
Performance of RTM with ODCIG computation

fully offloaded to GPU

Abdullah Al Theyab and Robert G. Clapp

ABSTRACT

Nvidia’s graphics processing units (GPU) powered with Compute Unified Device
Architecture (CUDA), the supporting API, have allowed a significant speedup
to finite difference time domain (FDTD) seismic modeling and, consiequently,
to reverse time migration (RTM). To utilize the power of GPUs for velocity
analysis, we implemented kernels for generating offset-domain common image
gathers (ODCIGs). With 4GB of memory, a single Tesla 10 series GPU can
perform the 2D RTM with generation of ODCIGs. Computing the ODCIGs
takes the majority of the algorithm execution time because of the large volume
of output. We examine the performance of a general 2D RTM algorithm with
ODCIGs computation fully offloaded to a single GPU device. We optimized the
imaging kernel utilizing the available shared memory on the GPU to double the
throughput of the kernel.

INTRODUCTION

Reverse time migration (RTM) is a full wave equation imaging technique that con-
structs an image that best represents the subsurface structure. Seismic data are
migrated using an estimate of the wave propagation velocity in the subsurface. Es-
timates of the velocity field can be inaccurate at the first imaging attempt, and
subsurface offset gathers can provide a measure of the errors in velocity estimation
(Biondi and Symes, 2004). In addition, they can give amplitude versus offset (AVO)
information if amplitudes are handled properly. Algorithms for RTM and generation
of ODCIGs are known to be computationally expensive and sometimes unaffordable.
Therefore, an efficient implementation of RTM with ODCIGs generation algorithm is
vital for minimizing the time required for creating a complete image.

Reverse time migration falls into the class of convolution with a stencil computa-
tion. The stencil computation workload can be divided among many processing units
in an embarrassingly parallel fashion. However, the main performance limitation on
modern computer architectures is the memory latency. Cache-aware algorithms mini-
mize data traffic by taking advantage of spatial and temporal locality and/or the data
prefetch capabilities of modern CPUs. Another way of hiding memory latency is to
have more threads than cores to execute some threads while other threads are waiting
for memory access. The performance gain given by this technique is not significant

SEP–138

Al Theyab & Clapp 2 RTM offloaded to GPU

on CPUs because thread switching is expensive. This is not the case on GPUs, which
can run a massive number of threads concurrently to hide memory latency. This
capability makes GPUs very attractive hosts for stencil computational problems.

Micikevicius (2009) has shown an order of magnitude increase in performance for
the GPU’s FDTD kernel as compared to the kernel’s performance on multi-core CPUs.
The reported performance numbers are optimized for 3D by using equal grid spacing
in all dimensions and without using the surface and absorbing boundary conditions.

Bus connection speed can be a performance bottleneck for mixed CPU-GPU pro-
cessing. Generating subsurface offset gathers on the host using wavefields computed
on the GPU will slow down the algorithm significantly. Fortunately, this can be
avoided by fully offloading RTM and ODCIG generation to GPUs.

In this report, we review briefly the theory of RTM for an acoustic medium. We
detail the GPU implementation of RTM with generation of ODCIGs. We then analyze
the performance of GPU kernels on a single device. Finally, we optimize the imaging
kernel by using shared memory to double the throughput. The developed kernels
were run on Tesla 10 series GPUs.

GOVERNING EQUATIONS

Wave propagation in an acoustic medium is described by(
∇2 − 1

v2(x)

∂2

∂t2

)
P (x, t) = −f(x, t) (1)

where P is the pressure at a point x in the medium at time t, v(x) is the wave
propagation velocity field, and f(x, t) is the source term. A seismic experiment is
conducted in the field by exciting a seismic source f(xs, t) and recording the response
at many receiver stations (r1, r2, ...), each receiver ri is being positioned at xri

. The
data from one experiment are collected into a shot gather Ds(rj, t). The experiment
is repeated many times with different source locations to make a collection of shot
gathers.

To build a subsurface image, each shot is migrated independently by simulating
two wavefields using equation 1 with a zero source term. The first wavefield is the
forward propagated wavefield Pf (x, t). This is done by using the boundary condition

Pf (x, t) = δ(x− xs)

∫ t

0

fs(t
′)dt′ (2)

and a zero boundary condition above the Earth’s surface (Zhang and Sun, 1993). fs(t
′)

is the source signature. The second wavefield is the backward propagated wavefield
computed using the upper boundary condition

Pb(x, t) =
∑

j

δ(x− xrj
)Ds(rj, tmax − t). (3)

SEP–138

Al Theyab & Clapp 3 RTM offloaded to GPU

The final image is computed using

I(x,h) =
∑

s

∑
t

Pf (x + h, tmax − t; s)Pb(x− h, t; s) (4)

where h is the subsurface offset (Biondi and Symes, 2004). In practice, h is sampled
(1) in the horizontal direction, producing horizontal ODCIGs I(x, hx), and (2) in the
vertical direction to produce the vertical ODCIGs I(x, hz). For a 2D imaging problem,
the horizontal and vertical ODCIGs are two 3D image volumes. Figures 1(a) and 1(b)
show slices through the vertical and horizontal subsurface offset cubes, respectively.

(a) (b)

Figure 1: (a) Vertical ODCIGs. (b) Horizontal ODCIGs. The energy is focused at
the zero-offset because the data was migrated using the correct velocity.

CUDA PROGRAMMING MODEL

Compute Unified Device Architecture (CUDA) is the GPU supporting API extension
to the C programming language. A GPU has many multiprocessors, each with its
own set of stream processors and shared memory. A GPU also has a global DRAM
memory, usually with a size of several gigabytes. This memory is uncached and
memory latency is hidden by executing a massive number of threads concurrently.
Threads are grouped together in thread blocks. Threads within a thread block can
share data by using shared memory and can synchronize by using barriers. However,
such data sharing and synchronizing are not possible between thread blocks. Calling
a kernel from the host code will launch the thread blocks in an unspecified order.

The number of processing units limits the maximum number of threads per thread
block. Moreover, the fixed size of the fast shared memory and the number of regis-
ters limit the number of the thread blocks that run concurrently on a single multi-
processor. For stencil computation, 2D thread blocks are mapped to the data grid
which means that each thread block handles a tile of grid points. The optimal thread
block size is 16x16, which is determined by the device instruction set (NVIDIA, 2008)
and the available shared memory.

SEP–138

Al Theyab & Clapp 4 RTM offloaded to GPU

Many considerations have to be taken into account when optimizing CUDA ker-
nels. Coalesced global memory access can radically reduced memory access instruc-
tions. Shared memory usage can also significantly reduce global memory access.
However, bank conflicts can hinder the performance gain from using the shared mem-
ory. Therefore kernels should be designed to avoid or reduce simultaneous access to
the same memory banks by the threads in a thread block.

The kernels used for our implementation were run on a Tesla 10-series GPU (Tesla
S1060). This GPU contains 30 multiprocessors, each with 8 streaming processors and
16 KB of shared memory. The memory bandwidth is 104 GB/s, and the global
memory is 4GB in size.

PERFORMANCE METRICS

The total cost of the 2D RTM with ODCIGs generation algorithm for a grid with the
size NxxNz and Nt time steps is

Ctotal = (Cforward−FDTD + Cbackward−FDTD)NxNzNtNshots + CImagingNINxNzNhNshots,
(5)

where Cforward−FDTD, Cbackward−FDTD, and CImaging are the costs for forward wave prop-
agation, backward wave propagation, and imaging, respectively. NI is the number of
imaging steps, and Nh is the number of points in the subsurface offset axis. FDTD
cost includes the cost of setting the surface boundary condition. Because of the
asynchronous execution of backward propagating kernels and imaging kernels, it is
difficult to isolate their costs. We estimate that Cforward−FDTD = Cbackward−FDTD,
where Cforward−FDTD can be calculated by timing the forward propagation part of
the algorithm. Therefore the throughput metrics for wave propagation and imaging
kernels are

C−1
FD = NxNzNt/(FDTD exec. time),

C−1
Imaging = NINxNzNh/(Total exec. time− 2 ∗ FDTD exec. time).

Both are expressed in millions of output points per second (Mpts/sec).

WAVE PROPAGATION KERNELS

The wave equation is solved by explicit finite differencing that is second order in time
and eighth order in space, as expressed in

P t+1 = v2∆t2
(
f t +∇2P t

)
+ 2P t − P t−1. (6)

We use an approach similar to the one implemented by Micikevicius (2009), but we
generalize it to accommodate variable grid spacing for each dimension. We also have
separate kernels for the source function injection. The waves incident on the grid

SEP–138

Al Theyab & Clapp 5 RTM offloaded to GPU

boundaries are attenuated by adding an absorption term to the wave equation. That
term is active around the neighborhood of the side and bottom boundaries. Those
inclusions to the algorithm increase the number of floating point operations and the
number of memory accesses, which in turn reduce the throughput of FDTD by a
few hundreds of Mpts/sec as compared to the reported performance measures by
Micikevicius (2009).

The problem grid is divided into a grid of 16x16 blocks as illustrated by Figure 2.
Each grid block is assigned to a thread block of the same size; i.e., each thread per-
forms the finite differencing on a single point on the grid. Since data sharing is allowed
between threads within a thread block, shared memory is used to keep local copies
of P t that are needed for computing the spatial derivatives. Each thread within a
thread block loads the corresponding point on the grid of P t into shared memory.
Because the derivative stencil requires eight neighboring points in each spatial dimen-
sion, some of the threads are assigned to load the halos, i.e., the surrounding points
of the thread block.

Figure 2: Thread blocks of the wave propagation kernel are mapped to areal blocks
of the domain. A thread block has to read the assigned grid points (green area) and
halos (yellow) from neighboring points to shared memory.

IMAGING KERNEL

The imaging equation(4) is used in practice to generate two ODCIGs cubes with
the two x- and z-spatial dimensions and a the third dimension along hx (hz) for
horizontal (vertical) subsurface offsets. The subsurface offset can have both positive

SEP–138

Al Theyab & Clapp 6 RTM offloaded to GPU

and negative values. The following code snippet shows a simple kernel that computes
I(x, hz):

__global__ void img_hz_kernel(float *p1 , float *p2){

int i=blockIdx.x*blockDim.x+threadIdx.x; /* z image location */

int j=blockIdx.y*blockDim.y+threadIdx.y; /* x image location */

for(int h=hmin; h<hmax; h++)

img_zh[iloc(i,j,h)]+=p1[loc(i-h,j)]*p2[loc(i+h,j)];/* imaging condition*/

}

Grid blocking of image locations (z, x) is similar to the one shown for wave propaga-
tion. The iteration occurs along the offset axis, h, which means that the thread block
extent is the whole offset axis. This is a naive implementation of the imaging condi-
tion because of the redundant reads from global memory. The global memory access
pattern of the naive imaging kernel is illustrated in Figure 3(a), where, for each point
in the 3D output space, two values from Pf and Pb are needed. The imaging kernel
can be improved so that redundant reads from within a thread block are eliminated.

For the sake of simplicity, we consider a 1D thread block of dimension n that has
an offset extent of n points; i.e., each thread block will compute a tile of size n2 from
the output space (z, hz). For the naive imaging kernel, the number of global memory
accesses is 4n2; i.e., to update a point in the output volume (offset gathers), two
reads from the wavefields, and one read and one write for updating the offset gathers
are needed. Figure 3(b) shows areas that will be accessed from the wavefields. The
width for each area is twice the width of the thread block n. The common areas can
be copied to the shared memory, so that each thread will copy two values from the
shared area. After that the thread block advances along the offset axis and uses the
data from shared memory, as shown using the following kernel:

__global__ void img_hz_improved_kernel(int h0 /* first offset */,

float *p1, float *p2){

__shared__ float s_p1[BLOCK_SIZE][2*BLOCK_SIZE];

__shared__ float s_p2[BLOCK_SIZE][2*BLOCK_SIZE];

int i=hmax_gpu+blockIdx.x*blockDim.x+threadIdx.x; /* z-location */

int j=blockIdx.y*blockDim.y+threadIdx.y; /* x-location */

/* offset extent of the thread block */

int hmin=h0-hmax_gpu; /* minimum offset */

int hmax=hmin+BLOCK_SIZE; /* maximum offset */

/* copy to shared memory */

s_p1[threadIdx.y][threadIdx.x]=p1[loc(i-hmax, j)];

s_p2[threadIdx.y][threadIdx.x]=p2[loc(i+hmin, j)];

s_p1[threadIdx.y][BLOCK_SIZE+threadIdx.x]=p1[loc(i-hmin, j)];

SEP–138

Al Theyab & Clapp 7 RTM offloaded to GPU

block
extent

Shared grid points
from wave field 1

Shared grid points
from wave field 2

offset

Img. point

Ctotal = (Cforward FD + Cbackward FD)NxNzNt + CIMGNINxNzNh. (1)

C−1
FD = NxNzNt/(FD exec. time)

C−1
IMG = NINxNzNh/(RTM exec. time− 2 ∗ FD exec. time)

N1 x N2 is 4N1N2

2N1N2 + 2(N1 + N2)

1

Ctotal = (Cforward FD + Cbackward FD)NxNzNt + CIMGNINxNzNh. (1)

C−1
FD = NxNzNt/(FD exec. time)

C−1
IMG = NINxNzNh/(RTM exec. time− 2 ∗ FD exec. time)

N1 x N2 is 4N1N2

2N1N2 + 2(N1 + N2)

1

offset

Img. point

h

h h

(b)

(a)

Figure 3: The memory access pattern of imaging: (a) To compute the image value (at
the star), two points from Pf (blue) and Pb (red) are needed. (b) This diagram shows
the thread block advancement along the offset axis and data sharing from within the
block. All data access from with the thread block will fall in the shared areas from
Pf (blue) and Pb (red).

SEP–138

Al Theyab & Clapp 8 RTM offloaded to GPU

s_p2[threadIdx.y][BLOCK_SIZE+threadIdx.x]=p2[loc(i+hmax, j)];

/* synchronize threads */

__syncthreads();

/* prepare addressing variables */

int base=loc(i,j)+h0*n1*n2;

int stride=n1*n2;

/* internal loop along the offset axis */

for(int h=0; h<BLOCK_SIZE; h++){

zimg[base+h*stride]+=

s_p1[threadIdx.y][BLOK_SIZE+threadIdx.x-h]

*s_p2[threadIdx.y][threadIdx.x+h];

}

}

The number of global memory accesses for the improved algorithm is 2n2 + 4n.
For a thread block of width 16, the number of global memory accesses is reduced from
1024 (naive) to 576 (improved).

KERNEL’S PERFORMANCE

The throughput of the RTM kernels is shown in Figure 4, and their relative execu-
tion times are shown in Figure 5. For comparison, thread blocks for imaging kernels
were 16x16 for both kernels, and the improved kernel has an offset extent of 16. The
throughput of the improved kernel is double the throughput of the naive implemen-
tation. Modifying the block sizes yielded a negligible improvment of in performance.
This optimized kernel is applicable to 3D imaging. However, 4GB of GPU memory
is not sufficient to host the 4D output volume.

SUMMARY AND FUTURE DIRECTIONS

In this paper, we have shown the implementations of the naive imaging kernel. We also
demonstrated a strategy for improving the imaging kernel that doubles the through-
put of the naive implementation. This implementation is applicable to 3D imaging
problems, although the available memory for current GPUs is not sufficient to hold
the generated image volumes. We are considering generating horizon-based ODCIGs
for 3D wave propagation.

SEP–138

Al Theyab & Clapp 9 RTM offloaded to GPU

0

1000

2000

3000

4000

5000

6000

7000

8000

 200 x 200 500 x 500 800 x 800 1100 x 1100 1400 x 1400 1700 x 1700 2000 x 2000

Throughput of RTM kernels

Wave propgation Naive imaging Optemized imaging

Grid dimensions

Th
ro

ug
hp

ut
 [M

p
t/

se
c]

Figure 4: Performance of 2D RTM fully offloaded to a single GPU.

0

1.2

2.4

3.6

4.8

6

7.2

8.4

9.6

10.8

12

 200 x 200 500 x 500 800 x 800 1100 x 1100 1400 x 1400 1700 x 1700 2000 x 2000

Execution time of RTM kernels

Wave propagation Naive Imaging Optimized Imaging

E
xe

cu
tio

n
tim

e
[s

ec
]

Grid dimensions

Figure 5: Execution time of RTM kernels for a single shot with 1000 time steps, 100
imaging steps, and 81 points along the offset axis. Because of the large output volume
of imaging (2x81x grid size) per imaging step as compared to (10x grid size) most of
the RTM computing time is spent on generating subsurface offset gathers.

SEP–138

Al Theyab & Clapp 10 RTM offloaded to GPU

ACKNOWLEDGMENTS

We would like to thank Nvidia for providing the Tesla S1070 GPUs for SEP. We also
thank Paulius Micikevicius for sharing his CUDA implementation of FDTD.

REFERENCES

Biondi, B. and W. W. Symes, 2004, Angle-domain common-image gathers for mi-
gration velocity analysis by wavefield-continuation imaging: Geophysics, 69, 1283–
1298.

Micikevicius, P., 2009, 3d finite difference computation on gpus using cuda: GPGPU-
2: Proceedings of 2nd Workshop on General Purpose Processing on Graphics Pro-
cessing Units, 79–84, ACM.

NVIDIA, 2008, Nvidia cuda programming guide 2.0.
Zhang, Y. and J. Sun, 1993, Practical issues in reverse time migration: true amplitude

gathers, noise removal and harmonic source encoding: first break, 27, 53–60.

SEP–138

