Accelerating 3D convolution using streaming
architectures on FPGAs

Haohuan Fu, Robert G. Clapp, Oskar Mencer, and Oliver Pell

ABSTRACT

We investigate FPGA architectures for accelerating applications whose dominant
cost is 3D convolution, such as modeling and Reverse Time Migration (RTM). We
explore different design options, such as using different stencils, fitting multiple
stencil operators into the FPGA, processing multiple time steps in one pass,
and customizing the computation precisions. The exploration reveals constraints
and tradeoffs between different design parameters and metrics. The experiment
results show that the FPGA streaming architecture provides great potential for
accelerating 3D convolution, and can achieve up to two orders of magnitude
speedup.

INTRODUCTION

The oil industry has always been one of the leading consumers of high performance
computing systems. With the increasing of the CPU clock frequencies coming to an
end, we can no longer double our computation speed by purchasing updated comput-
ers every eighteen months and need to adapt to new computation architectures, such
as multi-core processors, General Purpose Graphic Processing Units (GPGPUs), and
Field Programmable Gate Arrays (FPGAs).

Recent research work has shown that FPGAs can provide a customized solution
for a specific application and achieve more than two orders of magnitude speedup
compared to a single-core software implementation. Examples include cryptology
applications (Cheung et al. 2005), finance and physics simulations (Zhang et al. 2005;
Gokhale et al. 2004) as well as seismic computations (Nemeth et al. 2008).

The major difference between FPGA and other computation platform is the re-
configurability of the processing and storage units in the device, which enables an
FPGA to be configured into arbitrary processing units and circuit structures. The
reconfigurability of the FPGA leads to two major advantages over other computation
platforms:

(1) A streaming computation architecture. While CPUs and GPGPUs take in a
sequence of instructions that operate on corresponding data in memory, in FPGAs the
instructions are mapped into circuit units along the path from input to output. The

SEP-158

Fu et al. 2 FPGAs

FPGA then performs the computation by streaming the data items through the cir-
cuit units. The streaming architecture makes efficient utilization of the computation
device, as every part of the circuit is performing an operation on one corresponding
data item in the data stream.

(2) Customizable number representations. While CPUs and GPGPUs can only
handle 8-, 16-, 32- or 64-bit variables, FPGAs support arbitrary bit width for each
variable in the design. By adjusting the bit widths according to the precision require-
ment, we can often achieve significant reduction in the silicon area cost of arithmetic
units and the bandwidth requirement between different hardware modules, thus im-
proving the overall throughput of the entire system.

To investigate FPGA’s capability on solving the convolution problem, we explore
design options such as: (1) using different stencils; (2) fitting multiple stencil opera-
tors into the FPGA; (3) processing multiple time steps in one pass; (4) customizing
the computation precisions. The exploration demonstrates constraints and trade-
offs between different design parameters and metrics. Experiment results show that
the streaming computation architecture of FPGAs can provide up to two orders of
magnitude speedup compared to a single-core software implementation.

STREAMING ARCHITECTURE FOR CONVOLUTION

Target Application

Our target application is a 512 by 512 by 512 finite difference problem, with 6th to
8th order in space and 2nd order in time accuracy. Each time step of the computation
takes the current wave-field state, the wave-field state from the previous time step and
the velocity model as inputs, and produces the next wave-field state as the output.

FPGA Platform

Current Xilinx FPGAs contain three major categories of resources: (1) reconfigurable
logic slices with 6-input lookup tables (LUTSs) and flip flops (FFs); (2) DSP48E
arithmetic units that can perform 18 x 25 multiplications; (3) 36-KBit Block RAM
(BRAM)s used as local storage or FIFOs.

In our work, we use the Maxeler MAX2 acceleration card, which contains two
Virtex-5 LX330T FPGA chips, 12 GB onboard memory, and a PCI-Express x16
interface to the host PC. Table 1 and 2 show the resource summary of our current
FPGAs and the recently released Virtex-6 SX475T FPGA, and the basic cost for
implementing single-precision floating-point units on FPGAs.

SEP-158

Fu et al. 3 FPGAs

[FPGAs || #LUTs | #FFs | #DSP48Es | #BRAMs |

LX330T || 207,360 | 207,360 196 324
SX475T || 287,600 | 595,200 2,016 1,064

Table 1: Resource summary of the Virtex-5 LX330T and Virtex-6 SX475T FPGA.

‘ Operations H #LUTs ‘ #FFs ‘ #DSP48Es ‘ #BRAMs ‘

/- 425 | 55T 0 0
x 122 | 173 2 0

Table 2: Costs for single-precision floating-point units.

Streaming Architectures

Finite difference based convolution operators normally perform multiplications and
additions on a number of adjacent points. While the points are neighbors to each
other in a 3D geometric perspective, they are often stored relatively far apart in
memory. For example, in the 7-point 2D convolution performed on a 2D array shown
in Figure 1, data items (0,3) and (1,3) are neighbors in the y direction. However,
suppose the array uses a row-major storage and has a row size of 512, the storage
locations of (0,3) and (1,3) will be 512 items (one line) away. For a 3D array of
the size 512 x 512 x 512, the neighbors in z direction will be 512 x 512 items away.
In software implementations, this memory storage pattern can incur a lot of cache
misses when the domain gets larger, and decreases the efficiency of the computation.

X

y

Figure 1: A streaming example of
2D convolution. [NR]

In an FPGA implementation, we use a streaming architecture that computes one
result per cycle. As shown in Figure 1, suppose we are applying the stencil on the
data item (3,3), the circuit requires 13 different values (solid, dark-color), two of

SEP-158

Fu et al. 4 FPGAs

which ((0,3) and (6, 3)) are three lines away from the current data item. As the data
items are streamed in one by one, in order to make the values of (0,3) and (6,3)
available to the circuit, we put a memory buffer that stores all the six lines of values
from (0, 3) to (6,3) (illustrated by the checker board pattern on the grid). For a row
size of 512, this incurs a storage cost of 512 x 6 data items.

Similarly, for a 7-point 3D convolution on a 512 x 512 x 512 array, the design
requires a buffer for 512 x 512 x 6 data items. Assume each data item is a single-
precision floating-point number, the buffer size amounts to 6 MB for the 512x512x512
example. The FPGA chip we currently use provides 1.4 MB of potential buffer size,
which is not enough to store all the streamed-in values. We solve this problem by
3D blocking, i.e. dividing the original 3D array into smaller-size 3D arrays, and
performing convolution on them separately.

3D blocking reduces the buffer requirement for an FPGA convolution implemen-
tation at a cost. Given a convolution stencil with ns non-zero lags in each direction,
we must send in a (nz +ns) X (ny+ns) x (nz+ns) block to produce a nz x ny X nz
output block. As nz, ny, nz becomes small, the blocking overhead can dominate.
Meanwhile, the initialization cost for setting up the memory address registers and
start the streaming process is also increased as we need to stream multiple blocks.

EXPLORATION OF DESIGN OPTIONS
Different Stencils

Our target application uses a a 7-point ‘star’ stencil (Figure 2(a)) to perform the 8th
order finite difference. In our exploration, beside the ‘star’ stencil, we also consider a
3-by-3-by-3 ‘cube’ stencil (Figure 2(b)), which performs a 6th order finite difference
(Spotz and Carey 1996).

In software implementations, the ‘cube’ and the ‘star’ stencils provide a similar
performance. For the FPGA implementations, the resource costs for the ‘star’ and
the ‘cube’ stencils are different. The upper part of Table 3 shows the straightforward
implementations of ‘star’ and ‘cube’ stencils for a 120x120x120 array. The ‘cube’
consumes 20% more DSP48E arithmetic units than ‘star’, as it involves more mul-
tiplications. Meanwhile, the memory cost (BRAM) of the ‘cube’ is one third of the
‘star’, as the data buffering requirement decreases from 6 slices to 2 slices.

For the FPGA designs, we can reduce the count of arithmetic operations by ex-
ploiting the symmetry of the coefficients. For example, in the ‘cube’ stencil shown
in Figure 2(b), the stencil coefficients are the same for the points marked with the
same letters, as both the Laplace derivatives and the scaling ratio determined by the
sampling rate of different axes are the same for these points. Therefore, instead of
computing al x ¢+ a2 X ¢ + a3 x ¢, we compute (al + a2 + a3) x c¢. Applying this
technique, the computation for the ‘cube’ stencil reduces from 27 multiplications and

SEP-158

Fu et al. 5 FPGAs

O
) O ’

);X C) y X a/m/@ /D/\@

y O'JW/@//D/ ¢

a \C \a
Oo—0O—C0O—C—C0O—C0O——0

O 00

ST i

D) @/@ & hj@y/\f
’ @ o

5 @)/@ 5 e 1 (d

(a) (b)

Figure 2: Different 3D stencils: ‘star’ vs. ‘cube’. [NR]

’ Normal Stencils H ‘star’ \ ‘cube’

FPGA #slices 5618 | 7072
resource | #BRAMs 87 30
costs #DSP48Es 50 60

’ Optimized Stencils H ‘star’ ‘ ‘cube’ ‘
FPGA #slices 5207 | 6256

resource | #BRAMs 87 30
cost #DSP48Es 32 18

Table 3: Resource costs of ‘star’ and ‘cube’ 3D stencils for 120x120x120 3D arrays.

SEP-158

Fu et al. 6 FPGAs

26 additions to 8 multiplications and 26 additions, while the ‘star’ stencil reduces
from 19 multiplications and 18 additions to 10 multiplications and 18 additions. The
lower part of Table 3 shows the resource costs for multiplication-reduced ‘cube’ and
‘star’. While the cost of BRAMSs remains the same, the number of DSP48Es reduces
significantly for the ‘cube’. After the multiplication reduction, the ‘cube’ consumes
much less than the ‘star’ for both DSP48Es and BRAMs. The ‘star’ consumes less
logic slices as it involves fewer additions.

As the stencil operator only consumes 8 or 10 multiplications and 26 or 18 addi-
tions, the FPGA has the capacity for multiple copies of the stencil operators. There-
fore, we have two different ways to improve the performance of the FPGA: (1) using
multiple stencil operators to work on multiple data items in parallel; (2) processing
multiple time steps in one pass. The following sections discusses these two options in
more detail.

Multiple Stencil Operators

To make a full utilization of all the units on an FPGA, we can try to fit as many
stencil operators as possible into the chip. For the example shown in Figure 1, instead
of processing only (3,3), we can process consecutive data items (such as (3,2), (3,3),
and (3,4)) in parallel.

However, increasing the number of stencil units does not always improve the
overall performance due to the constraint of the bandwidth between the FPGA and
the onboard memories, which is approximately 13 GB/s in our platform. Considering
the controlling overheads, the bandwidth for pure input and output data is around
8 GB/s. When the input streams for the multiple stencil operators approach the
saturation point of the memory bandwidth, increasing the number of stencil operators
may not improve the performance any more.

Using measured experiment results, we built a software tool that models the costs
and performance of various FPGA designs. Figure 3 shows the estimated performance
for processing a 512 x 512 x 512 3D convolution using different number of computation
cores on an FPGA. The FPGA circuit is running at 125 MHz. The speedup is
calculated against a single-core software implementation running on Intel Xeon 2.0
GHz. Due to the constraint of logic slices, the FPGA can fit six concurrent ‘cube’
stencils or eight concurrent ‘star’ stencils. For all the different number of stencil
operators, the ‘cube’ provides a slightly better performance than the ‘star’. Both the
‘cube’ and the ‘star’ arrive at the saturation point of around 25x speedup with four
stencil operators.

SEP-158

Fu et al. 7 FPGAs

‘ —e— cube—m— star‘

30
25 /— & &
Figure 3: Speedups for process- _ch 20 /
ing a 512 x 512 x 512 3D convo- § 15
lution using multiple stencil oper- @ 4, /
ators. [NR] ; /
0
0 2 4 6 8
Number of Stencil Operators
input ao
unit 1 h 4
a1[n][i][j] = conv(ao[n+1][il(il, ac[n][iI[j], ao[n-11{0], -+-)
1]
| I
Figure 4: Basic circuit structure
for processing multiple time steps unit 2 -
(ai denotes the Wave_ﬁeld data ln a[n-1][i](i] = conv(as[n][il[j], a+[n-1][i][], ai[n-2][[i], ---)
the time step 7). [NR] I
unit 3 —
ag[n-2][i][j] = conv(az[n-1](il[i], az[n-2][i](il, az[n-3][lL], --+)

output ag

Processing Multiple Time Steps

Instead of putting concurrent cores, another strategy is to process multiple time steps
in one pass. Figure 4 shows the basic structure of a circuit that processes three time
steps in one pass. The three units process three time steps separately with the output
of each unit as the input of the next unit. The example in the figure uses a 3-by-3-by-3
‘cube’ stencil. In general, the computation of a wave-field data in slice n requires the
wave-field data in slices (n + 1), n, and (n — 1) in the previous time step. Therefore,
when the unit 1 starts processing slice n, the unit 2 can start processing slice (n — 1).
Meanwhile, unit 2 needs intermediate buffers to store the results for slices (n —1) and
n from unit 1.

An advantage of processing multiple time steps over putting multiple stencil op-
erators is that the performance will not be constrained by the memory bandwidth,
as the unit for each time step is getting inputs from the previous time step, and does

SEP-158

10

Fu et al. 8 FPGAs

not consume the memory bandwidth of the FPGA.

However, on the data side, as we are doing a 3D blocking of the array, processing
multiple time steps requires extra data items to start with. Given a convolution stencil
with ns non-zero lags in each direction, to process n time steps in one pass for a nx xny
array, we need to start with an array of the size (nz+2 xn xns) X (ny +2 X n x ns).
Considering doing 10 time steps for a 100x100 size, the data overhead is 44% for the
‘cube’ and 156% for the ‘star’.

Meanwhile, as the unit at each time step needs to store the results of the pre-
vious time step, this approach also increases the requirement for BRAM resources.
Therefore, to increase the number of time steps, we need to reduce the blocking size,
and thus increasing the cost of streaming overlapping data items and doing a larger
number of streams.

Another advantage of this multiple-time-step architecture is that we can improve
the order of time accuracy with relatively small costs. For example, for the unit 3 in
Figure 4, instead of only getting the previous wave-field data a, from unit 2, we can
get in the wave-field data as and a; from both units 2 and 1 to achieve 4th order in
time accuracy. The cost for improving the time order is the extra buffer to store the
wave-field data from unit 1 and the increased number of adders and multipliers.

Figure 5 shows the estimated performance for FPGA convolution designs that
process multiple time steps in one pass. The ‘star’, the 2nd and 4th order ‘cube’ are
compared here. For this approach, the ‘cube’ stencil shows a much better performance
than the ‘star’ stencil due to its smaller requirement for BRAM resources (‘star’ needs
to buffer six slices for the convolution operation, while ‘cube’ only needs to buffer
two). Due to the constraint of logic slices, the FPGA can fit eight time steps for
the ‘star’, six and five steps for the 2nd and 4th order ‘cube’. The ‘star’ gets its
peak performance of 11x speedup with four time steps. After that, the performance
becomes worse with more time steps. The 2nd order ‘cube’ stencil increases all the
way to 29x speedup with 6 time steps. The 4th order ‘cube’ achieves 25x speedup
with 5 time steps.

Different Precisions

As mentioned above, one of FPGA’s advantages is the support for customizable num-
ber representations. Our previous work (Fu et al. 2008) has shown that, in certain
cases of seismic computations, reduced precision provides equivalent results within
acceptable tolerances. For FPGA designs, a reduced precision can significantly re-
duce the area cost and I/O bandwidth of the design, and multiply the performance
with more computation units on the FPGA.

Figure 6 shows the performance we can achieve using a reduced floating-point pre-
cision. With a 16-bit floating-point precision, the multiple-stencil approach provides
49x speedup and the multiple-time-step approach provides 46x speedup.

SEP-158

Fu et al. 9 FPGAs

—&— cube—m— star—O— cube (4th)

35

30
25 /
Figure 5: Speedups for processing 20

Speedup

different number of time steps pro- 15 /@/

cessed in one pass. [NR] 10 %&_\-_\-\-
5

Number of Time Steps

ACCELERATION RESULTS

We have implemented the 2nd order ‘cube’ with 6 time steps and the 4th order ‘cube’
with 5 time steps onto the Maxeler acceleration card. The 2nd order ‘cube’ processes
6 time steps in 1.383 seconds, and the 4th order ‘cube’ processes 5 time steps in 1.346
seconds. Compared to the 6.36 seconds to process one time step in 2nd order, the 2nd
and 4th order ‘cube’ designs provide 27.5x and 23.5x speedups, slightly lower than
our estimated performance.

The speedup discussed so far is achieved by using one FPGA of the acceleration
card. The acceleration card contains two FPGAs of the same settings. There is also a
inter-FPGA link which can update the overlapping boundaries between the FPGAs in
parallel with the computation performed on the FPGAs. Therefore, by dividing the
array into two parts and computing in two FPGAs concurrently, we can get another
2x and achieve up to 55x and 47x speedup in total.

Note that the FPGAs we are using are Xilinx Virtex-5 LX330T chips released
several years ago. Projecting our designs into the recently announced Xilinx Virtex-6
SX475T FPGAs (shown in Table 1), we can fit up to 13 time steps in one FPGA and
achieve up to 55x speedup. With two FPGAs working concurrently on an acceleration
card, we can achieve up to 110x speedup compared to a single-core CPU version.

CONCLUSIONS

Our exploration on FPGA convolution designs shows that, the ‘cube’ stencil fits the
FPGA streaming architecture much better than the ‘star’ stencil. We especially inves-
tigate the architecture that processes multiple time steps in one pass. This approach
removes the constraints of the memory bandwidth, and improves the performance at
the cost of extra data buffering and streaming overhead. Experiment results show

SEP-158

10

Fu et al. 10 FPGAs

‘—0— multiple cores —m—multiple time steps ‘

60

50
30w

a
Figure 6: Speedups for different % —
floating-point precisions. [NR]) 20]
10
0
32 28 24 20 16

Floating-point Bit Width

that the FPGA streaming architecture provides great potential for accelerating 3D
convolution, and can achieve up to two orders of magnitude speedup.

ACKNOWLEDGMENTS

We would like to thank Maxeler Technologies for providing the hardware device and
the Center for Computational Earth and Environmental Science in Stanford Univer-
sity for funding this research.

REFERENCES

Cheung, R., N. Telle, W. Luk, and P. Cheung, 2005, Customisable elliptic curve
cryptosystems: IEEE Transactions on VLSI Systems, 13, 1048-1059.

Fu, H., W. Osborne, R. Clapp, and O. Pell, 2008, Accelerating seismic computations
on fpgas: From the perspective of number representations: Presented at the .

Gokhale, M., J. Frigo, C. Ahrens, J. Tripp, and R. Minnich, 2004, Monte Carlo
radiative heat transfer simulation on a reconfigurable computer: Proc. FPL, LNCS
3203, 95-104.

Nemeth, T., J. Stefani, W. Liu, R. Dimond, O. Pell, and R. Ergas, 2008, An imple-
mentation of the acoustic wave equation on FPGAs: Presented at the .

Spotz, W. and G. Carey, 1996, A high-order compact formulation for the 3d poisson
equation: Numerical Methods for Partial Differential Equations.

Zhang, G., P. Leong, C. Ho, K. Tsoi, C. Cheung, D. Lee, R. Cheung, and W. Luk,
2005, Reconfigurable Acceleration for Monte Carlo based Financial Simulation:
Proc. FPT, 215-222.

SEP-158

