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ABSTRACT

Seismic data geometries are not always as nice and regular as we want due to
various acquisition constraints. In such cases, data interpolation becomes neces-
sary. Usually high-frequency data are aliased, while low-frequency data are not,
so information in low frequencies can help us interpolate aliased high-frequency
data. In this paper, I present a 3D data interpolation scheme in pyramid do-
main, in which I use information in low-frequency data to interpolate aliased
high-frequency data. This is possible since in pyramid domain, only one predic-
tion error filter (PEF) is needed to represent any stationary event (plane-wave)
across all offsets and frequencies. However, if we need to estimate both the miss-
ing data and PEF, the problem becomes nonlinear. By alternately estimating
the missing data and PEF, we can linearize the problem and solve it using a
conventional least-squares solver.

INTRODUCTION

Data interpolation is an important step in seismic data processing that can greatly
affect the results of later processing steps, such as multiple removal, migration and
inversion. There are many ways to interpolate data, including Fourier-transform-
based approaches (e.g., Xu et al., 2005) and PEF-based approaches (e.g., Spitz, 1991;
Crawley, 2000). A PEF is a filter that predicts one data sample from n previous
samples, where n is the length of the PEF. One important feature of a PEF is that
it has the inverse spectrum of the known data, so when it is convolved with known
data, it minimizes the convolution result in the least-square sense. PEF estimation
can be done in either time-space (t-x) domain or frequency-space (f-x) domain (e.g.
Claerbout, 1999; Crawley, 2000; Curry, 2007), however, if PEF estimation is done in
the f-x domain, every frequency needs one distinct PEF.

The pyramid domain was introduced by Ronen (Hung et al., 2005), and is a re-
sampled representation of an ordinary f-x domain. Although it has frequency and
space axes, the spatial sampling is different for different frequencies. This is attractive
because we can use sparser sampling to adequately sample the data at lower frequen-
cies, which makes uniform sampling for all frequencies unnecessary. Therefore in the
pyramid domain, coarser grid spacing is used for lower frequencies, while finer spacing
is used for higher frequencies. This makes it possible to capture the character of all
frequency components of stationary events with only one PEF. So the information in
the low frequency data can be better used to interpolate higher frequency data.
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In this paper, I present a 3D version of data interpolation in the pyramid domain
based on PEF estimation, which is based on Shen (2008). The paper is organized
as follows: I first show the 3D pyramid transform and corresponding missing-data
interpolation and PEF estimation. I then show synthetic data examples. Finally, I
conclude with the advantages and disadvantages of this interpolation method.

METHODOLOGY

There are two important parts of the pyramid-based interpolation algorithm, the
first of which is the selection of the pyramid transforms between pyramid domain
and f-x domain. The more accurately these transforms are performed, the better
the result we can get for missing data interpolation. The second step combines data
interpolation and PEF estimation in the pyramid domain, which are done alternately
in an iterative way.

3D pyramid Transform between pyramid domain and f-x do-
main

I discussed the 2D pyramid transform in Shen (2008), and the 3D version is almost
the same, except that some scalars become vectors. In the 3D pyramid transform,
spatial grid spacing is calculated for each frequency f using the equation
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where Ax(f), Axg, v and ng are all 2D vectors. Axg is the uniform spatial grid
spacing in the original f-x data, v is the velocity that controls the slope of the pyramid
and ng is the sampling factor in pyramid domain. By changing this factor we can
control how densely the pyramid domain is sampled. In situations where events to
be interpolated are not perfectly stationary, dense sampling is preferrable since the
information in the low frequencies cannot be represented well by only a few points.
In 3D, the inversion scheme that transforms data in f-x space to the pyramid domain
is as follows:

Ax(f) (1)

Lm—-d =0, (2)

where m is the data in the pyramid domain, d is the known data in f-x space, and
L is the 2D linear interpolation operator in 3D pyramid transform. The 3D pyramid
transform from pyramid domain to f-x domina uses the following equation :

d = Lm. (3)

Where now m is known and d is unknown data in f-x space.
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PEF estimation and Missing data estimation

The missing data estimation algorithm presented here is different from what I pre-
sented in the previous paper (Shen, 2008). Missing data are fitted in the f-x domain
to ensure better fitting of known data. Also, the 3D version of these algorithms use
helical coordinates (Claerbout, 1999) to perform the convolution.

For PEF estimation, I try to solve the following problem assuming known pyra-
mid data m. Denoting convolution with m as operator M, with W being a diago-
nal masking matrix that is 1 where pyramid data can be used for PEF estimation
and 0 elsewhere, I try to solve for the unknown PEF a using the following fitting
goal(Claerbout, 1999):

WDMa =~ 0, (4)

For missing-data estimation, I start with a known PEF A, and try to solve the
following least-squares problem (Claerbout, 1999):

K(Lm-d)~0 (5)
eWAm~ 0,

where K is a diagonal masking matrix that is 1 where data is known and 0 elsewhere,
€ is a weight coefficient that reflects our confidence in the PEF, and W is the same
as explained above.

Linearized nonlinear problem

To estimate both missing data and the PEF, the problem becomes nonlinear. To
avoid directly solving nonlinear problem, I linearize it by alternately estimate missing
data and PEF, and use them to update each other. Corresponding pseudo code is as
follows:

for each iteration i{
estimate missing data m_i from PEF a_(i-1) using equation 5
estimate PEF a_i from missing data m_i using equation 4

3

I start with my guess of the PEF, ag. First, I make an operator Ag that is
convolution with ag, and I use it to estimate the missing data mg. From mg, I make
an operator Mg that is a convolution with mg. Then I update ag using My, calling
the updated ag as a;. This process makes one iteration of the linearized problem.
Then I repeat this process, making A; from a;, updating mg to m; using A, making
M; from mj, updating a; to as using My, and so on... Finally the algorithm will
converge to some m and a; hopefully, by careful choosing of ag, I will converge to the
correct m and a.
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EXAMPLE

Here I show two examples of missing-data interpolation using the linearized iterations
described above. Both are 3D synthetic examples. The first example interpolates 3D
plane-waves. The second dataset is a patch from the qdome data set Claerbout (1999).

Synthetic plane-waves

In this example, there are three plane-waves with different frequency components and
dips (Figure 1a). I sub-sampled the data cube by a factor of three along both the x and
y axes. This causes aliasing in two of the three plane-waves (Figure 1b), which can also
be seen from their f-k spectrum( Figure 2). Then with the initial guess of the PEF
being a 2D Laplacian operator, the above algorithms converged to a decent result at
most places, except for data points close to the edges (Figure 3a). More specifically,
the remaining data, after being transformed into the pyramid domain, looks like
Figure 4a. There are a lot of holes, which are caused by missing data and big sampling
factors (ngf in equation 1) used in pyramid domain. In this example, a sampling factor
of 6 along the inline direction and a factor of 8 along crossline direction are used to
make sure we have enough sample to represent all the frequencies, especially low
frequencies. With the initial guess of the PEF being a 2D Laplacian operator, these
holes in the pyramid domain will be filled; however, since this is just a guess of the
PEF, the filled information is not necessarily correct (Figure 5b). Actually, the t-x
domain data of interpolation with this PEF are step-like functions for aliased plane-
waves (Figure 3b). However, for the unaliased low-frequency plane-wave, the missing
data is already correctly interpolated. After five iterations of the algorithm, using the
information from low-frequency data, the interpolated data finally have the correct
dips for all the frequency components (Figure 5a).

Patch from the qdome data set

In this example, I windowed out one fourth of the qdome data set, in which the
reflectors are almost stationary (Figure 6 a). I then sub-sampled the data cube by
a factor of four along both the = and y axes (Figure 6 b). This caused aliasing of
some reflectors, especially in the cross line direction, as the f-k spectrum of Figure
7 shows. Since this data set is more complicated then the previous one, and not
all the reflectors are ideally stationary, in the pyramid domain, I use ten as the
sampling factor along both x and y directions to make sure low frequency data are well
represented. Then with the initial guess of the PEF also being 2D Laplacian operator,
the above algorithms converged to a satisfactory result for most of the reflectors
(Figure 8b ). Notice that for reflectors with small amplitude, the interpolation works
not so well, and tuning the PEF size may help solving this problem. By looking at
the the depth slice in Figure 8b , zeros can be observed for data at small x and y
values, this is due to insufficient number of data points for PEF estimation at these
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Figure 1: a) Original data, consisting of three plane waves with different dips and
frequency contents. b) Sub-sampling by a factor of three along both z and y axes.
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Figure 2: a) The f-k spectrum of the original data. b) The f-k spectrum of the
sub-sampled data. [ER]
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Figure 3: a) Interpolated data. b) Data interpolated with the Laplacian operator in
the pyramid domain. [CR]
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Figure 4: a) Remaining data in the pyramid domain. b) Data interpolated with the
Laplacian operator in pyramid domain. [CR]
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Figure 5: a) Interpolated data (final version) in pyramid domain. b) Data interpolated
with the Laplacian operator in pyramid domain. [CR|]

locations. On the other hand, the other two edges have much stronger amplitude
artifacts, which requires further investigation.

FUTURE WORKS

So far, for stationary events, this algorithm works quite well. For real data, the
assumption of stationarity holds if we break the data into small patches and look at
each individual patch. So the next step will be to looking at more complex data and
try to apply this algorithm with patching technique.

CONCLUSIONS

The pyramid domain is a very promising domain for missing-data interpolation. The
synthetic examples demonstrate that, with a good initial PEF estimate, we can use
the information in the low frequency to interpolate the aliased missing data relatively
accurately and interpolate the unaliased missing data fairly well.

One disadvantage of this interpolation scheme is computation cost. First, to get a
decent result, the data samples in pyramid domain is an order more than that in f-x
domain along each spatial axis; in 3D, that amounts to a factor of 100 or more. In
addition, the linearized nonlinear iteration adds a factor of about five in the synthetic
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Figure 6: a) Original patch of qdome data, where all the reflectors are almost sta-
tionary. b) Sub-sampling by a factor of four along both the x and y axes. [ER]
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Figure 7: a) The f-k spectrum of the original data. b) The f-k spectrum of the
sub-sampled data. [ER]
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Figure 8: a) Original patch of qdome data. b) Interpolated data. [CR]

test. In other words, we have to do both PEF estimation and data interpolation five
times in total. Altogether, we first increase the data size by a factor of 100, then
run about 5 rounds of data estimation. So the overall computational cost is about
500 times greater than a conventional PEF based interpolation scheme (e.g. Spitz,
1991). However, with a patching technique, many patches of data can be interpolated
simutaneously using parallelized version of this algorithm.
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