
Performance of RTM with subsurface offset

gathers computiation fully offloaded to GPU

Abdullah AlTheyab, Robert Clapp

April 13, 2009

Abstract

Nvidia’s graphics processing units (GPU) powered with CUDA (Com-

pute Unified Device Architecture), the supporting API extension to the

C programming language, allowed a significant speedup to reverse time

migration (RTM) computation. FDTD GPU kernels, in particular, is

an order of magnitude faster than similar CPU kernels [1]. Bus con-

nection speed can be a performance bottleneck for mixed CPU-GPU

processing. This can be avoided by fully offloading RTM to GPUs.

Imaging kernels that generate subsurface offset gathers can be run

on the GPU to avoid transferring wavefields from the GPU. With a

4GB of memory, a single Tesla 10 series GPU can perform the 2D

RTM with subsurface offset gathers generation. Computing subsurface

1

offset gathers are generally slower than wave propegation. In this re-

port, we examine the performance of a general 2D RTM algorithm with

subsurface offset gather computation fully offloaded to a single GPU,

eliminating any data transfer from the GPU during migration. We also

show an optimized imaging kernel that utilizes the shared memory to

reduce the cost to ≈ 60% of the naive imaging kernel.

1 Introduction

Reverse time migration (RTM) is one of subsurface imaging techniques used to

construct an image that best represent the subsurface. Seismic data collected

from the field is migrated by an imaging algorithm given an estimate of the

wave propagation velocity in the subsurface. Estimates of the velocity field

can be inaccurate at the first imaging attempt. Subsurface offset gathers can

provide a measure of the errors in velocity estimation. Several iterations of

imaging and error estimation is done in practice to reduce the errors.

RTM in particular uses the full wave equation unlike the other imaging

algorithms which use approximations of the wave equation. This give RTM

superior accuracy, but renders it expensive or sometimes unaffordable. There-

fore, having an efficient RTM algorithms is vital for minimizing the turnaround

time for creating a complete image.

Reverse time migration falls into the class of stencil computation. Those

2

stencil computation workload can be divided among many processing units in

an embarrassingly parallel fashion. However, the main performance limitation

on modern computer architectures is the memory latency. Cache aware algo-

rithms minimize data traffic by taking advantage spatial and temporal locality

and/or data prefetch capabilities of modern CPU’s. Another way for hiding

memory latency is to have more threads than cores and execute some threads

while the other threads are waiting for memory access. The performance gain

by this technique is not significant on CPU’s because thread switching is ex-

pensive. This is not the case on GPUs, which can run a massive number of

threads concurrently to hid memory latency. This makes GPU’s very attrac-

tive hosts for this type of computational problems.

[1] have shown an order of magnitude increase in performance for GPUs

FDTD kernel compared to multi-core CPUs. The reported performance num-

bers are optimized for 3D using equal grid spacing in all dimensions, without

using an absorbing boundary condition, and without taking into account vol-

ume injection and/or boundary condtion.

Our goal is to develop an efficient RTM algorithm utilizing the advent of

Tesla 10 series GPUs. In this report, we review briefly the theory of RTM for

acoustic medium. We detail the GPU implementation of RTM with subsurface

offset gather generation. We analyze the performance of general GPU kernels

on a single device, avoiding the complexity introduced by communications

between GPU and the host.

3

2 Governing equations

Wave propagation in an acoustic medium is described by

(
∇2 − 1

v2(x)

∂2

∂t2

)
P (x, t) = −f(x, t). (1)

where P is the pressure at a point x in the medium at time t. v(x) is the wave

propagation velocity field, and f(x, t) is the source term. A seismic experiment

is conducted in the field by exciting a seismic source f(xs, t) and recording at

many receiver stations (r1, r2, ...) where each receiver ri is positioned at xri
.

That data are collected from one experiment into a shot gather Ds(rj, t). This

experiment is repeated many times with different source locations to make a

collection of shot gathers.

To build a subsurface image, each shot is migrated independently by sim-

ulating two wavefields using equation 1. The first wavefield is the forward

propagated wavefield Pf (x, t) in which we try to mimic what has happened in

the field. This is done by using the source term

ff (x, t) = fs(t)δ(x− xs), (2)

and a zero boundary condition above the Earth surface. fs(t) is the source

signature that is usually given by data acquisition design. The second wavefield

4

is the backward propagated wavefield computed using the source term

fb(x, t) =
∑

j

δ(x− xrj
)Ds(rj, tmax − t). (3)

The final image is computed using

I(x,h) =
∑

s

∑
t

Pf (x + h, tmax − t; s)P b(x− h, t; s), (4)

where h is the subsurface offset. In practice, h is sampled in (1) the horizontal

direction producing horizontal subsurface offset gathers I(x, hx), and (2) the

vertical direction to produce the vertical subsurface offset gathers s I(x, hz).

For a 2D imaging problem, the horizontal and vertical offset gathers are two 3D

image volumes. Figures 1 and 2 show slices through the vertical and horizontal

subsurface offset cubes respectively.

It must be mentioned that the procedure above give a kinematically correct

image. Slight modifications to the equations provide accurate amplitudes [3].

However, those modification are not discussed here as they do not relate to

the focus of this study i.e. optimizing the algorithm.

3 CUDA programming model

Compute Unified Device Architecture (CUDA) is a programming platform for

massively parallel computation. Codes built with CUDA can run on graph-

5

Figure 1: Vertical subsurface offset
gather.

Figure 2: Horizontal subsurface offset
gather.

ics processing units (GPU). A GPU has many multiprocessors, each with its

own set of stream processors and shared memory. A GPU also have a global

DRAM memory usually with a size of several gigabytes. This memory is

uncached and memory latency is hidden by executing a massive number of

threads concurrently. Threads within a block can share data using the shared

memory. Threads are grouped together in thread blocks. Threads within a

thread block can share data and synchronize using barrier. That’s however is

not possible between thread blocks. Calling a kernel from the host code will

launch the thread blocks in unspecified order.

The number of processing units limit the maximum number of threads per

thread block. Moreover, the fixed size of the fast shared memory and registers

limit the number of thread blocks running concurrently on the GPU. For stencil

computation, 2D thread blocks are mapped to the data grid meaning that each

thread block handles a tile of grid points. The optimal thread blocks size is

16x16, which is determined by the device instruction set [2] and the available

6

shared memory (maximizing the number of grid blocks running concurrently

on a multiprocessor).

Many considerations has to be taken into account for optimizing CUDA

kernels. Coalesced global memory access can radically reduced memory ac-

cess instructions. Shared memory usage can also significantly reduce global

memory access. However, bank conflicts can hinder the performance gain of

using shared memory. Therefore, kernels should be designed to avoid or re-

duce simultaneous access to the same memory banks by the threads in a thread

block.

The kernels used for our implementation was run on Tesla 10-series GPU’s

(Tesla S1060) which contains 30 multiprocessors with 8 streaming processor

each, and 16 KB of shared memory. The memory bandwidth is about 100

GB/s, and the global memory is 4GB.

4 Performance metric

The total cost for 2D RTM algorithm for a grid size NxxNz and Nt time steps

is

CRTM = (Cforward−FDTD+Cbackward−FDTD)NxNzNtNshots+CImagingNINxNzNhNshots,

(5)

7

where Cforward−FDTD, Cbackward−FDTD, CImaging are the costs for forward, bacward

wave propagation, and imaging (both horizontal and vertical), respectivly. NI

is the number of imaging steps, and Nh is the number of points in the sub-

surface offset axis. FDTD costs include injection/boundary condition. Be-

cause of asynchronous execution of backward propagating kernels and imag-

ing kernels, it is difficult to isolate their costs. However, we estimate that

Cforward−FDTD = Cbackward−FDTD, where Cforward−FDTD can be calculated by tim-

ing the forward propagation part of the algorithm. Therefore, the throughput

metrics for wave propagations and imaging kernels are

C−1
FD = NxNzNt/(FDTD exec. time),

C−1
Imaging = NINxNzNh/(RTM exec. time− 2 ∗ FD exec. time).

both are expressed in Mpts/sec.

5 Wave propagation kernels

The wave equation is solved by explicite finite differencing that is second order

in time and eighth order in space,

P t+1 = v2∆t2
(
f t +∇2P t

)
+ 2P t − P t−1. (6)

8

We use similar approach to the one implemented by [1], but we generalize

variable grid spacing for each dimension. We also have separate kernels for

source function injection and recording. The energy of waves incident on

grid boundaries are attenuated by adding an absorption term to the wave

equation. That term is active around the neighborhood of the side and bottom

boundaries. Those inclusions to the algorithm increase the number of floating

point operations and memory accesses, which in turn reduce the throughput

of FDTD few hundreds of Mpts/sec compared to the reported performance

measures by [1].

The problem grid is divided into 16x16 blocks. Each grid block is assigned

to a thread block of the same size; i.e. each thread performs the FDTD for a

single point in the grid. Since data sharing is allowed between threads within a

thread blocks, shared memory is used to keep local copies of P t that is needed

for computing the spacial derivatives. Each thread with a thread block loads

the corresponding point on the grid of P t into shared memory. Because the

derivative stencil requires eight neighboring points in each dimension, some of

the threads are assigned to load the halos, i.e. the surrounding points of the

thread block.

9

6 Imaging kernel

The imaging equation 4 is used in practice to generate two image cubes with

the two x- and z-spatial dimensions and a the third dimension along hx(hz)

for horizontal(vertical) subsurface offsets. The subsurface offset can have both

positive and negative values. The following code snippet shows a simple kernel

for imaging condition.

g l o b a l void img kerne l (i n t zmin , i n t xmin , i n t h , f l o a t ∗p1 , f l o a t ∗p2){

i n t i=zmin+blockIdx . x∗blockDim . x+threadIdx . x ; /∗ z image l o c a t i o n ∗/

i n t j=xmin+blockIdx . y∗blockDim . y+threadIdx . y ; /∗ x image l o c a t i o n ∗/

img [i l o c (i , j , h)]+=p1 [l o c (i , j−h)] ∗ p2 [l o c (i , j+h)] ; /∗ imaging cond i t i on ∗/

}

This is a naive CUDA implementation of the imaging condition because no lo-

cality is taken advantage of because blocking is done based on image locations;

i.e. x and z locations of the image points while looping along the offset axis.

Blocking on the image point and horizontal offset slice and looping over the

depth for the horizontal offset cube will perform better. That is due to the fact

that there is not data dependencies in the dimension normal to the subsurface

offset dimension. Secondly, blocking along the subsurface offset dimension en-

ables data sharing between threads in a thread block. Figure 3 shows the data

dependancy projection from the output to input dimensions. This data in the

projection area (red and blue zones) can be shared between the threads in a

10

h

x
Shared grid points
from wave field 1

Shared grid points
from wave field 2

Figure 3: Thread block advancement along the offset axis and data sharing
between threads within the thread block. All data access from with the thread
block will fall within the shared areas from the forward and backward propa-
gated wavefields.

thread block to make use of the fast shared memory and minimize data traffic

from main memory.

For the naive imaging kernel, the number of device DRAM access for a

thread block of size N1x N2 is 4N1N2. The cost for the proposed algorithm is

2N1N2+2(N1+N2). For a 16x16 block, the number of global memory accesses

is reduced from 1024 to 544.

7 Summery

In this report, we showed an efficient implementation of wave propagation

kernel and a naive imaging kernel. We also showed a strategy for improving the

imaging kernel that reduces the cost to about 60% of the naive implementation.

11

0

1000

2000

3000

4000

 200 x 200 350 x 350 500 x 500 650 x 650 800 x 800 950 x 950 1100 x 1100

Comparison between imaging kernels

Improved kernel Naive kernel

Th
ro

ug
hp

ut
 [M

p
t/

se
c]

Grid dimensions

Figure 4: Performace of fully offloaded 2D RTM to a single GPU.

References

[1] Paulius Micikevicius. 3d finite difference computation on gpus using cuda.

In GPGPU-2: Proceedings of 2nd Workshop on General Purpose Process-

ing on Graphics Processing Units, pages 79–84, New York, NY, USA, 2009.

ACM.

[2] NVIDIA. NVIDIA CUDA Programming Guide 2.0. 2008.

[3] Yu Zhang and James Sun. Practical issues in reverse time migration: true

amplitude gathers, noise removal and harmonic source encoding. first break,

27:53–60, 1993.

12

0

7.5

15

22.5

30

 200 x 200 350 x 350 500 x 500 650 x 650 800 x 800 950 x 950 1100 x 1100

FDTD kernel Improved kernel naive kernel

Grid dimensions

E
xe

cu
tio

n
tim

e
[s

ec
]

Figure 5: Execution time of RTM kernels for a single shot with 4000 time
steps and 400 imaging steps and 81 points along the offset axis. Because of
large output of imaging (81x grid size) per imaging steps compared to finite
difference (20x grid size) most of the computing time is spent on generating
subsurface offset gathers.

13

