
Performance of RTM with ODCIGs computation

fully offloaded to GPU

Abdullah Al Theyab and Robert G. Clapp

ABSTRACT

Nvidia’s graphics processing units (GPU) powered with Compute Unified Device
Architecture (CUDA), the supporting API, have allowed a significant speedup
to finite difference time domain (FDTD) seismic modeling and, consequently,
to reverse time migration (RTM). To utilize the power of GPUs for velocity
analysis, we implemented kernels for generating offset-domain common image
gathers (ODCIGs). With 4GB of memory, a single Tesla 10 series GPU can
perform the 2D RTM with generation of ODCIGs. Computing the ODCIGs
takes the majority of the algorithm execution time because of the large volume
of output. We examine the performance of a general 2D RTM algorithm with
ODCIGs computation fully offloaded to a single GPU device. We optimized the
imaging kernel utilizing the available shared memory on the GPU to double the
throughput of the kernel.

INTRODUCTION

Reverse time migration (RTM) is a full wave equation imaging technique that con-
structs an image that best represents the subsurface structure. Seismic data are
migrated using an estimate of the wave propagation velocity in the subsurface. Es-
timates of the velocity field can be inaccurate at the first imaging attempt, and
subsurface offset gathers can provide a measure of the errors in velocity estimation
(Biondi and Symes, 2004). In addition, they can give amplitude versus offset (AVO)
information if amplitudes are handled properly. Algorithms for RTM and generation
of ODCIGs are known to be computationally expensive and sometimes unaffordable.
Therefore, an efficient implementation of RTM with ODCIGs generation algorithm is
vital for minimizing the time required for creating a complete image.

Reverse time migration falls into the computational class of convolution with a
stencil. The stencil computation workload can be divided among many processing
units in an embarrassingly parallel fashion. However, the main performance limitation
on modern computer architectures is the memory latency. Cache-aware algorithms
minimize data traffic by taking advantage of spatial and temporal locality and/or the
data prefetch capabilities of modern CPUs. Another way of hiding memory latency
is to have more threads than cores to execute some threads while other threads are
waiting for memory access. The performance gain given by this technique is not

SEP–138

Al Theyab and Clapp 2 RTM offloaded to GPU

significant on CPUs because thread switching is expensive. This is not the case on
GPUs, which can run a massive number of threads concurrently to hide memory
latency. This capability makes GPUs very attractive hosts for stencil computational
problems.

Micikevicius (2009) has shown an order of magnitude increase in performance for
the GPU’s FDTD kernel as compared to the kernel’s performance on multi-core CPUs.
The reported performance numbers are optimized for 3D by using equal grid spacing
in all dimensions and without using the surface and absorbing boundary conditions.

Bus connection speed can be a performance bottleneck for mixed CPU-GPU pro-
cessing. Generating subsurface offset gathers on the host using wavefields computed
on the GPU will slow down the algorithm significantly. Fortunately, this can be
avoided by fully offloading RTM and ODCIGs generation to GPUs.

In this report, we review briefly the theory of RTM for an acoustic medium. We
detail the GPU implementation of RTM with generation of ODCIGs. We then analyze
the performance of GPU kernels on a single device. Finally, we optimize the imaging
kernel by using shared memory to double the throughput. The developed kernels
were run on Tesla 10 series GPUs.

GOVERNING EQUATIONS

Wave propagation in an acoustic medium is described by(
∇2 − 1

v2(x)

∂2

∂t2

)
P (x, t) = −f(x, t), (1)

where P is the pressure at a point x in the medium at time t, v(x) is the wave
propagation velocity field, and f(x, t) is the source term. A seismic experiment is
conducted in the field by exciting a seismic source f(xs, t) and recording the response
at many receiver stations (r1, r2, ...), with each receiver ri positioned at xri

. The
data from one experiment are collected into a shot gather Ds(ri, t). The experiment
is repeated many times with different source locations to make a collection of shot
gathers.

To build a subsurface image, each shot is migrated independently by simulating
two wavefields using equation 1 with a zero source term. The first wavefield is the
forward propagated wavefield Pf (x, t), which is simulated using the boundary condi-
tion

Pf (x, t) = δ(x− xs)

∫ t

0

fs(t
′)dt′ (2)

and a zero boundary condition above the Earth’s surface (Zhang and Sun, 1993).
Here, fs(t

′) is the source signature. The second wavefield is the backward propagated
wavefield, computed using the upper boundary condition

Pb(x, t) =
∑

j

δ(x− xrj
)Ds(rj, tmax − t). (3)

SEP–138

Al Theyab and Clapp 3 RTM offloaded to GPU

The final image is computed using

I(x,h) =
∑

s

∑
t

Pf (x + h, tmax − t; s)Pb(x− h, t; s) (4)

where h is the subsurface offset (Biondi and Symes, 2004). In practice, h is sampled
in the horizontal direction, producing horizontal ODCIGs I(x, hx), and in the vertical
direction to produce the vertical ODCIGs I(x, hz). For a 2D imaging problem, the
horizontal and vertical ODCIGs are two 3D image volumes. Figures 1(a) and 1(b)
show respectively slices through the vertical and horizontal subsurface offset cubes
for a 2D synthetic dataset migrated using the correct velocity model.

(a) (b)

Figure 1: (a) Vertical ODCIGs. (b) Horizontal ODCIGs. The energy is focused at
the zero-offset because the data were migrated using the correct velocity. [CR]

CUDA PROGRAMMING MODEL

Compute Unified Device Architecture (CUDA) is the GPU supporting API extension
to the C programming language. A GPU has many multiprocessors, each with its
own set of stream processors and shared memory. A GPU also has a global DRAM
memory, usually with a size of several gigabytes. This memory is uncached and
memory latency is hidden by executing a massive number of threads concurrently.
Threads are grouped together in thread blocks. Threads within a thread block can
share data by using shared memory and can synchronize by using barriers. However,
data sharing and synchronizing are not possible between thread blocks. Calling a
kernel from the host code will launch the thread blocks in an unspecified order.

The number of processing units limits the maximum number of threads per thread
block. Moreover, the fixed size of the fast shared memory and the number of regis-
ters limit the number of the thread blocks that run concurrently on a single multi-
processor. For stencil computation, 2D thread blocks are mapped to the data grid,
which means that each thread block handles a tile of grid points. The optimal thread

SEP–138

Al Theyab and Clapp 4 RTM offloaded to GPU

block size is 16x16, which is determined by the device instruction set (NVIDIA, 2008)
and the available shared memory.

Many considerations have to be taken into account when optimizing CUDA ker-
nels. Coalesced global memory access can radically reduce memory access instruc-
tions. Shared memory usage can also significantly reduce global memory access. How-
ever, memory bank conflicts can hinder the performance gain from using the shared
memory. Therefore kernels should be designed to avoid or reduce simultaneous access
to the same memory banks by the threads in a thread block.

The kernels used for our implementation were run on a Tesla 10-series GPU (Tesla
S1070). This GPU contains 30 multiprocessors, each with 8 streaming processors and
16 KB of shared memory. The memory bandwidth is 104 GB/s, and the global
memory is 4GB in size.

PERFORMANCE METRICS

The total cost of the 2D RTM with ODCIGs generation algorithm for a grid with the
size Nx ×Nz and Nt time steps is

Ctotal = (Cforward−FDTD + Cbackward−FDTD)NxNzNtNshots + CImagingNINxNzNhNshots,
(5)

where Cforward−FDTD, Cbackward−FDTD, and CImaging are the costs for forward wave prop-
agation, backward wave propagation, and imaging, respectively. NI is the number of
imaging steps, and Nh is the number of points in the subsurface offset axis. FDTD
cost includes the cost of setting the surface boundary condition. Because of the
asynchronous execution of backward propagating kernels and imaging kernels, it is
difficult to isolate their costs. We estimate that Cforward−FDTD = Cbackward−FDTD,
where Cforward−FDTD can be calculated by timing the forward propagation part of
the algorithm. Therefore the throughput metrics for wave propagation and imaging
kernels are

C−1
FD = NxNzNt/(FDTD exec. time),

C−1
Imaging = NINxNzNh/(Total exec. time− 2× FDTD exec. time).

Both are expressed in millions of output points per second (Mpts/sec).

WAVE PROPAGATION KERNELS

The wave equation is solved by explicit finite differencing that is second order in time
and eighth order in space, as expressed in

P t+1 = v2∆t2
(
f t +∇2P t

)
+ 2P t − P t−1. (6)

We use an approach similar to the one implemented by Micikevicius (2009), but we
generalize it to accommodate variable grid spacing for each dimension. We also have

SEP–138

Al Theyab and Clapp 5 RTM offloaded to GPU

separate kernels for the source function injection. The waves incident on the grid
boundaries are attenuated by adding an absorption term to the wave equation. This
term is active around the neighborhood of the side and bottom boundaries. These
inclusions to the algorithm increase the number of floating point operations and the
number of memory accesses, which in turn reduce the throughput of FDTD by a
few hundreds of Mpts/sec as compared to the reported performance measures by
Micikevicius (2009).

The problem grid is divided into a grid of 16x16 blocks as illustrated by Figure 2.
Each grid block is assigned to a thread block of the same size; i.e., each thread per-
forms the finite differencing on a single point on the grid. Since data sharing is allowed
between threads within a thread block, shared memory is used to keep local copies
of P t that are needed for computing the spatial derivatives. Each thread within a
thread block loads the corresponding point on the grid of P t into shared memory.
Because the derivative stencil requires eight neighboring points in each spatial dimen-
sion, some of the threads are assigned to load the halos, i.e., the surrounding points
of the thread block.

Figure 2: Thread blocks of the wave propagation kernel are mapped to areal blocks
of the domain. A thread block has to read the assigned grid points (green area) and
halos (yellow) from neighboring points to shared memory. [NR]

IMAGING KERNEL

The imaging equation (4) is used in practice to generate two ODCIG cubes with the
two x- and z-spatial dimensions and a third dimension along hx (hz) for horizontal

SEP–138

Al Theyab and Clapp 6 RTM offloaded to GPU

(vertical) subsurface offsets. The subsurface offset can have both positive and negative
values. The following code snippet shows a simple kernel that computes I(x, hz):

__global__ void img_hz_kernel(float *p1 , float *p2){

int i=blockIdx.x*blockDim.x+threadIdx.x; /* z image location */

int j=blockIdx.y*blockDim.y+threadIdx.y; /* x image location */

for(int h=hmin; h<hmax; h++)

img_zh[iloc(i,j,h)]+=p1[loc(i-h,j)]*p2[loc(i+h,j)];/* imaging condition*/

}

Grid blocking of image locations (z, x) is similar to the one shown for wave propaga-
tion. The iteration occurs along the offset axis, h, which means that the thread block
extent is the whole offset axis. This is a naive implementation of the imaging condi-
tion because of the redundant reads from global memory. The global memory access
pattern of the naive imaging kernel is illustrated in Figure 3(a), where, for each point
in the 3D output space, two values from Pf and Pb are needed. The imaging kernel
can be improved so that redundant reads from within a thread block are eliminated.

For the sake of simplicity, we consider a 1D thread block of dimension n that has
an offset extent of n points; i.e., each thread block will compute a tile of size n2 from
the output space (z, hz). For the naive imaging kernel, the number of global memory
accesses is 4n2; i.e., to update a point in the output volume (offset gathers), two
reads from the wavefields, and one read and one write for updating the offset gathers
are needed. Figure 3(b) shows areas that will be accessed from the wavefields. The
width for each area is twice the width of the thread block n. The common areas can
be copied to the shared memory, so that each thread will copy two values from the
shared area. After that, the thread block advances along the offset axis and uses the
data from shared memory, as shown using the following kernel:

__global__ void img_hz_improved_kernel(int h0 /* first offset */,

float *p1, float *p2){

__shared__ float s_p1[BLOCK_SIZE][2*BLOCK_SIZE];

__shared__ float s_p2[BLOCK_SIZE][2*BLOCK_SIZE];

int i=hmax_gpu+blockIdx.x*blockDim.x+threadIdx.x; /* z-location */

int j=blockIdx.y*blockDim.y+threadIdx.y; /* x-location */

/* offset extent of the thread block */

int hmin=h0-hmax_gpu; /* minimum offset */

int hmax=hmin+BLOCK_SIZE; /* maximum offset */

/* copy to shared memory */

s_p1[threadIdx.y][threadIdx.x]=p1[loc(i-hmax, j)];

s_p2[threadIdx.y][threadIdx.x]=p2[loc(i+hmin, j)];

s_p1[threadIdx.y][BLOCK_SIZE+threadIdx.x]=p1[loc(i-hmin, j)];

SEP–138

Al Theyab and Clapp 7 RTM offloaded to GPU

block
extent

Shared grid points
from wave field 1

Shared grid points
from wave field 2

offset

Img. point

Ctotal = (Cforward FD + Cbackward FD)NxNzNt + CIMGNINxNzNh. (1)

C−1
FD = NxNzNt/(FD exec. time)

C−1
IMG = NINxNzNh/(RTM exec. time− 2 ∗ FD exec. time)

N1 x N2 is 4N1N2

2N1N2 + 2(N1 + N2)

1

Ctotal = (Cforward FD + Cbackward FD)NxNzNt + CIMGNINxNzNh. (1)

C−1
FD = NxNzNt/(FD exec. time)

C−1
IMG = NINxNzNh/(RTM exec. time− 2 ∗ FD exec. time)

N1 x N2 is 4N1N2

2N1N2 + 2(N1 + N2)

1

offset

Img. point

h

h h

(b)

(a)

Figure 3: The memory access pattern of imaging: (a) To compute the image value
(at the star), two points from Pf (square) and Pb (circle) are needed. (b) This
diagram shows the thread block advancement along the offset axis and data sharing
from within the block. All data access from with the thread block will fall in the
shared areas from Pf (dashed) and Pb (solid). [NR]

SEP–138

Al Theyab and Clapp 8 RTM offloaded to GPU

s_p2[threadIdx.y][BLOCK_SIZE+threadIdx.x]=p2[loc(i+hmax, j)];

/* synchronize threads */

__syncthreads();

/* prepare addressing variables */

int base=loc(i,j)+h0*n1*n2;

int stride=n1*n2;

/* internal loop along the offset axis */

for(int h=0; h<BLOCK_SIZE; h++){

zimg[base+h*stride]+=

s_p1[threadIdx.y][BLOK_SIZE+threadIdx.x-h]

*s_p2[threadIdx.y][threadIdx.x+h];

}

}

The number of global memory accesses for the improved algorithm is 2n2 + 4n.
For a thread block of width 16, the number of global memory accesses is reduced from
1024 (naive) to 576 (improved).

KERNELS’ PERFORMANCE

The throughput of the implemented kernels are shown in Figure 4. For comparison,
thread blocks for imaging kernels were 16x16 for both kernels, and the improved
kernel has an offset extent of 16. The throughput of the improved kernel is double
the throughput of the naive implementation. Modifying the block sizes yielded a
negligible improvements in performance. This optimized kernel is applicable to 3D
imaging. However, 4GB of GPU memory is not sufficient to host the 4D output
volume.

Figure 5 shows the execution time for RTM without ODCIGs generation, RTM
with ODCIGs generation using the naive imaging kernel, and RTM with ODCIGs
generation using the improved imaging kernel. Computing ODCIGs is very costly
because of the large volume that is updated at every imaging step. The floating-point
operation count is very small for the imaging kernel. This indicates that most of the
execution time for ODCIGs generation is spent accessing and writing to the device
global memory. The memory access time is so dominant that constructing angle-
domain common image gathers (ADCIGs) at every time step could be considered.

SUMMARY AND FUTURE DIRECTIONS

In this paper, we have shown the implementations of the naive imaging kernel. We also
demonstrated a strategy for improving the imaging kernel that doubles the through-

SEP–138

Al Theyab and Clapp 9 RTM offloaded to GPU

0

1000

2000

3000

4000

5000

6000

7000

8000

 200 x 200 500 x 500 800 x 800 1100 x 1100 1400 x 1400 1700 x 1700 2000 x 2000

Throughput of kernels

Wave propgation Naive imaging Improved imaging

Grid dimensions

Th
ro

ug
hp

ut
 [M

p
t/

se
c]

Figure 4: Throughput of the implemented kernels. Improving the imaging kernel
using shared memory doubles the throughput of the imaging kernel. [NR]

put of the naive implementation. This implementation is applicable to 3D imaging
problems, although the available memory for current GPUs is not sufficient to hold
the generated image volumes. We are considering generating horizon-based ODCIGs
for 3D wave propagation. Due to the large output volume, generating ODCIGs is
costly as compared to RTM without ODCIGs generation. To reduce the cost, we are
considering data compression and subsampling the ODCIGs, which will reduce the
output volume that is updated at every imaging step. The cost of generating AD-
CIGs will be minimal compared to generating ODCIGs. Therefore, we are considering
generating ADCIGs on the GPU.

ACKNOWLEDGMENTS

We would like to thank Nvidia for providing the Tesla S1070 GPUs for SEP. We also
thank Paulius Micikevicius for sharing his CUDA implementation of FDTD.

REFERENCES

Biondi, B. and W. W. Symes, 2004, Angle-domain common-image gathers for mi-
gration velocity analysis by wavefield-continuation imaging: Geophysics, 69, 1283–
1298.

SEP–138

Al Theyab and Clapp 10 RTM offloaded to GPU

E
xe

cu
tio

n
tim

e
[s

ec
]

Grid dimensions

0

3

6

9

12

15

 200 x 200 450 x 450 700 x 700 950 x 950 1200 x 1200 1450 x 1450 1700 x 1700 1950 x 1950

Execution time of RTM and ODCIGs generation

RTM only RTM & ODCIGs (Naive) RTM & ODCIGs (Improved)

Figure 5: Execution times for migrating a single shot with 1000 time steps and 100
imaging steps. There are 81 points along the z- and x-offset axes for the generated
ODCIGs. Because of the large volume of ODCIGs (2×81× grid size) that is updated
at every imaging step, most of the computing time is spent on generating the gathers.
[NR]

SEP–138

Al Theyab and Clapp 11 RTM offloaded to GPU

Micikevicius, P., 2009, 3d finite difference computation on gpus using cuda: GPGPU-
2: Proceedings of 2nd Workshop on General Purpose Processing on Graphics Pro-
cessing Units, 79–84, ACM.

NVIDIA, 2008, Nvidia cuda programming guide 2.0.
Zhang, Y. and J. Sun, 1993, Practical issues in reverse time migration: true amplitude

gathers, noise removal and harmonic source encoding: first break, 27, 53–60.

SEP–138

