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ABSTRACT

We discuss two regularized least-squares inversion formulations for time-lapse
seismic imaging. Differences in acquisition geometries of baseline and monitor
datasets or the presence of a complex overburden can degrade the quality of
the time-lapse seismic signature. In such a scenario, the time-lapse amplitude
information are poor indicators of the true reservoir property changes. Although
the migration operator accurately images the seismic data, it does not remove
these amplitude distortions. We pose time-lapse imaging as joint linear inverse
problems that utilize concatenations of a target-oriented approximation to the
least squares imaging Hessian. In one of the two formulations considered, outputs
are inverted time-lapse images, while in the other, outputs are evolving images of
the study area. Using a 2D-synthetic sub-salt model, we demonstrate that either
joint-inversion formulation can attenuate overburden and geometry artifacts in
time-lapse images and that joint wave-equation inversion yields more accurate
results than migration or separate inversion.

INTRODUCTION

Hydrocarbon exploration and production has gradually shifted from simple to com-
plex geological environments. Relatively simple imaging and monitoring objectives
(e.g. anticlinal-type traps) have been replaced by more complex ones (e.g., sub-
salt reservoirs and stratigraphic traps). Since most of the current time-lapse seismic
imaging technologies are inadequate in many emerging frontiers, new imaging and
monitoring methods are required. In addition, differences almost always exist be-
tween acquisition geometries of different seismic datasets. Such geometry differences
may be due to new (or more efficient) acquisition systems and design, production
facilities (absent at the time of the baseline survey) or nature (e.g., ocean currents).

Our goal is to attenuate artifacts from two major sources:

1. poor and uneven sub-surface illumination in reservoirs under complex overbur-
den, and

2. disparities in acquisition geometries of the baseline and monitor surveys.
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Ayeni and Biondi 2 Joint time-lapse inversion

We achieve these objectives by simultaneously inverting migrated images from dif-
ferent vintages with a target-oriented approximation (Valenciano, 2008) to the linear
least-squares wave-equation Hessian. The Hessian operator in this problem can be
regarded as a set of non-stationary deconvolution filters in a single survey, or a con-
catenation of sub-matrices built from such filters in multiple surveys. We discuss two
joint-inversion formulations of the seismic monitoring problem:

1. regularized joint-inversion for image differences (RJID):

• input: staggered sums of migrated images, and

• output: inverted baseline image and image differences between successive
surveys;

2. regularized joint-inversion of multiple images (RJMI)

• input: migrated images for all surveys,

• output: inverted images for all input surveys.

Solving a single joint-inversion problem enables the incorporation of prior knowledge
of the reservoir location, extent and geometry, temporal constraints or information
from other sources (e.g., production history-matching).

As previously noted, inputs into the RJID formulation are staggered sums of
migrated images from multiple surveys and the outputs are inverted baseline and
time-lapse images between successive surveys. Since the imaging and monitoring ob-
jectives are decoupled, different regularization schemes can be defined for the baseline
and time-lapse images. Inputs and outputs to RJMI are migrated images and corre-
sponding inverted images respectively. RJMI differs from separate inversion, because
a coupling operator introduces desirable temporal constraints during inversion.

In order to arrive at both formulations, we have assumed that the background
baseline velocity model is known and that it changes slowly between surveys. We
also assume that such small velocity changes have negligible impact on wave prop-
agation through the earth, at least to the top of the reservoir. Where there are
noticeable displacements between images — as a result of significant velocity changes
or geomechanical effects around the reservoir — an event alignment step (Hale, 2007)
can be applied prior to inversion.

In this paper, we briefly summarize the seismic monitoring problem, and then
we discuss the basic theory of linear least-squares inversion and its extension to the
RJID and RJMI formulations for an arbitarary number of surveys. Finally, using
six datasets from a 2D-synthetic sub-salt model, we show that both joint-inversion
formulations yield noticeably improved results over migration or separate inversion.

SEP-136



Ayeni and Biondi 3 Joint time-lapse inversion

BACKGROUND

There is a wide range of published work on the most important considerations for
time-lapse seismic monitoring. For example, Batzle and Wang (1992) outline impor-
tant rock and fluid relationships; Lumley (1995), Rickett and Lumley (2001), Calvert
(2005), and Johnston (2005) discuss important processing and practical applications;
and Lefeuvre et al. (2003), Whitcombe et al. (2004), and Zou et al. (2006) showed
successful case studies. Ayeni and Biondi (2008) discuss additional considerations
and previous work related to seismic monitoring of hydrocarbon reservoirs.

Nemeth et al. (1999), Kuhl and Sacchi (2001), Clapp (2005), and Valenciano
(2008) have shown that linear least-squares wave-equation migration of seismic data
improves structural and amplitude information. We demonstrate that an extension of
least-squares migration to the time-lapse imaging can improve time-lapse amplitude
information, especially if all available data are jointly inverted. Previous authors have
discussed joint-inversion applications, including impedance inversion (Sarkar et al.,
2003), ray-tomography (Ajo-Franklin et al., 2005) and wave-equation velocity analysis
(Albertin et al., 2006). Lumley et al. (2003) show that improvements can be made to
time-lapse processing through simultaneous processing. Dynamic imaging strategies
that utilize aspects of spatio-temporal regularization have also been discussed in other
scientific disciplines (Schmitt and Louis, 2002; Schmitt et al., 2002; Zhang et al., 2005;
Kindermann and Leitao, 2007).

A joint wave-equation inversion formulation of the time-lapse imaging problem
has the advantage that the attenuation of image differences is based on the physics
of wave propagation, making it less susceptible to removal of true time-lapse changes
than conventional methods. The method proposed by Ajo-Franklin et al. (2005)
for tomographic inversion can be directly extended to wave-equation inversion, and
it actually forms a first step in the RJMI formulation. Such direct extension to
wave-equation migration is too expensive, requiring at least one set of migration and
modeling per survey per iteration. In most practical inversion problems, parameter
selection requires that the inversion procedure be carried out more than once. By pre-
computing the Hessian operators, we are able to test different regularization schemes
and parameters for the inversion at several orders of magnitude cheaper than directly
solving the least-squares migration problem. In addition, we avoid the use of matching
filters which can have unpredictable effects on time-lapse changes within the reservoir
(Lumley et al., 2003).

THEORY

Linear inversion

Given a linear modeling operator L, the seismic data d can be computed as

Lm = d, (1)
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where m is the reflectivity model. The modeling operator, L, in this study, represents
the seismic acquisition process. Two different surveys — say a baseline and monitor
— acquired at different times (t = 0 and t = 1 respectively) over the same earth
model can be represented as follows:

L0m0 = d0,
L1m1 = d1,

(2)

where m0 and m1 are respectively the reflectivity models at the times when the
datasets d0 and d1 were acquired, and L0 and L1 are the modeling operators defining
the acquisition process for the two surveys (baseline and monitor).

The quadratic cost functions for equation 2 are given by

S(m0) = ‖L0m0 − d0‖2,
S(m1) = ‖L1m1 − d1‖2,

(3)

and the least-squares solutions are

m̂0 = (L′
0L0)

−1L′
0d0 = (L′

0L0)
−1m̃0 = H−1

0 m̃0,
m̂1 = (L′

1L1)
−1L′

1d1 = (L′
1L1)

−1m̃1 = H−1
1 m̃1,

(4)

where m̃0 and m̃1 are the migrated baseline and monitor images, m̂0 and m̂1 are the
inverted images, L′

0 and L′
1 are the migration operators (adjoints to the modeling

operators L0 and L1 respectively), and H0 ≡ L′
0L0 and H1 ≡ L′

1L1, are the Hessian
matrices. Here, and in other parts of this paper, the symbol ′ denotes transposed
complex conjugate. These formulations are based on (but not limited to) one-way
wave-equation extrapolation methods.

The Hessian matrices are the second derivatives of the cost functions (equation
3) with respect to all model points in the image. Because the Hessian matrices
are generally not invertible for almost any practical scenario, equation 4 is solved
iteratively as follows:

H0m̂0 = m̃0,
H1m̂1 = m̃1.

(5)

An inverted time-lapse image, ∆m̂, can be obtained as the difference between the
two images, m̂1 and m̂0, obtained from equation 5:

∆m̂ = m̂1 − m̂0. (6)

We will refer to the method of computing the time-lapse image using equation 6 as
separate inversion throughout the rest of this paper.

Joint-inversion

Two joint-inversion formulations are discussed in the following sections.
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Joint-inversion for image differences (JID)

First, we re-formulate the data modeling operations for the two surveys in equation 2
as follows:

L0m0 = d0,
L1(m0 + ∆m) = d1,

(7)

where m0 + ∆m = m1. In matrix form, these expressions can be combined to give[
L0 0
L1 L1

] [
m0

∆m

]
=

[
d0

d1

]
. (8)

In principle, using an iterative solver, a least-squares solution to equation 8 can
be obtained by minimizing the cost function

S(m0, ∆m) =

∣∣∣∣∣∣∣∣[ L0 0
L1 L1

] [
m0

∆m

]
−

[
d0

d1

]∣∣∣∣∣∣∣∣2 . (9)

The computational cost of this approach is proportional to the number of iterations
times at least twice the cost of one set of migrations — since each iteration requires
at least one modeling and one migration for the baseline and monitor datasets. Since
several iterations would typically be required to reach convergence, and the inversion
process would usually be repeated several times to fine-tune inversion parameters,
the overall cost of this scheme will be high. An important advantage of the JID (or
JMI) formulation is that modifications can be made to inversion parameters and the
inversion repeated several times without the need for new migration or modeling.
The least-squares solution to equation 8 is given by[

L′
0L0 + L′

1L1 L′
1L1

L′
1L1 L′

1L1

] [
m̂0

∆m̂

]
=

[
L′

0 L′
1

0 L′
1

] [
d0

d1

]
=

[
m̃0 + m̃1

m̃1

]
, (10)

or [
H0 + H1 H1

H1 H1

] [
m̂0

∆m̂

]
=

[
m̃0 + m̃1

m̃1

]
, (11)

which can be recast as[
m̂0

∆m̂

]
=

[
H0 + H1 H1

H1 H1

]−1 [
m̃0 + m̃1

m̃1

]
. (12)

Thus, the inverted baseline and time-lapse images (m̂0 and ∆m̂ respectively) can be
obtained from equation 12. However, since the Hessian matrices H0 and H1 (and
hence the joint Hessian operator) are not invertible, equation 11 is solved iteratively.
We have extended equation 11 to multiple surveys (Appendix A). When multiple
surveys are available, the outputs of the JID formulation are the inverted baseline
image and image differences between successive surveys.
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Joint-inversion of multiple images (JMI)

The data modeling operations for two surveys can be written as follows[
L0 0
0 L1

] [
m0

m1

]
=

[
d0

d1

]
. (13)

In principle, it is possible to solve for a least-squares solution to equation 13 by
minimizing the cost function

S(m0,m1) =

∣∣∣∣∣∣∣∣[ L0 0
0 L1

] [
m0

m1

]
−

[
d0

d1

]∣∣∣∣∣∣∣∣2 . (14)

As discussed in the JID formulation, this would be too expensive to be practical
since the cost of one iteration is at least the cost of four migrations. Ajo-Franklin
et al. (2005) have shown a tomographic example of this formulation, but since each
migration is orders of magnitudes more expensive than ray-based tomography, this
approach would be too expensive for wave-equation inversion. Therefore, we refor-
mulate equation 14 as[

L′
0L0 0
0 L′

1L1

] [
m̂0

m̂1

]
=

[
L′

0 01

0 L′
1

] [
d0

d1

]
=

[
m̃0

m̃1

]
, (15)

or [
H0 0
0 H1

] [
m̂0

m̂1

]
=

[
m̃0

m̃1

]
, (16)

which can be written as [
m̂0

m̂1

]
=

[
H0 0
0 H1

]−1 [
m̃0

m̃1

]
. (17)

Thus, the inverted baseline and monitor images (m̂0 and m̂1 respectively) can be
obtained from equation 17 and the time-lapse image as a difference between the two
images as done in equation 5. Also, note that without coupling, as done in the next
section, equation 16 is equivalent to equation 5. Since the Hessian matrices H0 and
H1 (and hence the joint Hessian operator) are not invertible, equation 16 is solved
iteratively. An extension of equation 16 to multiple surveys is given in Appendix A.

Joint-inversion with Regularization

In most seismic monitoring problems, the general geology and reservoir architecture
of the study area are known — thus providing some information that can be used
to determine appropriate regularization for the inversion. Such regularization incor-
porates prior knowledge of the reservoir geometry and location, and expectation of
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changes in different parts of the study area. As shown in the Appendix, the regular-
ized joint-inversion for image difference (RJID) for two surveys is given by([

H0 + H1 H1

H1 H1

]
+

[
R00 0
0 R11

]
+

[
Λ00 0
−Λ10 Λ11

]) [
m̂0

∆m̂1

]
=

[
m̃0 + m̃1

m̃1

]
,

(18)
where

Rij = εiR
′
iεjRj,

Λij = ζiΛ
′
iζjΛj,

(19)

while R0 and R1 are the spatial/imaging constraints for the baseline and time-lapse
images respectively, and Λ0 and Λ1 the temporal regularization (or coupling) between
the surveys. In the implementation of equation 19, the regularization terms, Rij and
Λij are not explicitly computed, but instead, the appropriate operators Ri and Λi (and
their adjoints, R′

i and Λ′
i respectively) are applied at each step of the inversion. The

parameters ε0 and ε1 determine strength of the spatial regularization on the baseline
and time-lapse images respectively, while ζ0 and ζ1 determine the coupling between
surveys. The regularized joint-inversion of multiple images (RJMI) formulation for
two surveys is given as([

H0 0
0 H1

]
+

[
R00 0
0 R11

]
+

[
Λ00 −Λ01

−Λ10 Λ11

]) [
m̂0

m̂1

]
=

[
m̃0

m̃1

]
. (20)

The spatial regularization operator contains information on the structural geometry
of the reservoir (or implied properties of correctly migrated gathers, e.g. horizontal
angle gathers, or near-zero concentration of amplitudes in subsurface offset gathers),
while the temporal regularization ensures that the reservoir changes evolve according
to a reasonable scheme (e.g., smooth variation over time). The temporal regular-
ization operator in the RJMI formulation is similar to that used in spatio-temporal
tomographic inversion (Ajo-Franklin et al., 2005).

As shown in Appendix A, the general regularized joint-inversion problem can be
written in compact notation as

[Ξ + <+ Γ]
[
M̂

]
=

[
M̃

]
, (21)

where Ξ is the Hessian operator, < is the spatial/imaging regularization operator, Γ
is the temporal regularization operator, M̂ is the model vector and M̃ the data vector.
Each of the components of the RJID and RJMI formulations are fully described in
Appendix A.

Note that in the RJID formulation, the imaging (baseline inversion) and moni-
toring (time-lapse inversion) goals are decoupled, thus allowing for application of dif-
ferent regularization schemes. Since the baseline and time-lapse images are expected
to have different desirable properties, the baseline (R0 and Λ0) and monitor (R1 to
RN and Λ0 to ΛN) regularization operators are different. The RJMI formulation is
cheaper to solve, since the joint Hessian operator is less dense and with appropriate
regularization, the results from the two formulations should be comparable.
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Target-oriented Hessian

The computational cost of the full Hessian matrix for one survey (needless to say
for multiple surveys) is prohibitive and not practical for any reasonably sized survey.
Several authors have discussed possible approximations to the wave-equation Hessian
(Shin et al., 2001; Rickett, 2003; Guitton, 2004; Valenciano, 2008; Symes, 2008; Tang,
2008b,a) . The wave-equation Hessian for synthetic seismic data, d (s, r; ω) at a given
frequency, ω, recorded by receiver r (xr , yr , zr), from a shot s (xs , ys , zs) and scattering
point x(x , y , z ), is given by

H (x,y) =
∑
w

ω4
∑

s

|f ′ (s)|2G′ (x, s; ω)G (y, s; ω)
∑

r

G′ (x, r; ω)G (y, r; ω), (22)

where y(x , y , z ) corresponds to all model points. A detailed derivation of the explicit
wave-equation Hessian is given by Mulder and Plessix (2004).

Because reservoirs are typically limited in extent, the region of interest is usually
smaller than the full image space. Thus, the required Hessian matrices are constructed
for a region around the target zone and not for the full survey area. In this paper, we
follow the target-oriented approach of Valenciano (2008) in the Hessian computation.
Phase-encoding approximations to the target-oriented Hessian (Tang, 2008a) offer
improved efficiency in the Hessian computation and are currently being explored as
alternatives to the explicit method used in this paper.

The target oriented Hessian (Valenciano, 2008) is given by:

H(xT,xT + ax) =
∑

w ω4
∑

s |f ′ (s)|
2G′(xT, s; ω)G(xT + ax, s; ω)∑

r G′(xT, r; ω)G(xT + ax, r; ω),
(23)

where ax is the offset from the target image-point xT defining the filter size and
hence the number of off-diagonal terms to be computed. The filter size ax can be
determined heuristically or from an analysis of the amplitudes of filter coefficients
away from the diagonal. As noted by Valenciano (2008), the frequency sampling
required to prevent wrap-around artifacts for the local filter (or row of the Hessian)
for a given image point is coarser than that used in migration. Examples of the
target-oriented Hessian operator for the model in Figures 1 and three surveys are
shown in Figures 2 and 3 for both RJID and RJMI.

In a single survey, each row of the Hessian is a point-spread function that describes
the effects of the limited-bandwidth seismic waveform, geometry and illumination on
a reflectivity spike in the subsurface. In multiple surveys, each band belonging to
individual sub-matrices contains similar information from a single or combination of
surveys as shown in equations A-25 and A-12. In addition, note that the empty
bins in Figures 2 and 3 are neither computed nor stored and that because of the
matrix symmetry, only one-half of its elements needs to be computed. The structure
of the problem gives a large leeway for parallelization over several domains in both
the Hessian computation and inversion. Finally, since we assume that there is not
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Figure 1: Full impedance model. The box indicates the target area for which Figures 2
and 3 were computed, while the anomaly centered at distance 0m and depth 3000m
represents the approximate location of reservoir change. The triangular block is a
salt with velocity 4500m/s, while the surrounding sediments have velocities ranging
from 2200m/s and 2700m/s. The densities range from 2.5g/cc to 3.0g/cc. [ER]

Figure 2: JID: Joint target-
oriented Hessian operator for one
baseline and two monitor surveys
for the reservoir models in Fig-
ure 1. The dimension of the
square matrix here and in Figure 3
is equal to the number of surveys
times the size of the model space.
This figure corresponds to the Ξ
operator in equation A-24. Note
however that the zeros (light re-
gions in the matrices) were neither
computed nor stored. [NR]
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Figure 3: JMI: Joint target-
oriented Hessian for one baseline
and two monitor surveys for the
reservoir models in Figure 1. See
caption in Figure 2 for further de-
scription. [NR]

a significant variation in the background velocity between surveys, and since some
shot and receiver locations would be re-occupied during the monitor survey(s), some
Green’s functions can be reused in the Hessian computation for different surveys.

NUMERICAL EXAMPLE

The inversion formulations were tested on synthetic datasets modeled for the 2D-
synthetic sub-salt model in Figure 1. We simulated six datasets (representing different
stages of production) using a variable-density acoustic finite-difference algorithm.
Reservoir changes were modeled as an expanding Gaussian anomaly centered at x
= 0m and z = 3000m. In order to simulate non-repeated acquisition geometries, we
modeled all the datasets with spatially different geometries as summarized in Table
1. We modeled 76 shots spaced at 80m and 301 receivers spaced at 20m and for each
survey, the receiver spread was kept constant while the shots move along. We consider
that reflectivity change is most influenced by a change in the density within the
reservoir and that there is not a significant change in the background velocity model
between surveys. The spatial regularization operator is a gradient along reflector
dips, while a temporal gradient was used to ensure temporal smoothness.

Figure 4 shows the migrated images for the six surveys, while corresponding il-
lumination maps (diagonal of the Hessian) are shown in Figure 5. The irregular
illumination patterns explain the uneven amplitudes of reflectors below the salt in
Figure 4. Figure 6 shows the illumination-ratio (normalized rms-difference in illumi-
nation) between baseline and the monitor surveys, which measures of the variability
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Table 1: Modeling parameters for synthetic datasets
Shot/receiver depth Shot/receiver spread

Geometry 1 0m −3000 to 3000m
Geometry 2 100m −3500 to 2500m
Geometry 3 200m −2600 to 3400m
Geometry 4 40m −2900 to 3100m
Geometry 5 240m −3200 to 2800m
Geometry 6 300m −2500 to 3500m

of illumination between surveys. We represent the variation in illumination at any
image point as the illumination-ratio between the point-spread functions for the dif-
ferent surveys. For example, Figure 7 shows the point-spread functions at image point
[x = −200m, z = 2800m], while Figure 8 shows the coresponging illumination-ratio.
The time-evolution of the true reflectivity model is shown in Figure 9 and the inver-
sion goal is to reconstruct these. Figure 10 is the reflectivity change obtained from
migration, while Figures 11 to 13 were obtained from separate inversion, RJID and
RJMI respectively. Both the RJID and RJMI results contain less noise relative to
migration (Figures 10) and separate inversion (Figures 11). No pre-processing was
done to remove multiples from the data and hence these are expected to adversely
affect the inversion.

DISCUSSION

Uneven illumination of the reservoir region as captured by the Hessian diagonal (Fig-
ure 5) and ratio (Figure 6) explain the high-amplitude artifacts observed in the mi-
grated time-lapse images in Figure 10. The noticeable shadow zones in parts of the
reservoir below the salt (Figure 4) result from the high impedance contrast at the
salt-sediment boundary and the complex wave propagation. As shown by Ayeni and
Biondi (2008), even where the survey geometries are perfectly repeated, uneven illumi-
nation below complex overburden can strongly distort time-lapse seismic amplitudes.

Since different geometries were used for all surveys in the numerical test, dete-
rioration of the time-lapse amplitudes is due to a combined effect of geometry and
complex overburden. The illumination-ratio maps (Figure 5) show the variability of
illumination between surveys. Disparities in point-spread functions (Figure 8) suggest
that the a diagonal approximation to the Hessian is insufficient to remove the un-
wanted artifacts. Although separately inverted time-lapse images in Figure 11 show
some improvement in resolution over migration results (Figure 10), the images are
dominated by the large amplitude residual artifacts. Time-lapse images obtained
from joint-inversion using the RJID (Figure 12), and RJMI (Figure 13) formulations
are less noisy than those from the migration (Figure 10) and separate inversion (Fig-
ure 11) and are comparable to the true reflectivity change in Figure 9. Since one-way
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Figure 4: Migrated images obtained for six surveys (see modeling parameters in
Table 1) for the target area in shown Figure 1. Figure (a) is the baseline image,
while Figures (b)-(f) are images of the monitor images. Note the irregular amplitude
patterns cause by the presence of the overlying salt structure.[CR]
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Figure 5: Illumination maps for the six surveys described in Table 1. Each section
corresponds to the migrated sections in Figure 4 and explain the observed irregular
seismic amplitudes. Light color represent high illumination and dark represents low
illumination.[CR]
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Figure 6: Base-Monitor illumination-ratio for the six surveys described in Table 1.
Each section corresponds to a normalized rms-ratio (over 3x3 patches) between the
Hessian diagonal of the monitor surveys (Figure 5b-f) to that of the baseline (Fig-
ure 5a).[CR]

SEP-136



Ayeni and Biondi 15 Joint time-lapse inversion

Figure 7: Point spread functions at the image point [x = −200m, z = 2800m] for
the six surveys in Figure 5. Each section corresponds to a row of the Hessian for the
images in Figure 4a-f). Note that only one half of each filter is computed, since the
Hessian matrix is symmetric.[CR]

Figure 8: Base-Monitor illumination-ratio at image point [x = −200m, z = 2800m]
for the six surveys described in Table 1. section corresponds to a normalized rms-ratio
(over 3x3 patches) between the point-spread functions (a row of the Hessian) of the
monitor surveys (Figure 7b-f) to that of the baseline (Figure 7a).[CR]
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Figure 9: True cumulative time-lapse reflectivity images at the times for which the
six surveys (Table 1) were modeled. These should be compared with the results in
Figures 10 to 13.[CR]
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Figure 10: Migrated time-lapse at six different times corresponding to Figure 4. Each
section shows the amplitude change between time 1 (baseline) and the time of the
monitor survey. Note that the inversion has resulted in an increase in the noise
amplitudes relative to migrated time-lapse images shown in Figure 10.[CR]
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Figure 11: Separately inverted time-lapse images at six different times. Each section
shows the amplitude change between time 1 (baseline) and the time of the monitor
survey. Note that the inversion has resulted in an increase in the noise amplitudes
relative to migrated time-lapse images shown in Figure 10.[CR]
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Figure 12: RJID: Jointly inverted time-lapse images at six different times. Each
section shows the amplitude change between time 1 (baseline) and the time of the
monitor survey. Compare these results to Figures 9, 10, 11 and 13.[CR]
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Figure 13: RJMI: Jointly inverted time-lapse images at six different times. Each
section shows the amplitude change between time 1 (baseline) and the time of the
monitor survey. Compare these results to Figures 9, 10, 11 and 12.[CR]
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operators were used in this study, the Hessian contains no information regarding sec-
ondary events such as multiples. Residual effects of internal multiples due to the salt
persist in the inversion results but are significantly suppressed in the jointly inverted
images. In many cases of interest, multiple energy will be sufficiently attenuated or
may not fall within the target region, and thus have little impact on the inversion.

CONCLUSIONS

We have proposed two regularized least-squares inversion formulations for time-lapse
seismic imaging. -hese formulations arise from the linearized least-square wave-
equation inversion. By using a target-oriented approximation to the least-squares
Hessian with appropriate spatial and temporal regularization, we have shown that
image difference due to geometry dissimilarity and complex overburden can be atten-
uated. We show that we can directly invert for image differences (RJID) or multiple
images (RJMI) using a concatenation of target-oriented Hessian operators and com-
binations of migrated images. From numerical tests using a synthetic 2D-subsalt
model, we conclude that both the RJID and RJMI joint-inversion formulations give
more accurate time-lapse images than either migration or separate inversion.
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APPENDIX A

JOINT-INVERSION FORMULATIONS FOR MULTIPLE
SURVEYS

Here, we show a brief derivation of the joint-inversion formulation for two surveys
and its generalization to multiple surveys.

Regularized joint-inversion

The process of acquiring two seismic datasets over an evolving earth model can be
represented as [

L0 0
0 L1

] [
m0

m1

]
=

[
d0

d1

]
, (A-1)

where d0 and d1 are the baseline and monitor datasets, and m0 and m1 are the
baseline and monitor reflectivity models respectively. The linear operators (L0 and
L1) define the modeling/acquisition experiments for datasets d0 and d1 respectively.
We rewrite equation A-1 to include spatial and regularization operators (R0 and Λ0

respectively), and we seek to minimize the objective function

S(m0,m1) =

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣


L0 0
0 L1

R0 0
0 R1

−Λ0 Λ1


[

m0

m1

]
−


d0

d1

0
0
0


∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

2

. (A-2)

This cost function can be expanded as follows:([
L′

0L0 0
0 L′

1L1

]
+

[
R′

0R0 0
0 R′

1R1

]
+

[
Λ′

0Λ0 −Λ′
0Λ1

−Λ′
1Λ0 Λ′

1Λ1

]) [
m̂0

m̂1

]
=

[
m̃0

m̃1

]
,

(A-3)
which can be written as([

H0 0
0 H1

]
+

[
R00 0
0 R11

]
+

[
Λ00 −Λ01

−Λ10 Λ11

]) [
m̂0

m̂1

]
=

[
m̃0

m̃1

]
, (A-4)

where
Rij = εiR

′
iεjRj,

Λij = ζiΛ
′
iζjΛj,

(A-5)
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while R0 and R1 are the spatial/imaging constraints for the baseline and monitor
images respectively, and Λ0 and Λ1 the temporal constraints between the surveys.
The parameters ε0 and ε1 determine the strength of the spatial regularization on the
baseline and monitor images respectively, while ζ0 and ζ1 determine the coupling
between surveys. Equation A-4 is the RJMI formulation. Using a similar procedure,
the RJID formulation for two seismic datasets can be shown to be([

H0 + H1 H1

H1 H1

]
+

[
R00 0
0 R11

]
+

[
Λ00 0
−Λ10 Λ11

]) [
m̂0

∆m̂1

]
=

[
m̃0 + m̃1

m̃1

]
.

(A-6)
In the next sections, we derive the RJID and RJMI formulations for multiple surveys.

Regularized joint-inversion of multiple images: RJMI

The data modeling process for three seismic datasets (a baseline and two monitors)
over an evolving earth model can be written as L0 0 0

0 L1 0
0 0 L2

 m0

m1

m2

 =

 d0

d1

d2

 , (A-7)

where d0, d1 and d2 are respectively datasets for the baseline, first and second mon-
itor, m0, m1, and m2 are the baseline and monitor reflectivity models. The linear
operators (L0, L1 and L2) define the modeling/acquisition experiments for datasets
d0, d1 and d2 respectively. The least-squares solution to equation A-7 is given as L′

0L0 0 0
0 L′

1L1 0
0 0 L′

2L2

 m̂0

m̂1

m̂2

 =

 L′
0 0 0

0 L′
1 0

0 0 L′
2

 d0

d1

d2

 , (A-8)

where the symbol ′ denotes transposed complex conjugate.

We rewrite equation A-8 as H0 0 0
0 H1 0
0 0 H2

 m̂0

m̂1

m̂2

 =

 m̃0

m̃1

m̃2

 , (A-9)

where m̃i is the migrated image from the ith survey, and Hi is the corresponding
Hessian matrix. Introducing spatial and temporal constraints into equation A-9 we
obtain H0 0 0

0 H1 0
0 0 H2

+

 R00 0 0
0 R11 0
0 0 R22

 +

 Λ00 −Λ01 0
−Λ10 2Λ11 −Λ12

0 −Λ21 Λ22

  m̂0

m̂1

m̂2

 =

 m̃0

m̃1

m̃2

 .

(A-10)
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Equation A-10 can be generalized to an arbitrary number of surveys as follows

[Ξ + <+ Γ]
[
M̂

]
=

[
M̃

]
, (A-11)

where, Ξ is the Hessian operator, defined as

Ξ =


H0 0 0 ... 0 0
0 H1 0 ... 0 0
0 0 H2 ... ... 0
: : : : : :
: : : : HN−1 0
0 0 0 ... 0 HN

 . (A-12)

The spatial and temporal regularization operators, < and Γ are defined as

< = R′R,
Γ = Λ′Λ,

(A-13)

where,

R =


R0 0 0 ... 0 0
0 R1 0 ... 0 0
0 0 R2 ... 0 0
: : : : : :
: : : 0 RN−1 0
0 0 0 0 0 RN

 , (A-14)

and,

Λ =


Λ0 Λ1 0 0 ... 0
0 −Λ1 Λ2 0 ... 0
0 0 −Λ2 −Λ3 ... 0
: : : : : :
0 0 ... 0 −ΛN−1 ΛN

0 0 ... 0 0 ΛN

 . (A-15)

The input vector into the RJMI formulation, M̃ is given as

M̃ =


m̃0

m̃1

m̃2

:
m̃N−1

m̃N

 , (A-16)

while the inversion targets are in the vector:

M̂ =


m̂0

m̂1

m̂2

:
m̂N−1

m̂N

 . (A-17)
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Regularized joint-inversion for image differences: RJID

The data modeling process for three seismic datasets over an evolving earth model
can be written as  L0 0 0

L1 L1 0
L2 L2 L2

 m0

∆m1

∆m2

 =

 d0

d1

d2

 , (A-18)

where d0, d1 and d2 are respectively datasets for the baseline, first and second moni-
tor, m0 is the baseline reflectivity and the time-lapse reflectivities ∆m1 and ∆m2 are
defined as

∆m1 = m1 −m0,
∆m2 = m2 −m1,

(A-19)

where m1 and m2 are respectively the monitor reflectivities at the times data d1 and
d2 were acquired (with survey geometries defined by the linear L1 and L2).

The least-squares solution to equation A-18 is given as L′
0L0 + L′

1L1 + L′
2L2 L′

1L1 + L′
2L2 L′

2L2

L′
1L1 + L′

2L2 L′
1L1 + L′

2L2 L′
2L2

L′
2L2 L′

2L2 L′
2L2

 m̂0

∆m̂1

∆m̂2

 =

 L′
0 L′

1 L′
2

L′
1 L′

2

L′
2

 d0

d1

d2

 ,

(A-20)
where the symbol ′ denotes transpose complex conjugate. We rewrite equation A-20
as  H0 + H1 + H2 H1 + H2 H2

H1 + H2 H1 + H2 H2

H2 H2 H2

 m̂0

∆m̂1

∆m̂2

 =

 m̃0 + m̃1 + m̃2

m̃1 + m̃2

m̃2

 , (A-21)

where m̃i is the migrated image from the ith survey, and Hi is the corresponding Hes-
sian matrix. Introducing spatial and temporal regularization goals that incorporates
prior knowledge of the reservoir geometry and location as well as constraints on the
inverted time-lapse images into equation A-21 we obtain H0 + H1 + H2 H1 + H2 H2

H1 + H2 H1 + H2 H2

H2 H2 H2

 +

 R00 0 0
0 R11 0
0 0 R22



+

 Λ00 0 0
0 2Λ11 −Λ12

0 −Λ21 Λ22

  m̂0

∆m̂1

∆m̂2

 =

 m̃0 + m̃1 + m̃2

m̃1 + m̃2

m̃2

 ,

(A-22)

where,
Rij = εiR

′
iεjRj

Λij = ζiΛ
′
iζjΛj

, (A-23)

with Ri being the spatial regularization terms for the baseline and time-lapse images
respectively while Λi is the temporal regularization between the surveys. Note that
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Rij and Λij are not explicitly computed, but instead, the regularization operators Ri

and Λi (and their adjoints) are applied at each step of the inversion. Parameters
εi and ζi determine the relative strengths of the spatial and temporal regularization
respectively. Equation A-22 can be generalized to an arbitrary number of surveys as
follows

[Ξ + <+ Γ]
[
M̂

]
=

[
M̃

]
, (A-24)

where, Ξ is the Hessian operator, defined as

Ξ =


H0 + .. + HN H1 + .. + HN H2 + .. + HN ... HN−1 + HN HN

H1 + .. + HN H1 + .. + HN H2 + .. + HN ... HN−1 + HN HN

H2 + .. + HN H2 + .. + HN H2 + .. + HN ... ... HN

: : : : : :
: : : : HN−1 + HN HN

HN HN HN ... NN HN

 .

(A-25)
The regularization operators < and Γ are defined as

< = R′R,
Γ = Λ′Λ,

(A-26)

where,

R =


R0 0 0 ... 0 0
0 R1 0 ... 0 0
0 0 R2 ... 0 0
: : : : : :
: : : 0 RN−1 0
0 0 0 0 0 RN

 , (A-27)

and,

Λ =


Λ0 0 0 0 ... 0
0 −Λ1 Λ2 0 ... 0
0 0 −Λ2 −Λ3 ... 0
: : : : : :
0 0 ... 0 −ΛN−1 ΛN

0 0 ... 0 0 ΛN

 . (A-28)

The input vector into the RJID formulation, M̃ is given as

M̃ =


m̃0 + ... + m̃N

m̃1 + ... + m̃N

m̃2 + ... + m̃N

:
m̃N−1 + m̃N

m̃N

 , (A-29)
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while the inversion targets are

M̂ =


m̂0

∆m̂1

∆m̂2

:
:

∆m̂N

 . (A-30)

The temporal constraint on the baseline image, Λ0 may be set to zero, since it is
assumed that the original geological structure is unchanged over time or that geome-
chanical changes are accounted for before/during inversion.
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