Reverse time migration with random boundaries

Robert G. Clapp

ABSTRACT

Reading wavefield checkpoints from disk is quickly becoming the bottleneck in
Reverse Time Migration. We eliminate the need to write the wavefields to disk
by creating an increasingly random boundary around the computational domain
when propagating the source function. The wavefield that encounters the bound-
ary region is pseudo-randomized. Reflections off the random layer have minimal
coherent correlation with the receiver wavefield but can be reformed by running
the wave equation in the reverse direction. This allows the source to first be
propagated to the maximum recording time and then to be backward propagated
simultaneously with receiver wavefield significantly reducing memory and IO re-
quirements. I demonstrate the methodology on the Sigsbee synthetic and show
that it significantly reduces coherent correlation artifacts.

INTRODUCTION

Reverse Time Migration (RTM) (Baysal et al., 1983) is quickly becoming the standard
for high-end imaging. At the core of the RTM algorithm is a modeling kernel. The
simplicity of the the modeling kernel has led to high-performance implementation on
Field Programmable Gate Arrays (FPGA) (Nemeth et al., 2008), General Purpose
Graphics Processing Units (GPGPU) (Micikevicius, 2008), and conventional proces-
sors. Of growing significance is the problem that the source field must propagated
from ¢t = 0 to ¢ = maxtime while the receiver wavefield must be propagated from
t = maxtime to ¢ = 0 since the fields must be correlated at equivalent time positions.
One propagation must be stored either completely or in a check-pointed manner to
disk.

Symes (2007) and Dussaud et al. (2008) discuss checkpointing methods to handle
the different propagation directions. Dussaud et al. (2008) and Clapp (2008) suggest
an alternate approach of propagating the source wavefield to the maximum recording
time and then reversing the propagation to make it consistent with the receiver prop-
agation direction. The use of damping schemes around the boundary results in the
need to inject energy from the non-damped, forward propagated wavefield, inside the
boundary region. The RAM requirement with this scheme is less than conventional
checkpointing approaches but still imposes significant disk 1O requirements.

In this paper, I discuss an alternate approach. I replace the conventional damped
region with an increasingly random velocity region. Rather than eliminate reflections
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I distort them to minimize coherent correlations with the receiver wavefield that
cause artifacts. I begin by describing the construction of the random boundary. I
then demonstrate the amplitude behavior of the time reversed wavefield. I conclude
by showing the methodology applied in a 2-D synthetic.

BACKGROUND

The basic idea behind RTM is to propagate a source function within the computa-
tional domain from time ¢t = 0 to ¢ = maxtime, storing the wavefield s(¢,x) at time
steps consistent with the time sampling of the data dt. The recorded data is injected
into a second computational domain and propagated from ¢t = maxtime to ¢t = 0 and
stored in 7(¢,x). The final image I is constructed

maxtime

I(x)= Y s(t,x)r(t,x), (1)

t=0

or some similar imaging condition. The problem is that s(¢,x) and r(¢,x) are too
large to store in memory, and often too large store on disk. The image can be updated
while propagating the receiver wavefield but the different propagation directions of
the source and receiver wavefields, still introduce a large storage requirement. To re-
duce the storage requirement, checkpointing schemes are used. The source wavefield
is stored at various intervals d.pe.r during forward propagation. When propagating
the receiver wavefield these checkpoints are read from disk and re-propagated into
a buffer to be correlated with the receiver propagation. Algorithm 1 illustrates this
approach. There are several undesirable features to this approach. First, the source

Algorithm 1 Standard RTM with checkpointing
for all shots do
while ¢ < maxtime do
Advance source wavefield to check point (depeck)
store wavefield
end while
t = maxtime
while ¢t > 0 do
Read source wavefield at t — dpeck
Advance and buffer source wavefield to ¢
for t =0 to t = depect do
Advance receiver wavefield —dt
Correlate source and receiver wavefield at constant ¢
end for
t=1t— dcheck
end while
end for
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wavefield must be re-propagated. Second, buffering of the re-propagated source wave-
field introduces a large memory requirement. Finally, reading the snapshots from disk,
particularly when the propagation is done on an accelerator, can/does make RTM 10
bound. A wavefield can be propagated forward or backwards in time. On first glance,
an obvious solution to the storage and IO requirements is to propagate the source
wavefield to ¢ = maxtime and then reverse the propagation eliminating the need for
checkpointing. The flaw in this hypothesis comes from the boundary conditions we
conventionally use.

BOUNDARY CONDITIONS

Ideally, we would like to emulate an infinite computational domain when propagat-
ing our seismic wavefield. Computationally, this is an unachievable goal; instead
we try to minimize artifacts, reflections from the boundaries, caused by our limited
computational domain. The most effective method is the Perfectly Matched Bound-
ary method from the electro-magentic community (Berenger, 1994). This method
amounts to mapping the coordinate system into the complex domain and changing
the propagating wavefield into a decaying wavefield. A second common technique is
to introduce a damping region at the edge of the computation domain (Cerjan et al.,
1985; Baysal et al., 1984). This is often combined with techniques to kill plane waves
that are perpendicular to the computational boundary. All of these techniques have
proven effective for modeling seismic data, but force propagation in a single direction.

One technique to allow time reversal is to store the wavefield that has not hit the
boundary region at each time step and then re-inject when reversing the propagation
direction (Clapp, 2008). This technique has the advantage of eliminating the need
for buffering, but still requires a large volume of data to be stored on disk.

Another approach is to rethink what we are attempting to accomplish with our
boundary conditions for RTM. Ideally, we would like to eliminate all reflections from
the edge of our computational domain, but what we are really concerned with is
coherent reflections. If we can distort the wavefield coming from the boundaries so it
does not coherently correlate with the receiver wavefield, we will have accomplished
our goal.

In acoustic modeling, one way to manipulate the boundaries while still allowing
time reversal, is to introduce a random component to the velocity field at the bound-
ary. We must be careful in how we modify the boundary, both by staying within the
stability constraint of our finite difference method, and by slowly introducing random
numbers to avoid immediate reflections off the randomized zone. The basic algorithm
for constructing the boundary can be found below. Panel ‘A’ of Figure 1 shows a
velocity model constructed with a random boundary and panel ‘B’ shows a cross sec-
tion through that boundary. Note how the variability of the velocity increases near
the edge of the computational domain.

Panel ‘A’ of Figure 2 shows the wavefield at ¢ = .63 after injecting a source in
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Algorithm 2 Creating random boundary
for all x,y,z do
if within boundary region then
d=distance within boundary
found=false
while found==false do
select random number 7
vtest = v(z,y,2z) +1r*d
if vtest meets stability constraint then
v(x,y, z) = vtest
found=true
end if
end while
end if
end for
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Figure 1: Panel A shows the con-
stant velocity model with a ran-
dom boundary. Panel B shows a
cross section through the velocity Z Position(km)
model. Note the increasing ran-
dom nature of the boundary. [ER]

A

Lo
—_
N
w
W~
I$)
)
)

Fo

91
.

(s/unp)£3100[27
2T

80

¥0

SEP-158



Clapp ) Random boundaries

the center of the computational domain. Panel ‘B’ shows the wavefield at ¢t = 2.205
after the wavefield has hit the boundary. Note the absence of a coherent reflection off
the boundary. Panel ‘C’ shows the wavefield at ¢t = 3.906, when no coherent energy
is present. The wavefield was then propagated to ¢ = 5.0 and the computation was
reversed. Panel ‘D’ shows the reversed wavefield at ¢ = .63, and panel ‘E’ shows
the difference between wavefields scaled by 10,000. The difference between the two
images is in the range of the machine precision.

To see if there is a coherent pattern underneath the random looking field, I re-
peated the experiment 16 times, each with a different random boundary. Panels ‘F-J’
show the average of these 16 experiments at the same times as panels ‘A-E’. Note
in panel ‘G’ how the average of the 16 experiments has greatly reduced the energy
reflected from the boundary. In panel ‘H” we can see that there is a low energy, low
spatial frequency reflection from the boundary. Panel ‘J’ shows that even the machine
precision noise tends to cancel.

Figure 2: The left column shows snapshots from a single modeling experiment at .63,
2.205, and 3.906. The fourth panel shows the result of time reversing the computation
to .63 seconds. The bottom panel shows the difference between first and fourth panel
scaled by 10000. The right column shows the summing of 16 modeling experiments
each with different random boundaries. [ER]
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Panels ‘A’ and ‘B’ of Figure 3 show the results of Fourier transforming the data
shown in panels ‘C’ and ‘H’ of Figure 2. Panel ‘A’ demonstrates that the wave field is
dominated by low-spatial wave-number features. In panel ‘B’ we see that almost all
of the energy is concentrated at the low spatial wave-numbers. This is not surprising.
At low enough frequencies, our random boundary does not affect our propagating
wavefield. By increasing the size of the random zone, we can damp lower frequencies.
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Figure 3: Panel ‘A’ is the result of Fourier transforming the data shown in panels
‘C’ and ‘H’ of Figure 2. Note how the summing of multiple experiment reduces the
energy in higher spatial wave-number events. [ER]

Summing multiple experiments is directly applicable to RTM. In RTM we are
summing the result from many migrated shots to form our final image. As a result
we will get a signal-to-noise boost from neighboring shots having different random
patterns.

By making these changes, the RTM algorithm simplifies to the following template.

Algorithm 3 Time reverse RT'M with random boundaries
for all shots do
Create random boundary around computational domain
Advance source wavefield to ¢ = maxtime
for t = maxtime to t = 0 do
Advance source wavefield —dt
Advance receiver wavefield —dt
Correlate source and receiver wavefield
end for
end for
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SYNTHETIC EXAMPLE

To test the methodology, I implemented both algorithm 1 and 3. T used the first 4.5
seconds of the Sigsbee synthetic, limiting the computational domain to the first 4.5
km. As a baseline I performed RTM using a reflecting boundary condition. Locations
‘A’ and ‘B’ in Figure 4 show where reflections from the top of the domain coherently
correlated with the receiver wavefield.

X Postion(km)
4 8 12 16 20 24

Figure 4: The result of RT'M migration using a reflecting boundary. Note the obvious
boundary artifacts at ‘A’ and ‘B’. [CR]

Figure 5 shows the RTM result using algorithm 1. In this case I applied a damped
exponential in a 30 point region around the computational domain. Note how the
artifacts at ‘A’ and ‘B’ are significantly reduced. Finally, Figure 6 shows the result of
algorithm 3. Note how the energy at ‘A’ and ‘B’ are further reduced. Some additional
coherent correlations are present in the water layer but are not visible lower in the
image once sufficient reflected energy is present.

OTHER APPLICATIONS

There are two notable additional applications to this approach. We can think of
the random boundary region as a series of point sources that are excited at different
times. By cross-correlating the energy at any two locations we can generate a two-way
interferometric Green’s function.

In addition, the random boundaries offer the potential to use implicit rather than
explicit propagation. We can treat our medium as a single 1-D trace (helixize (Claer-
bout, 1998) the computational domain). We can then use 1-D theory to calculate
causal-minimum phase filters that can be applied using polynomial division. This
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Figure 5: The result of RTM migration using a damping boundary condition following
the methodology described by algorithm 1. Note how the boundary artifacts have
been reduced at ‘A’ and ‘B’. [CR]
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Figure 6: The result of RTM migration using a random boundary condition using the
methodology described by algorithm 3. Note the greatly reduced artifacts at ‘A’ and
‘B’ [CR]
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technique was applied to downward continuation by Rickett et al. (1998) but suffered
from obvious wraparound problems. The random boundaries discussed in this paper
would minimize this problem.

CONCLUSIONS

Pseudo-random boundary conditions effectively distort an incoming wavefield. I use
these boundary conditions to propagate the source wavefield in RTM both forward
and backwards. The distorted wavefield correlates poorly with the receiver wavefield,
minimizing boundary artifacts. I hypothesize that these boundaries have additional
applications for implicit finite difference and interferometry.
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