
Visualization and data reordering using EcoRAM

Robert G. Clapp

ABSTRACT

Memory size and input/output (IO) performance have not kept pace with the ever
increasing size of seismic data volumes. Processing steps that involve random,
or pseudo-random, access to data (such as visualizing, sorting, and transposing)
further degrade performance. I use Spansion’s EcoRAM to replace out-of-core
visualization and data transpose schemes. I show between one and two orders of
magnitude improvement in performance over conventional out-of-core solutions.

INTRODUCTION

A growing number of seismic applications are becoming IO bound. In some cases, an
application can be IO bound because the amount of computation per input sample
is low, such as with Normal Move-Out. Another category is applications where the
input, intermediate, and output space which are to large to simultaneously reside in
physical Random Access Memory (RAM), such as conventional 3-D Reverse Time
Migration (RTM) (Baysal et al., 1983).

Several different methods exist to improve IO performance. Raid based disk arrays
stripe data over many different disk drives. Network storage uses a collection of
nodes as temporary storage. Large shared-memory and distributed-memory machines
can distribute the required memory storage over 100s to 1000s of nodes, therefore
allowing the entire problem to sit in RAM. Recently, solid state disks have offered
promise. These disks, when used in a raid system, can offer 2-5x the IO performance
of conventional disks. A new weapon in the IO bottleneck battle is EcoRAM from
Spansion. EcoRAM sits in conventional RAM slots but is composed of a series of solid
state disks. An accelerator replaces one of the CPU motherboard slots to facilitate
low latency, read speeds of 30x conventional disk and 2− 10x write speeds.

I show that applications that are, or can be made, read dominant can benefit
dramatically from EcoRAM with minimal programming changes. I begin by com-
paring IO characteristic of EcoRAM versus conventional RAM, disk, network, and
solid state disk. I then describe how, and the results of, writing a visualization and
transpose program to maximize EcoRAM performance.

SEP–138



Clapp 2 EcoRAM

BACKGROUND

EcoRAM is a new product from Spansion. One of its goals is to fill the very large
performance gap between DRAM and conventional (and solid state) disks. Its main
competitor in this market place is Fusion IO. Its four most relevant claimed advantages
are: 1

8
power use of conventional DRAM; four times the memory per DRAM slot;

2−10x write speed advantage over conventional disk and solid state drives; and most
importantly, read speeds on the same order of magnitude as conventional DRAM (1.3
GB/s vs 4-6GB/s). The first claim, though important, would not make it a worthwhile
investment at the University level. The last three claims were of more interest to us.
Two commonly run applications at SEP, visualization and data transposition, are
extremely IO bound for large data sizes.

Visualization

The first example application visualization application (Clapp et al., 2008; Clapp and
Nagales, 2008). Four and five dimensional spaces are common in processing. Often
we are comparing multiple volumes of these sizes. For even ‘small’ sized problems,
we quickly exceed conventional RAM. Several approaches can be taken to get around
this bottleneck.

Out-of-core The data can be read ‘on the fly’. In this approach, the desired view
is created only when the user requests it. Predictive algorithms can be used to
guess the next desired view. The downside of this approach is the significant
difference in IO performance between RAM and disk, made worse when the
user request a view that the smart algorithm didn’t expect.

Compression The data can be compressed using techniques ranging from conver-
sion of four to one byte to more sophisticated compression schemes such as
curvelets. The downsides of these approaches include the difficulty associated
with building an appropriate clip function, the need for higher order accuracy
(such as seeing lower amplitude events) when interacting with the data, artifacts
associated with compression, and for high compression schemes, some viewing
options are difficult to achieve.

Cluster The data can be stored in RAM on a series of nodes. Requested views
are translated into requests to different nodes and reconstructed by the host
machine. The disadvantages of this scheme include the significant cost of these
extra machines and latency af networking bottlenecks.

All of these approaches also suffer from a significant additional coding overhead.

SEP–138



Clapp 3 EcoRAM

Transpose

Transposing a dataset is a common seismic processing step. A given processing step
might need data in offset gathers while the data exists in common offset sections. For
source-receiver based wave equation migration, the natural axis order is: midpoint,
offset, and depth while further processing steps need the data in depth, offset, and
midpoint. For large data volumes (significantly beyond the CPUs memory) what
looks like a rather trivial operation can take hours to days using a single CPU. The
transpose time is dominated for large problems by disk IO. A solution to this problem
is to stream a data volume to a cluster where the transpose can be done completely in-
core. This is an effective technique but again adds significant programming overhead.

RESULTS

I used EcoRAM for the both visualization and transpose application. The server had
32 GB RAM, 512 GB of EcoRAM , and two AMD quad-core 2.6GHz processors.

Visualization

The visualization test does not lend itself well to paper form. The only change to
the basic visualization application was to introduce mmap buffer and IO module. The
total time to add this feature was less than 3 hours. I observed that I could move to
random locations within the volume with the delay more a function of the Gigabit
netwrok connection between the host EcoRAM server and the X11 terminal.

Transpose

All transposes can be mapped into a single five-dimensional template (n1, n2, n3, n4, n5).
The first axis is the the product of the data element size and the length of the
fastest axes that are not be transposed over. The second axis is the fastest axis
that needs to be transposed. The third axis is the product of the axes lengths be-
tween transposed axes. The fourth axis is the slowest axis that we want to trans-
pose over. The fifth axis is the product of all of the axes slower than the last
axis we wish to transpose over. We can extend the definition of the second and
fourth axes to compose sets of adjacent axes to enable more sophisticated trans-
poses. For example, in the case of wave equation migration, we begin with a five
dimensional dataset with element size esize that is ordered (midpoint x, midpoint y,
hx, hy, depth) or of size (ncmpx, ncmpy, nhx, nhy, nz) and we wish to end up with
(nz, nhx, nhy, ncmpx, ncmpy). We can simulate merging the first two axes of the
input and map to our template (esize, ncmpx ∗ ncmpy, nhx ∗ nhy, nz, 1).

Using this template, the transpose algorithm can be written in a push (loop over
input) or pull (loop over output) manner. For EcoRAM , and in many other cases

SEP–138



Clapp 4 EcoRAM

(such as wanting to pipe the output), the pull method is more efficient. The basic
transpose algorithm using the five dimensional template then takes the following form.
This simple algorithm assumes that you can hold both the input and output matrices

Algorithm 1 Simple transpose
iout=0;
for i5=0; i5 ¡ n5;i5++ do

for i2=0; i2 ¡ n2;i2++ do
for i3=0; i3 ¡ n3; i3++ do

for i4=0; i4 ¡ n4; i4++,iout+=n1 do
iin = (i2 + i3 + i4 + i5) ∗ n1 + (i3 + i4 + i5) ∗ n2 + (i4 + i5) ∗ n3 + i5 ∗ n4
memcpy(&out[iout],&in[iin],n1)

end for
end for

end for
end for

in RAM. A problem with this simple approach is the very poor use of input cache
lines for small n1.

If we can hold n1 ∗ n2 ∗ n3 ∗ n4 is memory we can get acceptable performance
with either algorithm 1 or slight modification that processes each i5 block in turn. We
could still use the basic template for large problems by mmapping the input and output
file but the cache miss problem would be further exacerbated. A better alternative is
to introduce two temporary buffers, tin and tout. These buffers are of size n1 ∗n4 ∗
n3 ∗ nmx, where nmx is chosen so that the combined size of tin and tout does not
exceed DRAM∗. The buffered algorithm then takes the following form. The larger
nmx, the better the performance. Figure 1 shows that even a RAM-based system
benefits from the buffered approach. Note how we can gain a performance advantage
of greater than six with larger n1 ∗ nbuf sizes.

Figure 1: The number of elements
per second vs log(nbuf ∗ n1) that
can be read using a completely
in-core solution. The problem
size, using the generic template,
is (1, 500, 72, 131072, 1). Note how
we can achieve a factor of six im-
provement by better cache line
use. [NR]

Figure 2 compares the performance of EcoRAM versus RAM. Note the similarity
of the two curves. The ‘*’ in the figure shows the comparable disk approach. The disk

∗This approach only works if n1 ∗ n4 ∗ n3 ∗ 2 does not exceed DRAM size.

SEP–138



Clapp 5 EcoRAM

Algorithm 2 Simple transpose

for i5=0; i5 ¡ n5;i5++ do
i2 = 0
while i2¡ n2 do

nbuf = min(n2− i2, nmx)
read tin
iout=0;
for i2=0; i2 ¡ nbuf;i2++ do

for i3=0; i3 ¡ n3; i3++ do
for i4=0; i4 ¡ n4; i4++,iout+=n1 do

iin = (i2 + i3 + i4) ∗ n1 + (i3 + i4) ∗ n2 + (i4) ∗ n3
memcpy(&out[iout],&in[iin],n1)

end for
end for

end for
i2 = i2 + nbuf

end while
end for

approach is 1
10

th speed of the slowest EcoRAM result and 1
200

th the optimal buffer
choice.

Figure 2: The number of elements
per second vs. log(nbuf ∗ n1).
Note the ‘*’ indicating the disk
IO performance. The problem
size, using the generic template, is
(1, 500, 72, 131072, 1). [NR]

As a final test, we transposed a float dataset of size (672, 216, 72, 1, 2000) switching
axes 1,2 with axis 5. Using the buffered approach of algorithm 2, a conventional disk
took 1293 minutes (using an intermediate buffer size of 1 GB) while the same dataset
took 22 minutes using EcoRAM , a 60x performance improvement.

OTHER APPLICATIONS

The characteristics of EcoRAM seem best suited for large databases where reads
dominate. In addition to the visualization and transpose algorithm described above,

SEP–138



Clapp 6 EcoRAM

data sorting is an obvious area that could benefit from EcoRAM . Another interesting
application is the ability to visualize pre-stack volumes without any preprocessing.
As processing continues to outstrip IO, more applications will begin to benefit signifi-
cantly from EcoRAM . Interferometry, Hessian-based inversions, and even 3-D surface
related multiple attenuation, are, or soon will be, read-dominant. One can envision
a future where raw data sits on an EcoRAM -like system and all processing steps are
carried out on the fly, eliminating the need for the multitude of intermediate data
volumes that are now common.

CONCLUSIONS

Read-dominant applications such as visualization and data reordering are IO bound
at large sizes. EcoRAM , with its low latency and high bandwidth (particularly
compared to disk at small read sizes) proves to be one to two orders faster than con-
ventional disk approaches. These speed improvements can be achieved with minimal
programming changes.

ACKNOWLEDGMENTS

I would like to thank Lou Gagliardi of Spansion for useful discussions on how to
optimize application performance.

REFERENCES

Baysal, E., D. D. Kosloff, and J. W. C. Sherwood, 1983, Reverse time migration:
Geophysics, 48, 1514–1524.

Clapp, R. G., D. M. Chen, and S. Luo, 2008, Hypercube viewer: SEP-Report, 134,
179–192.

Clapp, R. G. and N. Nagales, 2008, Hyercube viewer: New displays and new data-
types: SEP-Report, 136, 125–130.

SEP–138


