling operator that generates over and
under signals. Sou is a separation operator that extracts the up- and down-going signals
from over-under data. In matrix form, the inversion scheme has the following fitting goal:

0 ≈
[

L↑
L↓

]
m−

[
d↑
d↓

]
= SouAm− Spz

[
dp

dz

]
,

where Spz is a separation operator that extracts the up- and down-going signals from PZ
data. Note that d↑ and d↓ can be viewed as processed data from the orignal recorded dp

and dZ . The advantage of this joint modeling is that we are now imaging all multiples
event that return to the ocean bottom receivers going upward or downward.

For our complete modeling operator, L↑ and L↓, there is an alternate way to interpret
the inverson problem we have set-up from above. Consider an equivalent fitting goal below,

0 ≈ S−1
pz SouAm−

[
dp

dz

]
.

The above fitting goal converts our model into over-under data. Afterward, over-under
data are separated into up-going and down-going data. Finally, the up-going and down-
going data are converted into PZ data using S−1

pz . Therefore, this inversion scheme can be
interpreted as fitting both P and Z data using only acoustic equation.
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SUMMARY

We have discussed the theory of joint imaging of multiples and primaries using up- and down-
going ocean bottom data. To a first order accuracy, we can use mirror imaging to define
L↑ and L↓. A complete modeling scheme first models over-under data and then decompose
them into up- and down-going data. This scheme effective uses water reveberations and
multiples as signal instead of noise. It also reduces crosstalk leakage between up- and
down-goign signals and hence reduces incorrectly placed reflectors. The testing of this
thoery would be the focus of my research for the next quarter.
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Performance of RTM with ODCIGs computation fully
offloaded to GPU

Abdullah Al Theyab and Robert G. Clapp

ABSTRACT

Nvidia’s graphics processing units (GPU) powered with Compute Unified Device Ar-
chitecture (CUDA), the supporting API, have allowed a significant speedup to finite
difference time domain (FDTD) seismic modeling and, consequently, to reverse time
migration (RTM). To utilize the power of GPUs for velocity analysis, we implemented
kernels for generating offset-domain common image gathers (ODCIGs). With 4GB of
memory, a single Tesla 10 series GPU can perform the 2D RTM with generation of
ODCIGs. Computing the ODCIGs takes the majority of the algorithm execution time
because of the large volume of output. We examine the performance of a general 2D
RTM algorithm with ODCIGs computation fully offloaded to a single GPU device. We
optimized the imaging kernel utilizing the available shared memory on the GPU to
double the throughput of the kernel.

INTRODUCTION

Reverse time migration (RTM) is a full wave equation imaging technique that constructs
an image that best represents the subsurface structure. Seismic data are migrated using an
estimate of the wave propagation velocity in the subsurface. Estimates of the velocity field
can be inaccurate at the first imaging attempt, and subsurface offset gathers can provide
a measure of the errors in velocity estimation (Biondi and Symes, 2004). In addition, they
can give amplitude versus offset (AVO) information if amplitudes are handled properly.
Algorithms for RTM and generation of ODCIGs are known to be computationally expensive
and sometimes unaffordable. Therefore, an efficient implementation of RTM with ODCIGs
generation algorithm is vital for minimizing the time required for creating a complete image.

Reverse time migration falls into the computational class of convolution with a sten-
cil. The stencil computation workload can be divided among many processing units in an
embarrassingly parallel fashion. However, the main performance limitation on modern com-
puter architectures is the memory latency. Cache-aware algorithms minimize data traffic
by taking advantage of spatial and temporal locality and/or the data prefetch capabilities
of modern CPUs. Another way of hiding memory latency is to have more threads than
cores to execute some threads while other threads are waiting for memory access. The per-
formance gain given by this technique is not significant on CPUs because thread switching
is expensive. This is not the case on GPUs, which can run a massive number of threads
concurrently to hide memory latency. This capability makes GPUs very attractive hosts
for stencil computational problems.

Micikevicius (2009) has shown an order of magnitude increase in performance for the
GPU’s FDTD kernel as compared to the kernel’s performance on multi-core CPUs. The

259
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reported performance numbers are optimized for 3D by using equal grid spacing in all
dimensions and without using the surface and absorbing boundary conditions.

Bus connection speed can be a performance bottleneck for mixed CPU-GPU processing.
Generating subsurface offset gathers on the host using wavefields computed on the GPU will
slow down the algorithm significantly. Fortunately, this can be avoided by fully offloading
RTM and ODCIGs generation to GPUs.

In this report, we review briefly the theory of RTM for an acoustic medium. We detail
the GPU implementation of RTM with generation of ODCIGs. We then analyze the per-
formance of GPU kernels on a single device. Finally, we optimize the imaging kernel by
using shared memory to double the throughput. The developed kernels were run on Tesla
10 series GPUs.

GOVERNING EQUATIONS

Wave propagation in an acoustic medium is described by(
∇2 − 1

v2(x)
∂2

∂t2

)
P (x, t) = −f(x, t), (1)

where P is the pressure at a point x in the medium at time t, v(x) is the wave propagation
velocity field, and f(x, t) is the source term. A seismic experiment is conducted in the field
by exciting a seismic source f(xs, t) and recording the response at many receiver stations
(r1, r2, ...), with each receiver ri positioned at xri . The data from one experiment are
collected into a shot gather Ds(ri, t). The experiment is repeated many times with different
source locations to make a collection of shot gathers.

To build a subsurface image, each shot is migrated independently by simulating two
wavefields using equation 1 with a zero source term. The first wavefield is the forward
propagated wavefield Pf (x, t), which is simulated using the boundary condition

Pf (x, t) = δ(x− xs)
∫ t

0
fs(t′)dt′ (2)

and a zero boundary condition above the Earth’s surface (Zhang and Sun, 1993). Here,
fs(t′) is the source signature. The second wavefield is the backward propagated wavefield,
computed using the upper boundary condition

Pb(x, t) =
∑

j

δ(x− xrj )Ds(rj , tmax − t). (3)

The final image is computed using

I(x,h) =
∑

s

∑
t

Pf (x + h, tmax − t; s)Pb(x− h, t; s) (4)

where h is the subsurface offset (Biondi and Symes, 2004). In practice, h is sampled in the
horizontal direction, producing horizontal ODCIGs I(x, hx), and in the vertical direction
to produce the vertical ODCIGs I(x, hz). For a 2D imaging problem, the horizontal and
vertical ODCIGs are two 3D image volumes. Figures 1(a) and 1(b) show respectively
slices through the vertical and horizontal subsurface offset cubes for a 2D synthetic dataset
migrated using the correct velocity model.
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(a) (b)

Figure 1: (a) Vertical ODCIGs. (b) Horizontal ODCIGs. The energy is focused
at the zero-offset because the data were migrated using the correct velocity. [CR]
altheyab1/. zgath,xgath

CUDA PROGRAMMING MODEL

Compute Unified Device Architecture (CUDA) is the GPU supporting API extension to
the C programming language. A GPU has many multiprocessors, each with its own set of
stream processors and shared memory. A GPU also has a global DRAM memory, usually
with a size of several gigabytes. This memory is uncached and memory latency is hidden
by executing a massive number of threads concurrently. Threads are grouped together in
thread blocks. Threads within a thread block can share data by using shared memory and
can synchronize by using barriers. However, data sharing and synchronizing are not possible
between thread blocks. Calling a kernel from the host code will launch the thread blocks
in an unspecified order.

The number of processing units limits the maximum number of threads per thread
block. Moreover, the fixed size of the fast shared memory and the number of registers limit
the number of the thread blocks that run concurrently on a single multi-processor. For
stencil computation, 2D thread blocks are mapped to the data grid, which means that each
thread block handles a tile of grid points. The optimal thread block size is 16x16, which is
determined by the device instruction set (NVIDIA, 2008) and the available shared memory.

Many considerations have to be taken into account when optimizing CUDA kernels.
Coalesced global memory access can radically reduce memory access instructions. Shared
memory usage can also significantly reduce global memory access. However, memory bank
conflicts can hinder the performance gain from using the shared memory. Therefore kernels
should be designed to avoid or reduce simultaneous access to the same memory banks by
the threads in a thread block.

The kernels used for our implementation were run on a Tesla 10-series GPU (Tesla
S1070). This GPU contains 30 multiprocessors, each with 8 streaming processors and 16
KB of shared memory. The memory bandwidth is 104 GB/s, and the global memory is
4GB in size.
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PERFORMANCE METRICS

The total cost of the 2D RTM with ODCIGs generation algorithm for a grid with the size
Nx ×Nz and Nt time steps is

Ctotal = (Cforward−FDTD +Cbackward−FDTD)NxNzNtNshots +CImagingNINxNzNhNshots, (5)

where Cforward−FDTD, Cbackward−FDTD, and CImaging are the costs for forward wave propaga-
tion, backward wave propagation, and imaging, respectively. NI is the number of imaging
steps, and Nh is the number of points in the subsurface offset axis. FDTD cost includes the
cost of setting the surface boundary condition. Because of the asynchronous execution of
backward propagating kernels and imaging kernels, it is difficult to isolate their costs. We
estimate that Cforward−FDTD = Cbackward−FDTD, where Cforward−FDTD can be calculated by
timing the forward propagation part of the algorithm. Therefore the throughput metrics
for wave propagation and imaging kernels are

C−1
FD = NxNzNt/(FDTD exec. time),

C−1
Imaging = NINxNzNh/(Total exec. time− 2× FDTD exec. time).

Both are expressed in millions of output points per second (Mpts/sec).

WAVE PROPAGATION KERNELS

The wave equation is solved by explicit finite differencing that is second order in time and
eighth order in space, as expressed in

P t+1 = v2∆t2
(
ft +∇2P t

)
+ 2P t − P t−1. (6)

We use an approach similar to the one implemented by Micikevicius (2009), but we gener-
alize it to accommodate variable grid spacing for each dimension. We also have separate
kernels for the source function injection. The waves incident on the grid boundaries are
attenuated by adding an absorption term to the wave equation. This term is active around
the neighborhood of the side and bottom boundaries. These inclusions to the algorithm
increase the number of floating point operations and the number of memory accesses, which
in turn reduce the throughput of FDTD by a few hundreds of Mpts/sec as compared to the
reported performance measures by Micikevicius (2009).

The problem grid is divided into a grid of 16x16 blocks as illustrated by Figure 2. Each
grid block is assigned to a thread block of the same size; i.e., each thread performs the
finite differencing on a single point on the grid. Since data sharing is allowed between
threads within a thread block, shared memory is used to keep local copies of P t that are
needed for computing the spatial derivatives. Each thread within a thread block loads the
corresponding point on the grid of P t into shared memory. Because the derivative stencil
requires eight neighboring points in each spatial dimension, some of the threads are assigned
to load the halos, i.e., the surrounding points of the thread block.

IMAGING KERNEL

The imaging equation (4) is used in practice to generate two ODCIG cubes with the two
x- and z-spatial dimensions and a third dimension along hx (hz) for horizontal (vertical)
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Figure 2: Thread blocks of the wave propagation kernel are mapped to areal blocks of the
domain. A thread block has to read the assigned grid points (green area) and halos (yellow)
from neighboring points to shared memory. [NR] altheyab1/. fdblocking-crop

subsurface offsets. The subsurface offset can have both positive and negative values. The
following code snippet shows a simple kernel that computes I(x, hz):

__global__ void img_hz_kernel(float *p1 , float *p2){
int i=blockIdx.x*blockDim.x+threadIdx.x; /* z image location */
int j=blockIdx.y*blockDim.y+threadIdx.y; /* x image location */
for(int h=hmin; h<hmax; h++)

img_zh[iloc(i,j,h)]+=p1[loc(i-h,j)]*p2[loc(i+h,j)];/* imaging condition*/
}

Grid blocking of image locations (z, x) is similar to the one shown for wave propagation.
The iteration occurs along the offset axis, h, which means that the thread block extent is
the whole offset axis. This is a naive implementation of the imaging condition because
of the redundant reads from global memory. The global memory access pattern of the
naive imaging kernel is illustrated in Figure 3(a), where, for each point in the 3D output
space, two values from Pf and Pb are needed. The imaging kernel can be improved so that
redundant reads from within a thread block are eliminated.

For the sake of simplicity, we consider a 1D thread block of dimension n that has an
offset extent of n points; i.e., each thread block will compute a tile of size n2 from the output
space (z, hz). For the naive imaging kernel, the number of global memory accesses is 4n2;
i.e., to update a point in the output volume (offset gathers), two reads from the wavefields,
and one read and one write for updating the offset gathers are needed. Figure 3(b) shows
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areas that will be accessed from the wavefields. The width for each area is twice the width
of the thread block n. The common areas can be copied to the shared memory, so that each
thread will copy two values from the shared area. After that, the thread block advances
along the offset axis and uses the data from shared memory, as shown using the following
kernel:

Block
extent

Shared grid points 
from wave field 1

Shared grid points 
from wave field 2

offset

Img. point

Ctotal = (Cforward FD + Cbackward FD)NxNzNt + CIMGNINxNzNh. (1)

C−1
FD = NxNzNt/(FD exec. time)

C−1
IMG = NINxNzNh/(RTM exec. time− 2 ∗ FD exec. time)

N1 x N2 is 4N1N2

2N1N2 + 2(N1 + N2)

1

Ctotal = (Cforward FD + Cbackward FD)NxNzNt + CIMGNINxNzNh. (1)

C−1
FD = NxNzNt/(FD exec. time)

C−1
IMG = NINxNzNh/(RTM exec. time− 2 ∗ FD exec. time)

N1 x N2 is 4N1N2

2N1N2 + 2(N1 + N2)

1

offset

Img. point

h

h h

(b)

(a)

Figure 3: The memory access pattern of imaging: (a) To compute the image value ( at the
star), two points from Pf (square) and Pb (circle) are needed. (b) This diagram shows the
thread block advancement along the offset axis and data sharing from within the block. All
data access from with the thread block will fall in the shared areas from Pf (dashed) and
Pb (solid). [NR] altheyab1/. imagingstartegy-crop

__global__ void img_hz_improved_kernel(int h0 /* first offset */,
float *p1, float *p2){

__shared__ float s_p1[BLOCK_SIZE][2*BLOCK_SIZE];
__shared__ float s_p2[BLOCK_SIZE][2*BLOCK_SIZE];

int i=hmax_gpu+blockIdx.x*blockDim.x+threadIdx.x; /* z-location */
int j=blockIdx.y*blockDim.y+threadIdx.y; /* x-location */

/* offset extent of the thread block */
int hmin=h0-hmax_gpu; /* minimum offset */
int hmax=hmin+BLOCK_SIZE; /* maximum offset */

/* copy to shared memory */
s_p1[threadIdx.y][threadIdx.x]=p1[loc(i-hmax, j)];
s_p2[threadIdx.y][threadIdx.x]=p2[loc(i+hmin, j)];
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s_p1[threadIdx.y][BLOCK_SIZE+threadIdx.x]=p1[loc(i-hmin, j)];
s_p2[threadIdx.y][BLOCK_SIZE+threadIdx.x]=p2[loc(i+hmax, j)];

/* synchronize threads */
__syncthreads();

/* prepare addressing variables */
int base=loc(i,j)+h0*n1*n2;
int stride=n1*n2;

/* internal loop along the offset axis */
for(int h=0; h<BLOCK_SIZE; h++){

zimg[base+h*stride]+=
s_p1[threadIdx.y][BLOK_SIZE+threadIdx.x-h]
*s_p2[threadIdx.y][threadIdx.x+h];

}
}

The number of global memory accesses for the improved algorithm is 2n2 + 4n. For
a thread block of width 16, the number of global memory accesses is reduced from 1024
(naive) to 576 (improved).

KERNELS’ PERFORMANCE

The throughput of the implemented kernels are shown in Figure 4. For comparison, thread
blocks for imaging kernels were 16x16 for both kernels, and the improved kernel has an
offset extent of 16. The throughput of the improved kernel is double the throughput of
the naive implementation. Modifying the block sizes yielded a negligible improvements in
performance. This optimized kernel is applicable to 3D imaging. However, 4GB of GPU
memory is not sufficient to host the 4D output volume.

Figure 5 shows the execution time for RTM without ODCIGs generation, RTM with
ODCIGs generation using the naive imaging kernel, and RTM with ODCIGs generation
using the improved imaging kernel. Computing ODCIGs is very costly because of the large
volume that is updated at every imaging step. The floating-point operation count is very
small for the imaging kernel. This indicates that most of the execution time for ODCIGs
generation is spent accessing and writing to the device global memory. The memory access
time is so dominant that constructing angle-domain common image gathers (ADCIGs) at
every time step could be considered.

SUMMARY AND FUTURE DIRECTIONS

In this paper, we have shown the implementations of the naive imaging kernel. We also
demonstrated a strategy for improving the imaging kernel that doubles the throughput of the
naive implementation. This implementation is applicable to 3D imaging problems, although
the available memory for current GPUs is not sufficient to hold the generated image volumes.
We are considering generating horizon-based ODCIGs for 3D wave propagation. Due to the
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Figure 4: Throughput of the implemented kernels. Improving the imaging ker-
nel using shared memory doubles the throughput of the imaging kernel. [NR]
altheyab1/. throughput-crop

large output volume, generating ODCIGs is costly as compared to RTM without ODCIGs
generation. To reduce the cost, we are considering data compression and subsampling the
ODCIGs, which will reduce the output volume that is updated at every imaging step. The
cost of generating ADCIGs will be minimal compared to generating ODCIGs. Therefore,
we are considering generating ADCIGs on the GPU.
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Seismic imaging using GPGPU accelerated reverse time
migration

Nader Moussa

ABSTRACT

In this report, I outline the implementation and preliminary benchmarking of a par-
allelized program to perform reverse time migration (RTM) seismic imaging using
the Nvidia CUDA platform for scientific computing, accelerated by a general pur-
pose graphics processing unit (GPGPU). This novel software architecture allows access
to the massively parallel computational capabilities of a high performance GPU sys-
tem, which is used instead of a conventional computer architecture because of its high
throughput of numeric capabilities.
The key aspects of this research concern the hardware setup for an optimized GPGPU
computer system, and investigations into coarse-grained, algorithm-level parallelism. I
also perform some analysis at the level of the numerical solver for the Finite-Difference
Time Domain (FDTD) wave propagation kernel. This paper demonstrates that the
GPGPU platform is very effective at accelerating RTM, and this will lead to more
advanced processing for better imaging results.

INTRODUCTION

Reverse time migration (RTM) is often used for seismic imaging, as it has preferable numer-
ical and physical properties compared to competing algorithms, and thus generates better
images (Zhang and Sun, 2009). These benefits come at a high computational cost, so re-
search effort is required to make RTM a more economically competitive method for seismic
imaging. This is the motivation for GPGPU parallelism of RTM.

The processing flow for imaging a seismic survey can be parallelized in many tiers. This
multi-tiered parallelism has been noted in earlier computer architecture research for seismic
imaging (Bording, 1996). This hierarchical parallelism is particularly prominent in RTM,
and it provides opportunities for significant performance increase throughout the algorithm.
A modern GPGPU platform, such as the Nvidia S1070, is uniquely capable of mirroring
this tiered algorithm structure, because its architecture is similarly structured with both
coarse-grain and fine-grain parallel capabilities.

At the highest level of abstraction, a data set can be divided into spatially separate re-
gions of independent data (shot profiles). This is a Single Program, Multiple Data (SPMD)
approach, and due to low data dependency, interprocess communication is generally not
needed. This can directly map to a hardware multi-GPU implementation.

At each data subset, the migration can be further parallelized at a finer granularity.
There are three potential stages for parallelism in the RTM algorithm, but there is a severe
data dependency limitation. The imaging condition requires the computed results of both

269
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the forward wavefield, pF , and the reverse wavefield, pR, for each time step. Unfortunately,
because the two wavefields are computed in opposite time directions, performing the imaging
condition usually requires computing the complete wavefield pF , writing it to disk, and
reading its precomputed values for image condition correlation as soon as that time step
is available from the reverse time wavefield. This data dependency is a major obstacle to
parallelism at this stage, and constrains performance.

At the finest level of parallelism, the individual wavefield propagation steps can re-
duce the compational load by taking advantage of vectorization, floating-point math op-
timizations, and numerical reorganization. The imaging condition can also benefit from
parallelization, because it is essentially a large 2D or 3D correlation. This is easily vec-
torizable, and is especially suitable for a GPU, which was originally designed as a large
vector-computer.

Clearly, the GPGPU platform provides multi-tiered parallelism capability that matches
the RTM structural design. The encouraging preliminary results seem to confirm that the
GPGPU platform is well suited to RTM optimization, and suggest that further optimization
can continue to yield dramatic execution time improvements. This will allow more advanced
processing with correspondingly better subsurface image results.

CUDA PROGRAMMING METHODOLOGY

Nvidia’s novel technology, “Compute Unified Device Architecture” (CUDA) is a software
interface and compiler technology for general purpose GPU programming (Nvidia, 2008).
The CUDA technology includes a software interface, a utility toolkit, and a compiler suite
designed to allow hardware access to the massive parallel capabilities of the modern GPU,
without requiring the programmer to construct logical operations as graphical instructions.
The latest release of CUDA, version 2.1, exposes certain features only available in the Tesla
T10 GPU series. Below, all specifications are given based on the capabilities of the T10
GPU using CUDA 2.1 software. For easy reference, Table 1 summarizes the terminology
and acronyms that apply to the software and hardware tiers. An acronym-guide is also
provided in Table 2 in the Appendix.

CUDA programs have two parts: “host” code, which will run on the main computer’s
CPU(s); and “device” code, which is compiled and linked with the Nvidia driver to run
on the GPU device. Most device code is a “kernel,” the basic functional design block for
parallelized device code. Kernels are prepared and dispatched by host code. When the kernel
is dispatched, the host code specifies parallelism parameters, and the kernel is assigned to
independent threads which are mapped to device hardware for parallel execution.

The coarsest kernel parallelism is the “block,” which contains several copies of threads
running the same code. Each block structure maps to a hardware multiprocessor. Blocks
subdivide a large problem into manageable units which will execute independently. It
should be noted that inter-block synchronization and communication is difficult without
using expensive global memory space or coarse barriers. Inside each block there are up
to 512 threads, organized into sub-groups or “warps”: these groups of up to 32 threads.
At this level of parallelism, shared memory and thread synchronization is very cheap, and
specific hardware instructions exist for thread synchronization. As of CUDA 1.3, available
on the Tesla T10, synchronization “voting” can be used to enable single-cycle inter-thread
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Software Model Hardware Model
Element Maximum Physical Unit #

Thread

512 threads per block

Arranged in 3D block not ex-
ceeding
512 × 512 × 64 in < x, y, z >
and 512 total

Scalar Processor (SP) or
“Streaming Core”

Each core executes one thread
at a time

8

Warp
Each 32 threads are statically
assigned to a warp

SP Pipeline

A full warp (32 threads)
executes in 4 clock cycles
(pipelined 4-deep across 8
cores)

16

Block

Arranged in 2D grid not
exceeding

65535× 65535 in < x, y >

Streaming Multiprocessor
(SM) 30

Kernel Grid Problem or simulation repre-
sentation

GPU

Only one kernel is running on
the GPU at a time
(More are possible, but this is
complicated).

4

Table 1: CUDA software and hardware mapping. This table briefly summarizes the CUDA
software architecture and its implementation on a T10 GPU.
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control. As an extra performance boost, threads which are running the same instructions
are optimized with “Single Instruction, Multiple Thread” (SIMT) hardware, sharing the
Instruction Fetch (IF) and Decode (DEC) logic and efficiently pipelining operations. If con-
ditional program control flow requires different instructions, the threads must then serialize
some of these pipeline stages. Peak performance is achieved when all conditional control-
flow is identical for threads in a single warp. In the case of Finite Difference Time Domain
(FDTD) wave propagation code, it is generally possible to have all threads operating in
SIMT mode. The boundary conditions at the edges of thread blocks, and at the edges of
the simulation space, are currently the only exceptions to this SIMT mode.

HARDWARE PLATFORM

During this research, testing was performed on an HP ProLiant with an attached Tesla
S1070 GPGPU rack-mounted blade server. This unique platform implements the CUDA
2.1 software specification, with hardware Compute Capability 1.3 GPU acceleration (Nvidia,
2008). The S1070 provides four Tesla T10 GPUs, which provide vector-style parallelism for
general purpose computing.

The basic architecture consists of a “Host System,” using regular CPUs and running a
standard Linux operating system. Attached is the “Device,” a 1U rack-mounted GPGPU
accelerator which provides the parallelism discussed in earlier sections. The CUDA tech-
nology uses the terms “host” and “device” to refer to the various hardware and software
abstractions that apply to either CPU or GPU systems. Although the S1070 has four GPUs,
it is considered one “device”; and similarly, there is one “host,” although it has 8 CPU cores
in this system. Below is a summary of the system specifications:

Host: HP ProLiant DL360 G5 (HP ProLiant series, 2009) (HP ProLiant DL360G5
Overview, 2009)

• 2× Quad-Core Intel Xeon E5430 @ 2.66 GHz

• 6144 KB L2 Cache (per core)

• L2 Cache Block size: 64 B

• 32 GB main memory

• 1333MHz Front Side Bus

• PCI-e #1: 8x pipes @ 250MB/s each

• PCI-e #2: 8x pipes @ 250MB/s each

• Gigabit Ethernet connection to SEP Intranet

Device: Nvidia Tesla S1070 Computing System (S1070 Product Information,
2009)

• 4× T10 GPU @ 1.44GHz

• 30 Streaming Multiprocessors (SM) per GPU
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• 8 Scalar Processor (SP) cores per SM

• 32 threads per warp

• 16K 32-bit registers per block

• 16KB Shared Memory per block

• 4GB addressable main memory per GPU

• Memory controller interconnect for data transfer to host and other GPU address
spaces

• Concurrent Copy & Execution feature: “Direct Memory Access” (DMA) style asyn-
chronous transfer available on T10 GPUs

• Programmable in CUDA

Figure 1: Schematic representation of the Host-Device (CPU-GPU) interconnection
and memory structure. The compartmental memory structure on the Device side
is problematic for multi-GPU programs, because it severely restricts shared mem-
ory methods. Much of my recent implementation efforts address this issue. [NR]
nwmoussa1/. hostDeviceInterconnectSchem

The S1070 is a very recently released commercial platform specifically tailored for high-
performance scientific computing. Nvidia recommends using it only with certain host hard-
ware environments. The system installation procedure is explained in the appendix, along
with solutions to difficulties that may be encountered.

The final system environment runs CENTOS 5.2 for x86 64 and using the Nvidia Tesla
Driver (Linux x86 64 - 177.70.11). Two Host Interconnect Cards (HIC) are installed
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and configured in the ProLiant. Both cards are connected to the S1070 unit via two PCI-e
cables. This setup produces a reliable and functional system for GPGPU computational
acceleration.

Figure 2: Rack mount view of the SEP Tesla system. At the top is the S1070 1U 4xGPU
GPGPU Computing Appliance. Below is the HP ProLiant Xeon 64 bit, 8 core (2xSMP,
4xCMP) system, tesla0.stanford.edu which runs the host operating system. [NR]
nwmoussa1/. teslaRackMountPhoto

EVALUATION METRICS

There are many ways to compare and evaluate parallelization schemes for RTM. Because
the GPGPU approach is so novel, it is difficult to perform direct comparison with other
parallelization schemes for Reverse Time Migration. Other hardware platforms do not
provide the same software abstractions. Many of the GPGPU metrics thus have no direct
comparable equivalent on alternative systems. Of course, key performance metrics are
directly comparable to serial or parallel CPU RTM implementations. These include:

• Total execution time

• Cost ($) per FLOPS

• FLOPS per Watt

Other internal performance metrics of my implementation can be compared to academic
and industrial research progress in high-performance GPGPU wave propagation. Wave
propagation has been previously implemented in Finite Difference Time Domain (FDTD)
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for nearly identical hardware (Micikeviciuis, 2008); the forward- and reverse-wavefield com-
putation performance can be directly compared to such an implementation. FDTD perfor-
mance measurements include:

• Maximum computational grid size

• Block subdivision size

• Wavefield grid points per second

• Numerical order of spatial derivatives

One goal of SEPs investigations into various parallelization technologies is to subjectively
evaluate the feasibility for future performance, ease of development, and maintainability of
code. Technologies like the CUDA/GPGPU approach are compared subjectively to other
systems, such as the SiCortex SC072 “Desktop Cluster” as well as conventional multicore
and multi-node CPU parallelization. The following metrics can be roughly estimated for
each technology, noting that there is some ambiguity in direct comparisons across widely
varying exotic architectures:

• Cost ($) per FLOPS

• FLOPS per Watt

• FLOP operations needed for complete migration

• Execution time for complete migration

• Accuracy of the wave propagation operator

As I am not trained as an interpretational geologist, subjective assessment of the image
quality is difficult for me. Nonetheless, it has been widely established in industrial con-
texts that the correct implementation of RTM yields better images for decision-making and
analysis. Certain computational architectures can enhance this effect by enabling higher-
accuracy RTM, (e.g. using higher-order wavefield operators). By providing very cheap
floating-point math, the GPGPU approach enables more operations per data point, al-
lowing more accurate wave modeling with minimal execution time overhead. The overall
speedup that a GPGPU implementation can provide can allow additional iterations as part
of larger inversion problems, increasing the accuracy of these processes. The result is a
subjectively better migrated image.

Finally, it is worth noting the benefits of GPGPU parallelization from a software engi-
neering and code-maintenance standpoint. CUDA is designed to be simple, consisting of
a set of extensions to standard C programming. The programming environment is easy
to learn for most programmers. The code is systematically separated into host setup code
and device parallelization code; and CUDA can interoperate with C or C++, allowing
functional- or object-oriented system design, as the situation requires.



276 Moussa SEP–138

IMPLEMENTATION

I developed a wave propagation kernel, implemented in CUDA, for use in forward- and
reverse-time wave propagation. I also implemented a simple correlation imaging condition.
Due to time constraints, I was not able to implement a more advanced imaging condition
with true-amplitude correction, noise-removal, and angle-gather decomposition.

For the purposes of this report, I will focus on single-GPU kernels. I made significant
progress towards multi-GPU asynchronous parallelization, but this code is not yet ready to
provide benchmark results. The eventual goal is to perform the forward-wave, reverse-wave,
and imaging condition subroutines on independent GPUs. However, preliminary benchmark
results cast doubt on whether that approach will decrease total execution time, because the
bottleneck appears to be host-device transfer time rather than computational limitations.

Implementation of an eighth-order spatial derivative added negligible computational
overhead to the problem, as compared to the naive second-order wave operator. This
suggests that other more sophisticated time-stepping methods, such as Arbitrary Difference
Precise Integration (ADPI) wave solvers (Lei Jia and Guo, 2008), may also have negligible
computational overhead. Such methods will enable coarser time-steps without the numerical
stability limitations that are inherent in FDTD approaches. Thus the use of those methods
may reduce overall execution time.

Figure 3: Schematic view of the multi-GPU algorithm for coarse-grained parallelism. The
intent is to perform the overall RTM process with separate stages executing in parallel on
independently controlled GPUs. This coarse parallelism can help pipeline the process and
hide the memory transfer time. My current implementation and benchmark-code does not
yet implement this strategy. [NR] nwmoussa1/. hostDeviceMultiGPUschem

The expansion of the solver to a full 3D model space will require significant extra
programming. The code base for the 2D model is intended to be extensible, and the CUDA
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framework allows block indexing to subdivide a computational space into 3 dimensions,
assigning an (X,Y,Z) coordinate to each block and each thread. Because of time constraints,
I did not complete the full 3D modeling for benchmark comparison.

In the current iteration, the host code does not perform significant parallelism. Earlier
efforts used pthread parallelism on the host CPUs for data preprocessing while the input
loaded from disk, but the time saved by this workload parallelism was negligible compared
to the overall execution time.

The result of my implementation is a propagation program, waveprop0, and an imaging
program, imgcorr0, written in CUDA. These are piped together with a set of Unix shell
scripts to manage the overall RTM sequence for forward and reverse-time propagation with
an imaging condition.

Future implementations will seek to integrate these programs into one tool with several
CUDA kernels, but the overlying data-dependence issue must be solved theoretically be-
fore the processes can be entirely converted to a streaming methodology. For trivial-sized
problems, the entire computational result of forward and backward wave propagation can
remain in graphics device memory for use, but this approach has inherent problem-size lim-
itations. Other methods of eliminating the costly host-device transfers have been proposed
(Clapp, 2009). Such methods eliminate the bottleneck by preserving the wavefield state in
GPU memory at the final timestep, and backward-propagating to recompute the wavefield
at arbitrary time. This takes advantage of the cheap and fast wave propagation kernel.
Another approach is the effective pipelining of the RTM process to allow arbitrary-sized
input data sets. Finally, a major area of continuing work is the complete linking of CUDA
research code with the standard SEPlib programming environment and toolkit. This will
be extremely beneficial from the standpoint of code portability and interoperability with
other research areas.

PERFORMANCE AND BENCHMARK SUMMARY

For the sake of simplicity and consistency, I tested my RTM code on synthetic data. I used
a simple subsurface velocity model with a few reflecting layers. This same velocity model
has been used by other SEP students and researchers, and although it does not represent
the complex subsurface behavior of a real earth model, it provides sufficient complexity
to evaluate the correct functionality of the RTM implementation. My current work to
integrate SEPlib with the GPGPU environment will enable benchmarking and testing on
more standard data, eventually including field recorded data sets. This will be an important
step to verify and compare GPGPU performance to more traditional paralellism schemes.

Unless otherwise noted, the benchmark results I report were computed on a two dimen-
sional wavefield space, with grid size 1,000 x 1,000.

GPU execution time is shown in Figure 5 for a 1,000,000 point grid, (1,000 x 1,000 2D
computational space). It is compared to a serial implementation of RTM on the CPU. Due
to time constraints, I was not able to compare the GPGPU parallelization to other parallel
RTM versions.

Evidently, GPU parallelization has a dramatic effect on the total execution time, reduc-
ing it by a factor of more than 10x. With 240x as many cores, however, this is sublinear
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Figure 4: Preliminary RTM image results on a synthetic data set with a few sim-
ple horizontal reflectors. This test verified functionality of my preliminary RTM im-
plementation on the GPGPU system. Wave diffraction is visible at the corners, prob-
ably due to the unrealistic, abrupt end of the layers in this synthetic model. [NR]
nwmoussa1/. rtmImagingPreliminary
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Figure 5: Total execution time for RTM imaging, comparing serial implementation on CPU
(executed on the ProLiant Xeon host), compared to a single GPU CUDA parallelization.
[NR] nwmoussa1/. totalExecutionTimeChart

parallelization. Closer profiling of the CUDA algorithm execution time revealed the com-
putational breakdown shown in Figure 6. This profiling was accomplished using timer
variables compiled in the device code, as standard code profilers have difficulty working
with the GPGPU environment. Most of the bottleneck is clearly the memory transfers
between host and device, which are required for the imaging condition. The primary focus
of further research is to work around this limitation: first, by optimizing the memory trans-
fers as much as possible; and more importantly, by developing numerical schemes that can
perform the imaging step without as much expensive transfer overhead.

CONCLUSION

The dramatic speedup of the computational kernel provides strong motivation for continued
work in GPGPU parallelism. Benchmark results suggest that the most important area to
tackle is Host-Device (PCI-e) bus bandwidth, which accounts for 90% of the total system
utilization time.

At present, my implementation does not have any tasks for the high-performing Xeon
processors on the host. These CPUs are suitable for performing a lot of useful work, such
as data post-processing or visualization. An alternative architecture could tightly couple
CPU and GPU processes to maximize system utilization.

Another suggested research area is the implementation of compression during transfer.
Velocity models, which contain large quantities of redundant data, could easily be com-



280 Moussa SEP–138

Figure 6: Breakdown of program execution time for the CUDA implementation. Very
little time is spent executing numerical processing code (wave propagation or imaging
condition). The vast majority of time is spent in host-device memory transfer over
the PCI-e bus (between the ProLiant CPU system and the Nvidia Tesla S1070). [NR]
nwmoussa1/. execTimePieChart
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pressed; seismic records will probably not compress well with a lossless algorithm such as
GZIP (LZ77) because they do not contain the same amount of redundancy as velocity mod-
els. In future work, I will quantify these compression ratios for real data sets, which will
help validate the utility of compressed Host-Device communication.

The system-level transition towards exotic computing platforms is always an engineering
tradeoff. The performance benefits of such an environment must be sufficiently high to offset
the development and maintenance cost with the new system. The GPGPU platform and its
CUDA programming environment is sufficiently familiar to a geophysical programmer and
exposes massive parallel capability in a straightforward way. The immediate performance
boost is evident from the preliminary benchmarks presented in this report. Significant
further optimizations can be realized in future work via more analysis and refinement of
this GPGPU approach.

APPENDIX

Tesla S1070 system setup

This section details the procedure to install and configure the hardware for the Tesla S1070
GPGPU system.

During my early work, I configured the ProLiant system to run Ubuntu 8.10 and Nvidia
180.22 drivers. This required recompiling Nvidia Debian kernel modules (.ko files). The
recompiled modules successfully connected to the S1070 system, but incorrectly identified
it as an Nvidia C1060. Downgrading the operating system to Ubuntu 8.04 enabled the
modules to correctly connect and recognize the Nvidia S1070, but also produced an unstable
system, which occasionally crashed. Following advice from Nvidia, I switched the ProLiant
operating system to CENTOS and had significantly more success. However, the Nvidia
180.22 drivers have not been fully tested on the 1U rack-mount S1070 systems with four
GPUs. There were several system hang-ups and unexpected, non-repeatable crashes. It
should be noted that the GPGPU driver for the 1U Tesla system interferes with some
automatic configuration of the Linux operating system (specifically graphic configuration
for X11). This happens because the S1070 appears to X11 to be a video accelerator and
display driver even though it cannot be connected to a physical display monitor.

Another potential configuration problem arises from the presence of two Host Intercon-
nects on the S1070 1U unit. The Nvidia documentation mentions that these interconnects
allow the S1070 to optionally connect to two separate host CPU systems. However, even
though only one host is used in our system, we found that both interconnects should be
used because Connecting and configuring only one card results in access to only 2 out of the
4 available Tesla T10 GPUs on the S1070 1U server. Using both interconnects allows access
to all four GPUs, and also doubles the PCI-e bandwidth available to the S1070 memory
controller.

The final system environment runs CENTOS 5.2 for x86 64 and using the Nvidia Tesla
Driver (Linux x86 64 - 177.70.11). Two Host Interconnect Cards (HIC) are installed
and configured in the ProLiant. Both cards are connected to the S1070 unit via two PCI-e
cables. This setup produces a reliable and functional system for GPGPU computational
acceleration. Much difficulty can be avoided by using exactly these system and driver
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versions.

Acronyms Quick Reference

CUDA Compute Unified Device Architecture
FDTD Finite Difference, Time Domain (wave simulation)
GPU Graphics processing unit
GPGPU General purpose graphics processing unit
RTM Reverse Time Migration
SEP Stanford Exploration Project
SM Streaming Multiprocessor
SP Streaming Processor
SPMD Single program, multiple data

Table 2: Quick reference for CUDA acronyms.
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Accelerating 3D convolution using streaming architectures
on FPGAs

Haohuan Fu, Robert G. Clapp, Oskar Mencer, and Oliver Pell

ABSTRACT

We investigate FPGA architectures for accelerating applications whose dominant cost
is 3D convolution, such as modeling and Reverse Time Migration (RTM). We explore
different design options, such as using different stencils, fitting multiple stencil opera-
tors into the FPGA, processing multiple time steps in one pass, and customizing the
computation precisions. The exploration reveals constraints and tradeoffs between dif-
ferent design parameters and metrics. The experiment results show that the FPGA
streaming architecture provides great potential for accelerating 3D convolution, and
can achieve up to two orders of magnitude speedup.

INTRODUCTION

The oil industry has always been one of the leading consumers of high performance com-
puting systems. With the increasing of the CPU clock frequencies coming to an end, we can
no longer double our computation speed by purchasing updated computers every eighteen
months and need to adapt to new computation architectures, such as multi-core processors,
General Purpose Graphic Processing Units (GPGPUs), and Field Programmable Gate Ar-
rays (FPGAs).

Recent research work has shown that FPGAs can provide a customized solution for a
specific application and achieve more than two orders of magnitude speedup compared to
a single-core software implementation. Examples include cryptology applications (Cheung
et al. 2005), finance and physics simulations (Zhang et al. 2005; Gokhale et al. 2004) as well
as seismic computations (Nemeth et al. 2008).

The major difference between FPGA and other computation platform is the reconfig-
urability of the processing and storage units in the device, which enables an FPGA to be
configured into arbitrary processing units and circuit structures. The reconfigurability of
the FPGA leads to two major advantages over other computation platforms:

(1) A streaming computation architecture. While CPUs and GPGPUs take in a sequence
of instructions that operate on corresponding data in memory, in FPGAs the instructions
are mapped into circuit units along the path from input to output. The FPGA then
performs the computation by streaming the data items through the circuit units. The
streaming architecture makes efficient utilization of the computation device, as every part
of the circuit is performing an operation on one corresponding data item in the data stream.

(2) Customizable number representations. While CPUs and GPGPUs can only handle
8-, 16-, 32- or 64-bit variables, FPGAs support arbitrary bit width for each variable in the
design. By adjusting the bit widths according to the precision requirement, we can often
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achieve significant reduction in the silicon area cost of arithmetic units and the bandwidth
requirement between different hardware modules, thus improving the overall throughput of
the entire system.

To investigate FPGA’s capability on solving the convolution problem, we explore de-
sign options such as: (1) using different stencils; (2) fitting multiple stencil operators into
the FPGA; (3) processing multiple time steps in one pass; (4) customizing the computa-
tion precisions. The exploration demonstrates constraints and tradeoffs between different
design parameters and metrics. Experiment results show that the streaming computation
architecture of FPGAs can provide up to two orders of magnitude speedup compared to a
single-core software implementation.

STREAMING ARCHITECTURE FOR CONVOLUTION

Target Application

Our target application is a 512 by 512 by 512 finite difference problem, with 6th to 8th
order in space and 2nd order in time accuracy. Each time step of the computation takes the
current wave-field state, the wave-field state from the previous time step and the velocity
model as inputs, and produces the next wave-field state as the output.

FPGA Platform

Current Xilinx FPGAs contain three major categories of resources: (1) reconfigurable logic
slices with 6-input lookup tables (LUTs) and flip flops (FFs); (2) DSP48E arithmetic units
that can perform 18× 25 multiplications; (3) 36-KBit Block RAM (BRAM)s used as local
storage or FIFOs.

In our work, we use the Maxeler MAX2 acceleration card, which contains two Virtex-5
LX330T FPGA chips, 12 GB onboard memory, and a PCI-Express x16 interface to the
host PC. Table 1 and 2 show the resource summary of our current FPGAs and the re-
cently released Virtex-6 SX475T FPGA, and the basic cost for implementing single-precision
floating-point units on FPGAs.

FPGAs #LUTs #FFs #DSP48Es #BRAMs
LX330T 207,360 207,360 196 324
SX475T 287,600 595,200 2,016 1,064

Table 1: Resource summary of the Virtex-5 LX330T and Virtex-6 SX475T FPGA.

Operations #LUTs #FFs #DSP48Es #BRAMs
+/− 425 557 0 0
× 122 173 2 0

Table 2: Costs for single-precision floating-point units.
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Streaming Architectures

Finite difference based convolution operators normally perform multiplications and addi-
tions on a number of adjacent points. While the points are neighbors to each other in a 3D
geometric perspective, they are often stored relatively far apart in memory. For example,
in the 7-point 2D convolution performed on a 2D array shown in Figure 1, data items (0, 3)
and (1, 3) are neighbors in the y direction. However, suppose the array uses a row-major
storage and has a row size of 512, the storage locations of (0, 3) and (1, 3) will be 512 items
(one line) away. For a 3D array of the size 512 × 512 × 512, the neighbors in z direction
will be 512 × 512 items away. In software implementations, this memory storage pattern
can incur a lot of cache misses when the domain gets larger, and decreases the efficiency of
the computation.

Figure 1: A streaming exam-
ple of 2D convolution. [NR]
bob3/. convolution-2D

0,3

1,3

2,3

3,0 3,63,53,43,33,23,1

4,3

5,3

6,3

x

y

In an FPGA implementation, we use a streaming architecture that computes one result
per cycle. As shown in Figure 1, suppose we are applying the stencil on the data item (3, 3),
the circuit requires 13 different values (solid, dark-color), two of which ((0, 3) and (6, 3)) are
three lines away from the current data item. As the data items are streamed in one by one,
in order to make the values of (0, 3) and (6, 3) available to the circuit, we put a memory
buffer that stores all the six lines of values from (0, 3) to (6, 3) (illustrated by the checker
board pattern on the grid). For a row size of 512, this incurs a storage cost of 512× 6 data
items.

Similarly, for a 7-point 3D convolution on a 512× 512× 512 array, the design requires a
buffer for 512×512×6 data items. Assume each data item is a single-precision floating-point
number, the buffer size amounts to 6 MB for the 512× 512× 512 example. The FPGA chip
we currently use provides 1.4 MB of potential buffer size, which is not enough to store all
the streamed-in values. We solve this problem by 3D blocking, i.e. dividing the original 3D
array into smaller-size 3D arrays, and performing convolution on them separately.

3D blocking reduces the buffer requirement for an FPGA convolution implementation
at a cost. Given a convolution stencil with ns non-zero lags in each direction, we must send
in a (nx+ns)× (ny+ns)× (nz+ns) block to produce a nx×ny×nz output block. As nx,
ny, nz becomes small, the blocking overhead can dominate. Meanwhile, the initialization
cost for setting up the memory address registers and start the streaming process is also
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increased as we need to stream multiple blocks.

EXPLORATION OF DESIGN OPTIONS

Different Stencils

Our target application uses a a 7-point ‘star’ stencil (Figure 2(a)) to perform the 8th order
finite difference. In our exploration, beside the ‘star’ stencil, we also consider a 3-by-3-by-3
‘cube’ stencil (Figure 2(b)), which performs a 6th order finite difference (Spotz and Carey
1996).

x
y

z

(a)

a

b

a c a

g b

c a

d e d

f h f

aca

b g b

ca a
d e d

xy

z

(b)

Figure 2: Different 3D stencils: ‘star’ vs. ‘cube’. [NR] bob3/. star,cube

In software implementations, the ‘cube’ and the ‘star’ stencils provide a similar perfor-
mance. For the FPGA implementations, the resource costs for the ‘star’ and the ‘cube’
stencils are different. The upper part of Table 3 shows the straightforward implementa-
tions of ‘star’ and ‘cube’ stencils for a 120x120x120 array. The ‘cube’ consumes 20% more
DSP48E arithmetic units than ‘star’, as it involves more multiplications. Meanwhile, the
memory cost (BRAM) of the ‘cube’ is one third of the ‘star’, as the data buffering require-
ment decreases from 6 slices to 2 slices.

For the FPGA designs, we can reduce the count of arithmetic operations by exploiting
the symmetry of the coefficients. For example, in the ‘cube’ stencil shown in Figure 2(b),
the stencil coefficients are the same for the points marked with the same letters, as both the
Laplace derivatives and the scaling ratio determined by the sampling rate of different axes
are the same for these points. Therefore, instead of computing a1× c+ a2× c+ a3× c, we
compute (a1 +a2 +a3)× c. Applying this technique, the computation for the ‘cube’ stencil
reduces from 27 multiplications and 26 additions to 8 multiplications and 26 additions, while
the ‘star’ stencil reduces from 19 multiplications and 18 additions to 10 multiplications and
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Normal Stencils ‘star’ ‘cube’
FPGA #slices 5618 7072

resource #BRAMs 87 30
costs #DSP48Es 50 60
Optimized Stencils ‘star’ ‘cube’

FPGA #slices 5207 6256
resource #BRAMs 87 30

cost #DSP48Es 32 18

Table 3: Resource costs of ‘star’ and ‘cube’ 3D stencils for 120x120x120 3D arrays.

18 additions. The lower part of Table 3 shows the resource costs for multiplication-reduced
‘cube’ and ‘star’. While the cost of BRAMs remains the same, the number of DSP48Es
reduces significantly for the ‘cube’. After the multiplication reduction, the ‘cube’ consumes
much less than the ‘star’ for both DSP48Es and BRAMs. The ‘star’ consumes less logic
slices as it involves fewer additions.

As the stencil operator only consumes 8 or 10 multiplications and 26 or 18 additions, the
FPGA has the capacity for multiple copies of the stencil operators. Therefore, we have two
different ways to improve the performance of the FPGA: (1) using multiple stencil operators
to work on multiple data items in parallel; (2) processing multiple time steps in one pass.
The following sections discusses these two options in more detail.

Multiple Stencil Operators

To make a full utilization of all the units on an FPGA, we can try to fit as many stencil
operators as possible into the chip. For the example shown in Figure 1, instead of processing
only (3,3), we can process consecutive data items (such as (3,2), (3,3), and (3,4)) in parallel.

However, increasing the number of stencil units does not always improve the overall
performance due to the constraint of the bandwidth between the FPGA and the onboard
memories, which is approximately 13 GB/s in our platform. Considering the controlling
overheads, the bandwidth for pure input and output data is around 8 GB/s. When the input
streams for the multiple stencil operators approach the saturation point of the memory
bandwidth, increasing the number of stencil operators may not improve the performance
any more.

Using measured experiment results, we built a software tool that models the costs and
performance of various FPGA designs. Figure 3 shows the estimated performance for pro-
cessing a 512 × 512 × 512 3D convolution using different number of computation cores on
an FPGA. The FPGA circuit is running at 125 MHz. The speedup is calculated against a
single-core software implementation running on Intel Xeon 2.0 GHz. Due to the constraint
of logic slices, the FPGA can fit six concurrent ‘cube’ stencils or eight concurrent ‘star’
stencils. For all the different number of stencil operators, the ‘cube’ provides a slightly
better performance than the ‘star’. Both the ‘cube’ and the ‘star’ arrive at the saturation
point of around 25x speedup with four stencil operators.
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Figure 3: Speedups for processing a
512 × 512 × 512 3D convolution us-
ing multiple stencil operators. [NR]
bob3/. multiple-cores
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Figure 4: Basic circuit struc-
ture for processing multiple time
steps (ai denotes the wave-field
data in the time step i). [NR]
bob3/. multi-steps

unit 2
time step 2

a2[n-1][i][j] = conv(a1[n][i][j], a1[n-1][i][j], a1[n-2][i][j], �)

unit 1
time step 1

a1[n][i][j] = conv(a0[n+1][i][j], a0[n][i][j], a0[n-1][i][j], �)

unit 3
time step 3

a3[n-2][i][j] = conv(a2[n-1][i][j], a2[n-2][i][j], a2[n-3][i][j], �)

input a0

output a3

Processing Multiple Time Steps

Instead of putting concurrent cores, another strategy is to process multiple time steps in
one pass. Figure 4 shows the basic structure of a circuit that processes three time steps in
one pass. The three units process three time steps separately with the output of each unit
as the input of the next unit. The example in the figure uses a 3-by-3-by-3 ‘cube’ stencil.
In general, the computation of a wave-field data in slice n requires the wave-field data in
slices (n + 1), n, and (n − 1) in the previous time step. Therefore, when the unit 1 starts
processing slice n, the unit 2 can start processing slice (n − 1). Meanwhile, unit 2 needs
intermediate buffers to store the results for slices (n− 1) and n from unit 1.

An advantage of processing multiple time steps over putting multiple stencil operators
is that the performance will not be constrained by the memory bandwidth, as the unit for
each time step is getting inputs from the previous time step, and does not consume the
memory bandwidth of the FPGA.

However, on the data side, as we are doing a 3D blocking of the array, processing multiple
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time steps requires extra data items to start with. Given a convolution stencil with ns non-
zero lags in each direction, to process n time steps in one pass for a nx×ny array, we need
to start with an array of the size (nx+ 2× n× ns)× (ny + 2× n× ns). Considering doing
10 time steps for a 100x100 size, the data overhead is 44% for the ‘cube’ and 156% for the
‘star’.

Meanwhile, as the unit at each time step needs to store the results of the previous
time step, this approach also increases the requirement for BRAM resources. Therefore, to
increase the number of time steps, we need to reduce the blocking size, and thus increasing
the cost of streaming overlapping data items and doing a larger number of streams.

Another advantage of this multiple-time-step architecture is that we can improve the
order of time accuracy with relatively small costs. For example, for the unit 3 in Figure
4, instead of only getting the previous wave-field data a2 from unit 2, we can get in the
wave-field data a2 and a1 from both units 2 and 1 to achieve 4th order in time accuracy.
The cost for improving the time order is the extra buffer to store the wave-field data from
unit 1 and the increased number of adders and multipliers.

Figure 5 shows the estimated performance for FPGA convolution designs that process
multiple time steps in one pass. The ‘star’, the 2nd and 4th order ‘cube’ are compared
here. For this approach, the ‘cube’ stencil shows a much better performance than the ‘star’
stencil due to its smaller requirement for BRAM resources (‘star’ needs to buffer six slices
for the convolution operation, while ‘cube’ only needs to buffer two). Due to the constraint
of logic slices, the FPGA can fit eight time steps for the ‘star’, six and five steps for the 2nd
and 4th order ‘cube’. The ‘star’ gets its peak performance of 11x speedup with four time
steps. After that, the performance becomes worse with more time steps. The 2nd order
‘cube’ stencil increases all the way to 29x speedup with 6 time steps. The 4th order ‘cube’
achieves 25x speedup with 5 time steps.

Different Precisions

As mentioned above, one of FPGA’s advantages is the support for customizable number
representations. Our previous work (Fu et al. 2008) has shown that, in certain cases of
seismic computations, reduced precision provides equivalent results within acceptable tol-
erances. For FPGA designs, a reduced precision can significantly reduce the area cost and
I/O bandwidth of the design, and multiply the performance with more computation units
on the FPGA.

Figure 6 shows the performance we can achieve using a reduced floating-point precision.
With a 16-bit floating-point precision, the multiple-stencil approach provides 49x speedup
and the multiple-time-step approach provides 46x speedup.

ACCELERATION RESULTS

We have implemented the 2nd order ‘cube’ with 6 time steps and the 4th order ‘cube’ with
5 time steps onto the Maxeler acceleration card. The 2nd order ‘cube’ processes 6 time
steps in 1.383 seconds, and the 4th order ‘cube’ processes 5 time steps in 1.346 seconds.
Compared to the 6.36 seconds to process one time step in 2nd order, the 2nd and 4th
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Figure 5: Speedups for process-
ing different number of time steps
processed in one pass. [NR]
bob3/. multiple-timesteps
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Figure 6: Speedups for differ-
ent floating-point precisions. [NR]
bob3/. float-prec
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order ‘cube’ designs provide 27.5x and 23.5x speedups, slightly lower than our estimated
performance.

The speedup discussed so far is achieved by using one FPGA of the acceleration card.
The acceleration card contains two FPGAs of the same settings. There is also a inter-FPGA
link which can update the overlapping boundaries between the FPGAs in parallel with the
computation performed on the FPGAs. Therefore, by dividing the array into two parts and
computing in two FPGAs concurrently, we can get another 2x and achieve up to 55x and
47x speedup in total.

Note that the FPGAs we are using are Xilinx Virtex-5 LX330T chips released several
years ago. Projecting our designs into the recently announced Xilinx Virtex-6 SX475T
FPGAs (shown in Table 1), we can fit up to 13 time steps in one FPGA and achieve up
to 55x speedup. With two FPGAs working concurrently on an acceleration card, we can
achieve up to 110x speedup compared to a single-core CPU version.
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CONCLUSIONS

Our exploration on FPGA convolution designs shows that, the ‘cube’ stencil fits the FPGA
streaming architecture much better than the ‘star’ stencil. We especially investigate the
architecture that processes multiple time steps in one pass. This approach removes the
constraints of the memory bandwidth, and improves the performance at the cost of extra
data buffering and streaming overhead. Experiment results show that the FPGA streaming
architecture provides great potential for accelerating 3D convolution, and can achieve up
to two orders of magnitude speedup.
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Short note: SEP data catalog

Abdullah Al Theyab, Gboyega Ayeni, and Yunyue (Elita) Li

ABSTRACT

Motivated by the long-recognized need for bookkeeping of the datasets in the SEP
data library, we have implemented a data catalog database supported by a web-based
front end. The new database facilitates searching, referencing, and, most importantly,
maintenance of our data library. The database design enables direct connection between
each dataset and any relevant internal and external publications. We summarize the
database design, data catalog structure, project progress, and future directions.

INTRODUCTION

Being a data-oriented academic research consortium, Stanford Exploration Project (SEP)
puts significant effort into keeping its large data library organized. In the past, meta-data
organization was based on text and latex log files written by previous SEP students (Clapp
et al., 1999). Many years after they were introduced, most of the log files broke down as a
result of system and software changes or file deletion and reorganization. This breakdown
of the log system makes accuracy and consistency difficult for data maintainers and users.
Because of the large number of datasets and their non-systematic organization, searching
for datasets related to particular problems is both cumbersome and time consuming.

The premise for the current effort is the recognition that, by linking datasets to: (1)
keywords of geophysical problems and data types, (2) data providers, and (3) relevant docu-
ments and correspondences, data search and maintenance can be more efficient. Because soft
linking using log files is non-trivial (if not impossible), a different catalog design paradigm
is required.

Databases are better suited for meta-data organization. They are easy to use, maintain,
and query for needed information. Because databases enable complex queries, they can save
a lot of research and data maintenance time. They can also be used as a monitoring tool
for meta-data consistency. Our database-based catalog system will enable:

• Easy meta-data access and maintenance.

• Direct links between datasets, providers and provider contacts.

• Automated yearly notifications of expired data licenses.

• References to online and offline copies of data files.

• Automated daily checks and reports on status of data files.

• Automated bi-yearly reread (rotate) for backup disks (tapes).

293
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• Interrelation of different datasets using geophysical- and data-type keywords.

• Direct links between each dataset and internal or external publications.

In this report, we summarize the new SEP data catalog design and show snapshots of the
working website for future reference.

THE ESSENTIAL SOFTWARE

The new database is hosted by the MySQL database management system. The front-end
website, run by an Apache server and available only to SEP researchers, is interfaced with
the database by using Python modules. Figure 1 shows the basic software elements used
in building the new data catalog. Although the database is accessible in several ways, the
website is the most user-friendly.

Figure 1: Software elements for the SEP data catalog.[NR] altheyab2/. proj7-crop

THE CATALOG SCHEMA

The database design (Figure 2) is composed of many entities revolving around the dataset
entity. The dataset entity is a table of attributes related to each dataset in our data library.
Examples of such attributes include:

• name : a distinctive name for the dataset.

• proprietary info : information about who can use the dataset, required permissions
before publishing results from this dataset, and provider contact(s) for such permis-
sions.

• lic exp : dataset license expiration year (where applicable).

• sep handler : a list of previous and current SEP researchers who obtained and have
maintained the dataset.

The associated data entity represents the subsets of a dataset. Examples include the
velocity, density, and raw data files associated with a particular dataset. Associated data
entities have both online and/or offline copies.
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The paper entity relates each dataset to publications in which such dataset has been
used.

The document entity holds any file that is of a value to future users and maintainers of
a dataset.

Each entity in the database has a FIXME flag and log attributes (not shown in the ER-
diagram). These two attributes are used to report problems and fixes to data by maintainers
and users.

Figure 2: Entity-relation diagram of the SEP data catalog database.[NR]
altheyab2/. erdiag-crop

THE PROJECT PROGRESS

The database and the front-end website are active. Entries for legacy and new datasets
are being created and the exploratory analysis of these will be uploaded into the database.
Figure 3 shows one entry of the database.

FUTURE DIRECTION

Information entry— for the datasets and associated entities —into the database will soon
be completed. To ensure that the data catalog up-to-date and consistent with online and
offline data copies, monitoring and notification tools will be implemented. Because this
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Figure 3: A snapshot of the SEP data catalog website.[NR] altheyab2/. snapshot
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database is flexible and easy to maintain, we hope that it will be continually expanded by
current and future generations of SEP students.
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Visualization and data reordering using EcoRAM

Robert G. Clapp

ABSTRACT

Memory size and input/output (IO) performance have not kept pace with the ever
increasing size of seismic data volumes. Processing steps that involve random, or
pseudo-random, access to data (such as visualizing, sorting, and transposing) further
degrade performance. I use Spansion’s EcoRAM to replace out-of-core visualization and
data transpose schemes. I show between one and two orders of magnitude improvement
in performance over conventional out-of-core solutions.

INTRODUCTION

A growing number of seismic applications are becoming IO bound. In some cases, an appli-
cation can be IO bound because the amount of computation per input sample is low, such
as with Normal Move-Out. Another category is applications where the input, intermediate,
and output space which are to large to simultaneously reside in physical Random Access
Memory (RAM), such as conventional 3-D Reverse Time Migration (RTM) (Baysal et al.,
1983).

Several different methods exist to improve IO performance. Raid based disk arrays
stripe data over many different disk drives. Network storage uses a collection of nodes as
temporary storage. Large shared-memory and distributed-memory machines can distribute
the required memory storage over 100s to 1000s of nodes, therefore allowing the entire
problem to sit in RAM. Recently, solid state disks have offered promise. These disks,
when used in a raid system, can offer 2-5x the IO performance of conventional disks. A new
weapon in the IO bottleneck battle is EcoRAM from Spansion. EcoRAM sits in conventional
RAM slots but is composed of a series of solid state disks. An accelerator replaces one of
the CPU motherboard slots to facilitate low latency, read speeds of 30x conventional disk
and 2− 10x write speeds.

I show that applications that are, or can be made, read dominant can benefit dra-
matically from EcoRAM with minimal programming changes. I begin by comparing IO
characteristic of EcoRAM versus conventional RAM, disk, network, and solid state disk.
I then describe how, and the results of, writing a visualization and transpose program to
maximize EcoRAM performance.

BACKGROUND

EcoRAM is a new product from Spansion. One of its goals is to fill the very large perfor-
mance gap between DRAM and conventional (and solid state) disks. Its main competitor
in this market place is Fusion IO. Its four most relevant claimed advantages are: 1

8 power
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use of conventional DRAM; four times the memory per DRAM slot; 2 − 10x write speed
advantage over conventional disk and solid state drives; and most importantly, read speeds
on the same order of magnitude as conventional DRAM (1.3 GB/s vs 4-6GB/s). The first
claim, though important, would not make it a worthwhile investment at the University
level. The last three claims were of more interest to us. Two commonly run applications at
SEP, visualization and data transposition, are extremely IO bound for large data sizes.

Visualization

The first example application visualization application (Clapp et al., 2008; Clapp and Na-
gales, 2008). Four and five dimensional spaces are common in processing. Often we are
comparing multiple volumes of these sizes. For even ‘small’ sized problems, we quickly
exceed conventional RAM. Several approaches can be taken to get around this bottleneck.

Out-of-core The data can be read ‘on the fly’. In this approach, the desired view is
created only when the user requests it. Predictive algorithms can be used to guess
the next desired view. The downside of this approach is the significant difference in
IO performance between RAM and disk, made worse when the user request a view
that the smart algorithm didn’t expect.

Compression The data can be compressed using techniques ranging from conversion of
four to one byte to more sophisticated compression schemes such as curvelets. The
downsides of these approaches include the difficulty associated with building an appro-
priate clip function, the need for higher order accuracy (such as seeing lower amplitude
events) when interacting with the data, artifacts associated with compression, and for
high compression schemes, some viewing options are difficult to achieve.

Cluster The data can be stored in RAM on a series of nodes. Requested views are trans-
lated into requests to different nodes and reconstructed by the host machine. The
disadvantages of this scheme include the significant cost of these extra machines and
latency af networking bottlenecks.

All of these approaches also suffer from a significant additional coding overhead.

Transpose

Transposing a dataset is a common seismic processing step. A given processing step might
need data in offset gathers while the data exists in common offset sections. For source-
receiver based wave equation migration, the natural axis order is: midpoint, offset, and
depth while further processing steps need the data in depth, offset, and midpoint. For
large data volumes (significantly beyond the CPUs memory) what looks like a rather trivial
operation can take hours to days using a single CPU. The transpose time is dominated
for large problems by disk IO. A solution to this problem is to stream a data volume to a
cluster where the transpose can be done completely in-core. This is an effective technique
but again adds significant programming overhead.
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RESULTS

I used EcoRAM for the both visualization and transpose application. The server had 32
GB RAM, 512 GB of EcoRAM , and two AMD quad-core 2.6GHz processors.

Visualization

The visualization test does not lend itself well to paper form. The only change to the basic
visualization application was to introduce mmap buffer and IO module. The total time to add
this feature was less than 3 hours. I observed that I could move to random locations within
the volume with the delay more a function of the Gigabit netwrok connection between the
host EcoRAM server and the X11 terminal.

Transpose

All transposes can be mapped into a single five-dimensional template (n1, n2, n3, n4, n5).
The first axis is the the product of the data element size and the length of the fastest
axes that are not be transposed over. The second axis is the fastest axis that needs to
be transposed. The third axis is the product of the axes lengths between transposed axes.
The fourth axis is the slowest axis that we want to transpose over. The fifth axis is the
product of all of the axes slower than the last axis we wish to transpose over. We can
extend the definition of the second and fourth axes to compose sets of adjacent axes to
enable more sophisticated transposes. For example, in the case of wave equation migration,
we begin with a five dimensional dataset with element size esize that is ordered (midpoint
x, midpoint y, hx, hy, depth) or of size (ncmpx, ncmpy, nhx, nhy, nz) and we wish to end
up with (nz, nhx, nhy, ncmpx, ncmpy). We can simulate merging the first two axes of the
input and map to our template (esize, ncmpx ∗ ncmpy, nhx ∗ nhy, nz, 1).

Using this template, the transpose algorithm can be written in a push (loop over input)
or pull (loop over output) manner. For EcoRAM , and in many other cases (such as wanting
to pipe the output), the pull method is more efficient. The basic transpose algorithm using
the five dimensional template then takes the following form. This simple algorithm assumes

Algorithm 4 Simple transpose
iout=0;
for i5=0; i5 ¡ n5;i5++ do

for i2=0; i2 ¡ n2;i2++ do
for i3=0; i3 ¡ n3; i3++ do

for i4=0; i4 ¡ n4; i4++,iout+=n1 do
iin = (i2 + i3 + i4 + i5) ∗ n1 + (i3 + i4 + i5) ∗ n2 + (i4 + i5) ∗ n3 + i5 ∗ n4
memcpy(&out[iout],&in[iin],n1)

end for
end for

end for
end for

that you can hold both the input and output matrices in RAM. A problem with this simple
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approach is the very poor use of input cache lines for small n1.

If we can hold n1∗n2∗n3∗n4 is memory we can get acceptable performance with either
algorithm 4 or slight modification that processes each i5 block in turn. We could still use the
basic template for large problems by mmapping the input and output file but the cache miss
problem would be further exacerbated. A better alternative is to introduce two temporary
buffers, tin and tout. These buffers are of size n1 ∗n4 ∗n3 ∗nmx, where nmx is chosen so
that the combined size of tin and tout does not exceed DRAM∗. The buffered algorithm
then takes the following form. The larger nmx, the better the performance. Figure 1 shows

Algorithm 5 Simple transpose
for i5=0; i5 ¡ n5;i5++ do
i2 = 0
while i2¡ n2 do
nbuf = min(n2− i2, nmx)
read tin
iout=0;
for i2=0; i2 ¡ nbuf;i2++ do

for i3=0; i3 ¡ n3; i3++ do
for i4=0; i4 ¡ n4; i4++,iout+=n1 do
iin = (i2 + i3 + i4) ∗ n1 + (i3 + i4) ∗ n2 + (i4) ∗ n3
memcpy(&out[iout],&in[iin],n1)

end for
end for

end for
i2 = i2 + nbuf

end while
end for

that even a RAM-based system benefits from the buffered approach. Note how we can gain
a performance advantage of greater than six with larger n1 ∗ nbuf sizes.

Figure 1: The number of ele-
ments per second vs log(nbuf ∗ n1)
that can be read using a com-
pletely in-core solution. The prob-
lem size, using the generic template,
is (1, 500, 72, 131072, 1). Note how
we can achieve a factor of six im-
provement by better cache line use.
[NR] bob2/. ram

Figure 2 compares the performance of EcoRAM versus RAM. Note the similarity of the
two curves. The ‘*’ in the figure shows the comparable disk approach. The disk approach
is 1

10th speed of the slowest EcoRAM result and 1
200th the optimal buffer choice.

∗This approach only works if n1 ∗ n4 ∗ n3 ∗ 2 does not exceed DRAM size.
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Figure 2: The number of ele-
ments per second vs. log(nbuf ∗
n1). Note the ‘*’ indicating the
disk IO performance. The prob-
lem size, using the generic tem-
plate, is (1, 500, 72, 131072, 1). [NR]
bob2/. disk

As a final test, we transposed a float dataset of size (672, 216, 72, 1, 2000) switching axes
1,2 with axis 5. Using the buffered approach of algorithm 5, a conventional disk took 1293
minutes (using an intermediate buffer size of 1 GB) while the same dataset took 22 minutes
using EcoRAM , a 60x performance improvement.

OTHER APPLICATIONS

The characteristics of EcoRAM seem best suited for large databases where reads dominate.
In addition to the visualization and transpose algorithm described above, data sorting is
an obvious area that could benefit from EcoRAM . Another interesting application is the
ability to visualize pre-stack volumes without any preprocessing. As processing continues
to outstrip IO, more applications will begin to benefit significantly from EcoRAM . Interfer-
ometry, Hessian-based inversions, and even 3-D surface related multiple attenuation, are, or
soon will be, read-dominant. One can envision a future where raw data sits on an EcoRAM
-like system and all processing steps are carried out on the fly, eliminating the need for the
multitude of intermediate data volumes that are now common.

CONCLUSIONS

Read-dominant applications such as visualization and data reordering are IO bound at large
sizes. EcoRAM , with its low latency and high bandwidth (particularly compared to disk at
small read sizes) proves to be one to two orders faster than conventional disk approaches.
These speed improvements can be achieved with minimal programming changes.
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