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ABSTRACT

Inverse theory can never be wrong because it’s just theory. Where problems
arise and opportunities are overlooked is where practitioners grab and use in-
verse theory without recognizing that alternate assumptions might be better.
Here I formulate anti-crosstalk operators to supplement (or replace) familiar reg-
ularizations in image estimation. Applications appear abundant.

Theoretical example

First let us consider an extremely simple theoretical example with an issue of “cross
talk”. Notice that word itself is absent from linear inverse theory. (Anyway, it’s

absent from the index of Tarantola’s book.) Normally we think of “high frequencies”
as being orthogonal to “low frequencies”. In this example that will be true from a
theoretical viewpoint, but no practical person would consider it to be true.

Consider a signal that is an impulse which is to be split into its low and high
frequencies. We might write this as 0 = l + h− d, namely, zero equals low plus high
minus data. Let us extract low frequencies from the data with a step function in the
Fourier domain or convolving with a sinc function in the time domain. Clearly the
high frequency component in the Fourier domain is the constant function minus the
step. In the time domain it is a delta function minus a sinc (since high plus low is a
delta function). Theoretically everything is fine. Usually a vanishing cross product
means a sum of terms vanishes. Here every term vanishes in the Fourier domain when
we multiply the step times one minus the step. That is powerful orthogonality! In
the time domain the convolution of the two, sinc ∗ (1− sinc) = sinc− sinc ∗ sinc =
sinc−sinc = 0 vanishes not just at zero lag, but at all lags. That is powerfully strong
orthogonality too. Theoretically, high and low frequency components of the data are
orthogonal at every frequency and at every lag. What would the experimentalist have
to say? The experimentalist would look in the time domain at the low frequency
function and at the high frequency function and say, “Everywhere I look at these two
functions they are the same. They can’t be orthogonal. They have a massive amount
of crosstalk.” Of course the two functions are not exactly the same. They have
opposite polarities, and they are not the same at the origin point. But everywhere
else they look the same. We don’t like it. These signals should not be coherent but
they are.

I first encountered this crosstalk issue in a serious geophysical application of a very
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simple nature. The lack of a good place for crosstalk in the theoretical framework
was blatantly obvious.

Lake example

A depth sounding survey was made of a lake. A boat with a depth sounder sailed
a gridwork of passes on the lake. Upon analysis the final image contained obvious
evidence of the survey grid. Oops! We should always hide our data acquisition
footprint. The footprint is not the geography or geology we wish to show. How
did this happen? We guessed the water level changed during the survey. Perhaps
it rained or perhaps the water was used for agriculture. Perhaps the wind caused
the lake to “pendulum” (seiche). Perhaps the operator sat in the front of the boat,
or sometimes its back, or ran it at various speeds giving the depth measurement a
different bias. Our data measured the difference between the top and the bottom of
the lake; yet we had no idea how to model the top. Eventually we modeled the top
as an “arbitrary low frequency function” in data space (a one dimensional function
following the boat). This got rid of the tracks in the model space (map space) but
led to much embarrassment. It was embarrassing to discover that the geography (as
seen in data space) was correlated with the lake surface (rain and drain).

Let us express these ideas mathematically: d is the data, depth along the survey
coordinate d(s). Here s is a parameter like time. It increases steadily whether the
boat is sailing north-south or east-west or turning inbetween. The model space is the
depth h(x, y). There will be a regularization on the depth, perhaps 0 ≈ ∇h(x, y).

For the top of the lake with the ship we need some slowly variable function of
location s. It’s embarrassing for us to need to specify it because we have no good
model for it. So, we specify a slowly variable function u = u(s) by asking a random
noise function n = n(s) to run thru a low frequency filter, say L. We are not
comfortable also about needing to choose L. We call the function u = Ln the rain
and drain function. We take the regularization for the unknown n to be 0 ≈ n.
(Least squares will tend to drive components of n to similar values, and under some
conditions likewise the spectrum of n will tend to white, so we expect (and often find)
the spectrum of u comes out that of L.)

The operator we do understand very clearly is the geography operator G. Given
we wish to make a theoretical data point (water depth), the geography operator G
tells us where to go on the map to get it. Of course each of the two regularizations
0 ≈ ∇h(x, y) and 0 ≈ n has its own epsilon which is annoying because we need to
specify those too. With all these definitions our unknowns are the geography h and
the noise n that builds us a drift function. Our data fitting goal says the data should
be the separation of the top and bottom of the lake.

0 ≈ Gh + Ln− d (1)

In my free on-line textbook GEE all this seemed rather conventional and rather

SEP–136



Claerbout 3 Anti-crosstalk

fine. Our embarrassment came when we compared the geographically modeled part
of the data Gh to the drift (rain and drain) modeled part of the data Ln. They
were visibly correlated. This is crazy! The boat being in deep water should not
correlate with rain (or drain). We needed to add an ingredient to the formulation
saying u = Ln should be orthogonal to Gh (which is practically the same as d) in
some generalized sense. Let us see how this might be done.

A regression to minimize crosstalk

Observing the geographically modeled data Gh correlating with the data drift u = Ln
we wish to articulate a regression that says they should not correlate. Since the drift
u is a small correction to the data d, in other words Gh ≈ d, we can simplify the
goal by asking that the dot product of d with u should vanish, vanish not necessarily
over the entire data set; but that it should vanish under many triangular weighed
windows.

Let us define D as a diagonal matrix with d on the diagonal. This may be a
little unfamiliar. Often we see positive weighting functions on the diagonal. Here we
see data (possibly with both polarities) on the diagonal. Additionally, let us define
a matrix T of convolution with a triangle. Columns of T contain shifted triangle
functions, likewise do rows. Take t′ to be any row of T. Then t′D is a row vector of
triangle weighted data. We want the regression 0 ≈ t′Du for all shifts of the triangle
function. The way to express this is:

0 ≈ (TD)u (2)

0 ≈ (TD)Ln (3)

Hooray! Now we know what coding to do! But first, to better understand the
regression (2) imagine instead that T is a square matrix of all ones, say 1. That
would be like super wide triangular windows. Then every component of the vector
1Du contains the same dot product d · u. Using T instead of 1 gives us those
dot products under a triangle weight, each final vector component having a shifted
triangle.

What is a good name for TD? It measures the similarity of d and u. It might
be called the “data similarity” operator. What is a good name for its adjoint DT?
Assuming whatever comes out of T is a smooth positive function, then DT is a
data gaining operator (its input being a gain function). Do we have any geophysical
problems where the unknown is the gain?

Crosstalk in a more general context

We seemed to escape nonlinearity in the lake depth sounding example above, but that
was a lucky accident. Since the data there was mostly explained by geography with
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a small perturbation by rain and drain, the crosstalk while fundamentally nonlinear
was practically linear. More generally anti-crosstalk strategies seem little (if ever!)
developed because they lead us directly into nonlinear regression. Let us work through
the general case, the nonlinear theory.

Consider data d a shot gather or CMP gather. We might choose to model it as
reflections (hyperbolas) d1 plus linear events d2 (noises or head waves). We might
thus set up the regression

0 ≈ d1 + d2 − d (4)

0 ≈ F1m1 + F2m2 − d (5)

Of course we need some damping regularization on m1 and m2 which for simplicity
of exposition I will take to be 0 ≈ m1 and 0 ≈ m2. Is that all there is to this
problem? Not necessarily. We’ll be annoyed if we discover a lot of cross talk between
d1 and d2. Two different physical mechanisms are supposed to have created our
data. We’ll be annoyed to discover they both make the same contribution or that
they make opposite contributions. The regularization should reduce (or prevent) the
contributions from coming out opposite. If they are opposites, it could represent our
lack of analytic skills in formulating the regularization, or it could represent our need
for the anti-crosstalk methodology being proposed here.

We’d like that the modeled data parts d1 and d2 do not ”look like” each other.
It’s not enough that the dot product d1 ·d2 vanish. That dot product should be small
under all shifted (say triangular) weighting windows. Since d1 is a linear function of
the model m1 and likewise for d2, the orthogonality we seek involves the product of
m1 with m2 so our goals are a non-linear function of our unknowns. Never fear. We
have done non-linear problems before. They don’t turn out badly when we are able
to define a good starting location (which we do by solving the linearized non-linear
problem first).

The full non-linear derivation

For warm up we linearize in the simplest possible way. Suppose we allow only m1 to
vary keeping m2 fixed. We put d2 on the diagonal of a matrix, say D2. The regression
for anti-crosstalk is now

0 ≈ TD2d1 (6)

0 ≈ TD2F1m1 (7)

Define the element-by-element cross product of d2 times d1 to be d1×d2. Now let
us linearize the full non-linear anti-crosstalk regularization. Let a single element of
d1× d2 be decomposed as a base plus a perturbation d = d̄ + d̃. A single component
of the vector d1 × d2 is (d̄1 + d̃1)(d̄2 + d̃2). Linearizing the product (neglecting the
product of the perturbations) gives

d̄2d̃1 + d̄1d̃2 + d̄2d̄1 (8)
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This is one component. We seek an expression for all. It will be a vector which is a
product of a matrix with a vector. We want no unknowns in matrices; we want them
all in vectors so we will know how to solve for them.

D̄2d̃1 + D̄1d̃2 + D̄1d̄2 (9)

Express the perturbation parts of the vectors as functions of the model space

D̄2F1m̃1 + D̄1F2m̃2 + D̄1d̄2 (10)

This vector should be viewed under many windows (triangle shaped, for example).
Under each window we hope to see the product have a small value. The desired
anti-crosstalk regression is to minimize the length of the vector below by variation of
the model parameters m̃1 and m̃2.

0 ≈ T(D̄2F1m̃1 + D̄1F2m̃2 + D̄1d̄2) (11)

This regression augments our usual regularizations. Perhaps it partially or signifi-
cantly supplants them. Unfortunately, it requires yet another epsilon.

Upon finding m̃1 and m̃2 we update the base model m̄← m̄ + m̃ and iterate.

Outlook

Many examples suggest themselves.

1. We might model reflection data as a superposition of primaries and multiples.
We might model it as a superposition of pressure waves and shear waves.

2. In tomography we might model event flatness as a superposition of shallow and
deep slownesses. The shallow and deep slownesses have wholly different causes
separated by millions of years. They should not show crosstalk.

3. The problem of segregating signal and noise offers many examples. We’d like
to see signal containing no evident noise and vice versa.

4. In time-lapse seismology we would like to see the the image change unpolluted
by the original image. Unfortunately, the methodology proposed here does not
allow for time-shifted crosstalk.

Getting started

As the concepts here are quite new to us, the first thing we should do is cook up some
super simple synthetic examples. With working synthetic codes in hand we should
see if we can go ahead and repair the Galilee survey. Hopefully we’ll recognize we
have built some reusable software to facilitate other projects.
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Getting started will not be easy. Most commonly we have a simple synthetic
example under control and struggle to find an appropriate real data set. Here we
have a suitable beginners’ data set (Galilee) but we need to find a synthetic data set
to provide examples that give clarity to the whole process. Just one issue is dealing
with the relative scaling of the three regularizations. We’d like meaningful examples
where only one or two of the regularizations are actually required.

There are many paths to explore with anti-crosstalk technology. Besides the many
potential applications one can hope that the anti-crosstalk regularization eliminates
(or reduces) the need for the usual regularizations. That would be nice if true. The
need to specify a suitable regularization is often what makes it difficult to automate
data analysis based on inversion.

I’m worried about the job as I defined it for the first-year SEP students. Given
the linearization I suggested to them, did they know how to measure success?
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