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Preface

The electronic version of this report1 makes the included programs and applications available
to the reader. The markings [ER], [CR], and [NR] are promises by the author about the
reproducibility of each figure result. Reproducibility is a way of organizing computational
research that allows both the author and the reader of a publication to verify the reported
results. Reproducibility facilitates the transfer of knowledge within SEP and between SEP
and its sponsors.

ER denotes Easily Reproducible and are the results of processing described in the pa-
per. The author claims that you can reproduce such a figure from the programs,
parameters, and makefiles included in the electronic document. The data must either
be included in the electronic distribution, be easily available to all researchers (e.g.,
SEG-EAGE data sets), or be available in the SEP data library2. We assume you have
a UNIX workstation with Fortran, Fortran90, C, X-Windows system and the software
downloadable from our website (SEP makerules, SEPlib, and the SEP latex package),
or other free software such as SU. Before the publication of the electronic document,
someone other than the author tests the author’s claim by destroying and rebuilding
all ER figures. Some ER figures may not be reproducible by outsiders because they
depend on data sets that are too large to distribute, or data that we do not have
permission to redistribute but are in the SEP data library.

CR denotes Conditional Reproducibility. The author certifies that the commands are in
place to reproduce the figure if certain resources are available. The primary reasons for
the CR designation is that the processing requires 20 minutes or more, or commercial
packages such as Matlab or Mathematica.

NR denotes Non-Reproducible figures. SEP discourages authors from flagging their fig-
ures as NR except for figures that are used solely for motivation, comparison, or
illustration of the theory, such as: artist drawings, scannings, or figures taken from
SEP reports not by the authors or from non-SEP publications.

Our testing is currently limited to LINUX 2.6 (using the Intel Fortran90 compiler), but the
code should be portable to other architectures. Reader’s suggestions are welcome. More
information on reproducing SEP’s electronic documents is available online3.

1http://sepwww.stanford.edu/private/docs/sep136
2http://sepwww.stanford.edu/public/docs/sepdatalib/toc html
3http://sepwww.stanford.edu/research/redoc/
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Image-space wave-equation tomography in the generalized
source domain

Yaxun Tang, Claudio Guerra, and Biondo Biondi

ABSTRACT

We extend the theory of image-space wave-equation tomography to the generalized
source domain, where a smaller number of synthesized shot gathers are generated ei-
ther by data-space phase encoding or image-space phase encoding. We demonstrate
how to evaluate the wave-equation forward tomographic operator and its adjoint in
this new domain. We compare the gradients of the tomography objective functional
obtained using both data-space and image-space encoded gathers with that obtained
using the original shot gathers. We show that with those encoded shot gathers we can
obtain a gradient similar to that computed in the original shot-profile domain, but at
lower computational cost. The saving in cost is important for putting this theory into
practical applications. We illustrate our examples on a simple model with Gaussian
anomalies in the subsurface.

INTRODUCTION

Wave-equation tomography has the potential to accurately estimate the velocity model in
complex geological scenarios where ray-based traveltime tomography is prone to fail. Wave-
equation-based tomography uses band-limited wavefields instead of infinite-frequency rays
as carriers of information, thus it is robust even in the presence of strong velocity contrasts
and immune from multi-pathing issues. Generally speaking, wave-equation tomography can
be classified into two different categories based on the domain where it minimizes the resid-
ual. The domain can be either the data space or the image space. The data-space approach
directly compares the modeled waveform with the recorded waveform, and is widely known
as waveform inversion, or data-space wave-equation tomography (Tarantola, 1987; Mora,
1989; Woodward, 1992; Pratt, 1999). The main disadvantage of the data-space approach is
that in complex areas, the recorded waveforms can be very complicated and are usually of
low signal-to-noise ratio (S/N), so matching the full waveform might be extremely difficult.
On the other hand, the image-space approach, also known as image-space wave-equation
tomography, minimizes the residual in the image domain obtained after migration. The
migrated image is often much simpler than the original data, because even with a relatively
inaccurate velocity, migration is able to (partially) collapse diffractions and enhance the
S/N; thus the image-space wave-equation tomography has the potential to mitigate some
of the difficulties that we encounter in the data-space approach. Another advantage of the
image-space approach is that the more efficient one-way wave-equation extrapolator can be
used. In waveform inversion, however, the one-way propagator is difficult (if not impossi-
ble) to use because of its inability to model the multiple arrivals, although some tweaks can
be employed so that the one-way propagator can be applied to turning-wave tomography
(Shragge, 2007).

1
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However, despite its theoretical advantages, image-space wave-equation tomography is
still computationally challenging. Each iteration of tomographic velocity updating is com-
putationally expensive and often converges slowly. Practical applications are still rare and
small in scale (Biondi and Sava, 1999; Shen et al., 2005; Albertin et al., 2006). The goal
of this paper is to extend the theory of image-space wave-equation tomography from the
conventional shot-profile domain (Shen, 2004; Shen et al., 2005) to the generalized source
domain, where a smaller number of synthesized shot gathers make the tomographic velocity
update substantially faster.

The generalized source domain can be obtained either by data-space phase encoding
or image-space phase encoding. For the data-space phase encoding, the synthesized shot
gathers are obtained by linear combination of the original shot gathers after some kind of
phase encoding; in particular, here we mainly consider plane-wave phase encoding (Whit-
more, 1995; Zhang et al., 2005; Duquet and Lailly, 2006; Liu et al., 2006) and random
phase encoding (Romero et al., 2000). As the encoding process is done in the data space,
we call it data-space phase encoding. For the image-space phase encoding, the synthesized
gathers are obtained by prestack exploding-reflector modeling (Biondi, 2006, 2007; Guerra
and Biondi, 2008b), where several subsurface-offset-domain common-image gathers (SOD-
CIGs) and several reflectors are simultaneously demigrated to generate areal source and
areal receiver gathers. To attenuate the cross-talk, the SODCIGs and the reflectors have
to be encoded, e.g., by random phase encoding. Because the encoding process is done in
the image space, we call it image-space phase encoding. We show that in these generalized
source domains, we can obtain gradients, which are used for updating the velocity model,
similar to that obtained in the original shot-profile domain, but with less computational
cost.

This paper is organized as follows: We first briefly review the theory of image-space
wave-equation tomography. Then we discuss how to evaluate the forward tomographic
operator and its adjoint in the original shot-profile domain. The latter is an important
component in computing the gradient of the tomography objective functional. We then
extend the theory to the generalized source domain. Finally, we show examples on a simple
synthetic model.

IMAGE-SPACE WAVE-EQUATION TOMOGRAPHY

Image-space wave-equation tomography is a non-linear inverse problem that tries to find
an optimal background slowness that minimizes the residual field, ∆I, defined in the image
space. The residual field is derived from the background image, I, which is computed with a
background slowness (or the current estimate of the slowness). The residual field measures
the correctness of the background slowness; its minimum (under some norm, e.g. `2) is
achieved when a correct background slowness has been used for migration. There are many
choices of the residual field, such as residual moveout in the Angle-Domain Common-Image
Gathers (ADCIGs), differential semblance in the ADCIGs, reflection-angle stacking power
(in which case we have to maximize the residual field, or minimize the negative stacking
power), etc.. Here we follow a definition similar to that in Biondi (2008), and define a
general form of the residual field as follows:

∆I = I− F(I), (1)
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where F is a focusing operator, which measures the focusing of the migrated image. For ex-
ample, in the Differential Semblance Optimization (DSO) method (Shen, 2004), the focusing
operator takes the following form:

F(I) = (1−O) I, (2)

where 1 is the identity operator and O is the DSO operator either in the subsurface offset
domain or in the angle domain (Shen, 2004). The subsurface-offset-domain DSO focuses
the energy at zero offset, whereas the angle-domain DSO flattens the ADCIGs.

In the wave-equation migration velocity analysis (WEMVA) method (Sava, 2004), the
focusing operator is the linearized residual migration operator defined as follows:

F(I) = R[ρ]I ≈ I + K[∆ρ]I, (3)

where ρ is the ratio between the background slowness ŝ and the true slowness s, and
∆ρ = 1 − ρ = 1 − bs

s ; R[ρ] is the residual migration operator (Sava, 2003), and K[∆ρ]
is the differential residual migration operator defined as follows (Sava and Biondi, 2004a,b):

K[∆ρ] = ∆ρ
∂R[ρ]

∂ρ

∣∣∣∣
ρ=1

. (4)

The linear operator K[∆ρ] applies different phase rotations to the image for different re-
flection angles and geological dips (Biondi, 2008).

In general, if we choose `2 norm, the tomography objective function to minimize can be
written as follows:

J =
1
2
||∆I||2 =

1
2
||I− F(I)||2, (5)

where || · ||2 stands for the `2 norm. Gradient-based optimization techniques such as the
quasi-Newton method and the conjugate gradient method can be used to minimize the
objective function J . The gradient of J with respect to the slowness s reads as follows:

∇J = <
((

∂I
∂s
− ∂F(I)

∂s

)′
(I− F(I))

)
, (6)

where < denotes taking the real part of a complex value and ′ denotes the adjoint. For the
DSO method, the linear operator O is independent of the slowness, so we have

∂F(I)
∂s

= (1−O)
∂I
∂s

. (7)

Substituting Equations 2 and 7 into Equation 6 and evaluating the gradient at a background
slowness yields

∇JDSO = <
((

∂I
∂s

∣∣∣∣
s=bs
)′

O′OÎ
)

, (8)

where Î is the background image computed using the background slowness ŝ.

For the WEMVA method, the gradient is slightly more complicated, because in this
case, the focusing operator is also dependent on the slowness s. However, one can simplify
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it by assuming that the focusing operator is applied on the background image Î instead of
I, and ∆̂ρ is also picked from the background image Î, that is

F(̂I) = Î + K[∆̂ρ]̂I. (9)

With these assumptions, we get the ”classic” WEMVA gradient as follows:

∇JWEMVA = <
(
−
(

∂I
∂s

∣∣∣∣
s=bs
)′

K[∆̂ρ]̂I
)

. (10)

The complete WEMVA gradient without the above assumptions can also be derived follow-
ing the method described by Biondi (2008).

No matter which gradient we choose to back-project the slowness perturbation, we have
to evaluate the adjoint of the linear operator ∂I

∂s

∣∣
s=bs, which defines a linear mapping from the

slowness perturbation ∆s to the image perturbation ∆I. This is easy to see by expanding
the image I around the background slowness ŝ as follows:

I = Î +
∂I
∂s

∣∣∣∣
s=bs (s− ŝ) + · · · . (11)

Keeping only the zero and first order terms, we get the linear operator ∂I
∂s

∣∣
s=bs as follows:

∆I =
∂I
∂s

∣∣∣∣
s=bs ∆s = T∆s, (12)

where ∆I = I− Î and ∆s = s− ŝ. T = ∂I
∂s

∣∣
s=bs is the wave-equation tomographic operator.

The tomographic operator can be evaluated either in the source and receiver domain (Sava,
2004) or in the shot-profile domain (Shen, 2004). In next section we follow an approach
similar to that discussed by Shen (2004) and review the forward and adjoint tomographic
operator in the shot-profile domain. In the subsequent sections, we generalize the expression
of the tomographic operator to the generalized source domain.

THE TOMOGRAPHIC OPERATOR IN THE SHOT-PROFILE
DOMAIN

For the conventional shot-profile migration, both source and receiver wavefields are down-
ward continued with the following one-way wave equations (Claerbout, 1971):{ (

∂
∂z + i

√
ω2s2(x)− |k|2

)
D(x,xs, ω) = 0

D(x, y, z = 0,xs, ω) = fs(ω)δ(x− xs)
, (13)

and { (
∂
∂z + i

√
ω2s2(x)− |k|2

)
U(x,xs, ω) = 0

U(x, y, z = 0,xs, ω) = Q(x, y, z = 0,xs, ω)
, (14)

where the overline stands for complex conjugate; D(x,xs, ω) is the source wavefield for a
single frequency ω at image point x = (x, y, z) with the source located at xs = (xs, ys, 0);
U(x,xs, ω) is the receiver wavefield for a single frequency ω at image point x for the source
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located at xs; s(x) is the slowness at x; k = (kx, ky) is the spatial wavenumber vector; fs(ω)
is the frequency dependent source signature, and fs(ω)δ(x− xs) defines the point source
function at xs, which serves as the boundary condition of Equation 13. Q(x, y, z = 0,xs, ω)
is the recorded shot gather for the shot located at xs, which serves as the boundary condition
of Equation 14. To produce the image, the following cross-correlation imaging condition is
used:

I(x,h) =
∑
xs

∑
ω

D(x− h,xs, ω)U(x + h,xs, ω), (15)

where h = (hx, hy, hz) is the subsurface half offset.

The perturbed image can be derived by a simple application of the chain rule to Equation
15:

∆I(x,h) =
∑
xs

∑
ω

(
∆D(x− h,xs, ω)Û(x + h,xs, ω)+

D̂(x− h,xs, ω)∆U(x + h,xs, ω)
)

, (16)

where D̂(x−h,xs, ω) and Û(x+h,xs, ω) are the background source and receiver wavefields
computed with the background slowness ŝ(x); ∆D(x − h,xs, ω) and ∆U(x + h,xs, ω) are
the perturbed source wavefield and perturbed receiver wavefield, which are the results of
the slowness perturbation ∆s(x). The perturbed source and receiver wavefields satisfy
the following one-way wave equations, which are linearized with respect to slowness (see
Appendix A for derivations):

(
∂
∂z + i

√
ω2ŝ2(x)− |k|2

)
∆D(x,xs, ω) = −iω∆s(x)r

1− |k|2
ω2bs2(x)

D̂(x,xs, ω)

∆D(x, y, z = 0,xs, ω) = 0
, (17)

and 
(

∂
∂z + i

√
ω2ŝ2(x)− |k|2

)
∆U(x,xs, ω) = −iω∆s(x)r

1− |k|2
ω2bs2(x)

Û(x,xs, ω)

∆U(x, y, z = 0,xs, ω) = 0
. (18)

Recursively solving Equations 17 and 18 gives us the perturbed source and receiver wave-
fields. The perturbed source and receiver wavefields are then used in Equation 16 to gener-
ate the perturbed image ∆I(x,h), where the background source and receiver wavefields are
precomputed by recursively solving Equations 13 and 14 with a background slowness ŝ(x).
Appendix B gives a more detailed matrix representation of how to evaluate the forward
tomographic operator T.

To evaluate the adjoint tomographic operator T′, we first apply the adjoint of the
imaging condition in Equation 16 to get the perturbed source and receiver wavefields
∆D(x,xs, ω) and ∆U(x,xs, ω) as follows:

∆D(x,xs, ω) =
∑
h

∆I(x,h)Û(x + h,xs, ω), (19)

∆U(x,xs, ω) =
∑
h

∆I(x,h)D̂(x− h,xs, ω). (20)
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Then we solve the adjoint equations of Equations 17 and 18 to get the slowness pertur-
bation ∆s(x). Again, in order to solve the adjoint equations of Equations 17 and 18, the
background source wavefield D̂(x,xs, ω) and the background receiver wavefield Û(x,xs, ω)
have to be computed in advance. Appendix C gives a more detailed matrix representation
of how to evaluate the adjoint tomographic operator T

′
.

TOMOGRAPHY WITH THE ENCODED WAVEFIELDS

It is clear from previous sections that the cost for computing the gradient of the objective
function J in the original shot-profile domain is at least twice the cost of a shot-profile
migration, because to compute the perturbed wavefields, the background wavefields are
required. Because minimizing the objective function J requires a considerable number of
gradient and function evaluations, image-space wave-equation tomography in the conven-
tional shot-profile domain seems to be infeasible for large-scale 3-D applications, even with
modern computer resources. To reduce the cost and make this powerful method more prac-
tical, we extend the theory of image-space wave-equation tomography to the generalized
source domain, where a smaller number of synthesized shot gathers are used for computing
the gradient. We discuss two different strategies to generate the generalized shot gathers,
i.e., the data-space phase-encoding method and the image-space phase-encoding method,
both of which can achieve considerable data reduction while still keeping the necessary
kinematic information for velocity analysis.

Data-space encoded wavefields

The data-space encoded shot gathers are obtained by linear combination of the original
shot gathers after phase encoding. For simplicity, we mainly consider plane-wave phase-
encoding (Whitmore, 1995; Zhang et al., 2005; Duquet and Lailly, 2006; Liu et al., 2006)
and random phase-encoding (Romero et al., 2000). Because of the linearity of the one-way
wave equation with respect to the wavefield, the encoded source and receiver wavefields also
satisfy the same one-way wave equations defined by Equations 13 and 14, but with different
boundary conditions:{ (

∂
∂z + i

√
ω2s2(x)− |k|2

)
D̃(x,ps, ω) = 0

D̃(x, y, z = 0,ps, ω) =
∑

xs
fs(ω)δ(x− xs)α(xs,ps, ω)

, (21)

and { (
∂
∂z + i

√
ω2s2(x)− |k|2

)
Ũ(x,ps, ω) = 0

Ũ(x, y, z = 0,xs, ω) =
∑

xs
Q(x, y, z = 0,xs, ω)α(xs,ps, ω)

, (22)

where D̃(x,ps, ω) and Ũ(x,ps, ω) are the encoded source and receiver wavefields respec-
tively, and α(xs,ps, ω) is the phase-encoding function. In the case of plane-wave phase
encoding, α(xs,ps, ω) is defined as

α(xs,ps, ω) = eiωpsxs , (23)
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where ps is the ray parameter for the source plane waves on the surface. In the case of
random phase encoding, the phase function is

α(xs,ps, ω) = eiγ(xs,ps,ω), (24)

where γ(xs,ps, ω) is a random sequence in xs and ω. The parameter ps defines the index
of different realizations of the random sequence (Tang, 2008). The final image is obtained
by applying the cross-correlation imaging condition and summing the images for all ps’s:

Ide(x,h) =
∑
ps

∑
ω

|c|2D̃(x− h,ps, ω)Ũ(x + h,ps, ω), (25)

where c = ω for plane-wave phase encoding and c = 1 for random phase encoding (Tang,
2008). It has been shown by Etgen (2005) and Liu et al. (2006) that plane-wave phase-
encoding migration, by stacking a considerable number of ps, produces a migrated image
almost identical to the shot-profile migrated image. If the original shots are well sampled,
the number of plane waves required for migration is generally much smaller than the number
of the original shot gathers (Etgen, 2005). Therefore plane-wave source migration is widely
used in practice. Random-phase encoding migration is also an efficient tool, but the random
phase function is not very effective in attenuating the crosstalk, especially when many
sources are simultaneously encoded (Romero et al., 2000; Tang, 2008). Nevertheless, if
many realizations of the random sequences are used, the final stacked image would also
be approximately the same as the shot-profile migrated image. Therefore, the following
relation approximately holds:

I(x,h) ≈ Ide(x,h). (26)

That is, with the data-space encoded gathers, we obtain an image similar to that computed
by the more expensive shot-profile migration. From Equation 25, the perturbed image can
be easily obtained as follows:

∆Ide(x,h) =
∑
ps

∑
ω

|c|2
(

∆D̃(x− h,ps, ω) ̂̃U(x + h,ps, ω)+

̂̃
D(x− h,ps, ω)∆Ũ(x + h,ps, ω)

)
, (27)

where ̂̃D(x,ps, ω) and ̂̃U(x,ps, ω) are the data-space encoded background source and re-
ceiver wavefields; ∆D̃(x,ps, ω) and ∆Ũ(x,ps, ω) are the perturbed source and receiver
wavefields in the data-space phase-encoding domain, which satisfy the perturbed one-way
wave equations defined by Equations 17 and 18. The tomographic operator T and its ad-
joint T′ can be implemented in a manner similar to that discussed in Appendices B and C
by replacing the original wavefields with the data-space phase encoded wavefields.

Image-space encoded wavefields

The image-space encoded gathers are obtained using the prestack exploding-reflector mod-
eling method introduced by Biondi (2006) and Biondi (2007). The general idea of this
method is to model the data and the corresponding source function that are related to only
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one event in the subsurface, where a single unfocused SODCIG (obtained with an inaccurate
velocity model) is used as the initial condition for the recursive upward continuation with
the following one-way wave equations:{ (

∂
∂z − i

√
ω2ŝ2(x)− |k|2

)
QD(x, ω;xm, ym) = ID(x,h;xm, ym)

QD(x, y, z = zmax, ω;xm, ym) = 0
, (28)

and { (
∂
∂z − i

√
ω2ŝ2(x)− |k|2

)
QU (x, ω;xm, ym) = IU (x,h;xm, ym)

QU (x, y, z = zmax, ω;xm, ym) = 0
, (29)

where ID(x,h;xm, ym) and IU (x,h;xm, ym) are the isolated SODCIGs at the horizontal
location (xm, ym) for a single reflector, and are suitable for the initial conditions for the
source and receiver wavefields, respectively. They are obtained by rotating the original
unfocused SODCIGs according to the apparent geological dip of the reflector. This rotation
maintains the velocity information needed for migration velocity analysis, especially for
dipping reflectors (Biondi, 2007). By collecting the wavefields at the surface, we obtain
the areal source data QD(x, y, z = 0, ω;xm, ym) and the areal receiver data QU (x, y, z =
0, ω;xm, ym) for a single reflector and a single SODCIG located at (xm, ym).

Since the size of the migrated image volume can be very big in practice and there are
usually many reflectors in the subsurface, modeling each reflector and each SODCIG one by
one may generate a data set even bigger than the original data set. One strategy to reduce
the cost is to model several reflectors and several SODCIGs simultaneously (Biondi, 2006);
however, this process generates unwanted crosstalk. As discussed by Guerra and Biondi
(2008b,a), random phase encoding could be used to attenuate the crosstalk. The randomly
encoded areal source and areal receiver wavefields can be computed as follows:{ (

∂
∂z − i

√
ω2ŝ2(x)− |k|2

)
QD(x,pm, ω) = ĨD(x,h,pm, ω)

QD(x, y, z = zmax,pm, ω) = 0
, (30)

and { (
∂
∂z − i

√
ω2ŝ2(x)− |k|2

)
QU (x,pm, ω) = ĨU (x,h,pm, ω)

QU (x, y, z = zmax,pm, ω) = 0
, (31)

where ĨD(x,h,pm, ω) and ĨU (x,h,pm, ω) are the encoded SODCIGs after rotations. They
are defined as follows:

ĨD(x,h,pm, ω) =
∑
xm

∑
ym

ID(x,h, xm, ym)β(x, xm, ym,pm, ω), (32)

ĨU (x,h,pm, ω) =
∑
xm

∑
ym

IU (x,h, xm, ym)β(x, xm, ym,pm, ω), (33)

where β(x, xm, ym,pm, ω) = eiγ(x,xm,ym,pm,ω) is chosen to be the random phase-encoding
function, with γ(x, xm, ym,pm, ω) being a uniformly distributed random sequence in x, xm,
ym and ω; the variable pm is the index of different realizations of the random sequence.
Recursively solving Equations 30 and 31 gives us the encoded areal source data QD(x, y, z =
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0,pm, ω) and areal receiver data QU (x, y, z = 0,pm, ω), which can be collected on the
surface.

The synthesized new data sets are downward continued using the same one-way wave
equation defined by Equations 13 and 14 (with different boundary conditions) as follows:{ (

∂
∂z + i

√
ω2s2(x)− |k|2

)
D̃(x,pm, ω) = 0

D̃(x, y, z = 0,pm, ω) = QD(x, y, z = 0,pm, ω)
, (34)

and { (
∂
∂z + i

√
ω2s2(x)− |k|2

)
Ũ(x,pm, ω) = 0

Ũ(x, y, z = 0,xs, ω) = QU (x, y, z = 0,pm, ω)
, (35)

where D̃(x,pm, ω) and Ũ(x,pm, ω) are the downward continued areal source and areal
receiver wavefields for realization pm. The image is produced by cross-correlating the two
wavefields and summing images for all realization pm as follows:

Ime(x,h) =
∑
pm

∑
ω

D̃(x,pm, ω)Ũ(x,pm, ω). (36)

The crosstalk artifacts can be further attenuated if the number of pm is large; therefore,
approximately, the image obtained by migrating the image-space encoded gathers is kine-
matically equivalent to the image obtained in the shot-profile domain.

From Equation 36, the perturbed image is easily obtained as follows:

∆Ime(x,h) =
∑
pm

∑
ω

(
∆D̃(x− h,pm, ω) ̂̃U(x + h,pm, ω)+

̂̃
D(x− h,pm, ω)∆Ũ(x + h,pm, ω)

)
, (37)

where ̂̃D(x,pm, ω) and ̂̃
U(x,pm, ω) are the image-space encoded background source and

receiver wavefields; ∆D̃(x,pm, ω) and ∆Ũ(x,pm, ω) are the perturbed source and receiver
wavefields in the image-space phase-encoding domain, which satisfy the perturbed one-way
wave equations defined by Equations 17 and 18. The tomographic operator T and its
adjoint T′ can be implemented in a manner similar to that discussed in Appendices B and
C, by replacing the original wavefields with the image-space phase-encoded wavefields.

NUMERICAL EXAMPLES

We test the image-space wave-equation tomography in the generalized source domain on a
simple model which contains only one reflector located at z = 1500 m. Figure 1 shows the
correct slowness model. The slowness model consists of a constant background slowness
1/2000 s/m and two Gaussian anomalies located at (x = −800, z = 800) and (x = 800, z =
800) respectively. The left anomaly has 5% higher slowness, while the right one has 5%
lower slowness. We modeled 401 shots ranging from −4000 m to 4000 m, with a shot interval
20 m. The receiver locations also range from −4000 m to 4000 m, but with a 10 m interval.
The receivers are fixed for all shots to mimic a land acquisition geometry.
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Figure 1: The correct slowness model. The slowness model consists of a constant background
slowness (1/2000 s/m) and two 5% Gaussian anomalies. [ER] yaxun1/. twin-slow

Figure 2 shows the migrated images in different domains computed with a background
slowness ŝ = 1/2000 s/m. Figure 2(a) is obtained by migrating the original 401 shot gathers.
Because of the inaccuracy of the slowness model, we can identify the mispositioning of the
reflectors, especially beneath the Gaussian anomalies. Figure 2(b) is obtained by migrating
the data-space plane-wave encoded gathers, where 61 plane waves are migrated; the result is
almost identical to that in Figure 2(a); Figure 2(c) is obtained by migrating the image-space
encoded gathers. The image-space encoded areal source and receiver data are generated by
simultaneously modeling 100 randomly encoded unfocused SODCIGs, and 4 realizations of
the random sequence are used; hence we have 40 image-space encoded areal gathers (each
realization contains 10 areal shots). The kinematics of the result look almost the same as
those in Figure 2(a). However, notice the wavelet squeezing effect and the random noise in
the background caused by the random phase encoding.

Figure 3 shows the image perturbations obtained by applying the forward tomographic
operator T in different domains. For this example, we assume that we know the correct
slowness perturbation ∆s, which is obtained by subtracting the background slowness ŝ from
the correct slowness s. Figure 3(a) shows the image perturbation computed with the original
401 shot gathers; notice the relative 90 degree phase rotation compared to the background
image shown in Figure 2(a). Figure 3(b) is the result obtained by using 61 data-space
plane-wave encoded gathers; the result is almost identical to Figure 3(a). Figure 3(c) shows
the result computed with 40 image-space encoded gathers; the kinematics are also similar
to those in Figure 3(a).

Figure 4 illustrates the predicted slowness perturbations by applying the adjoint to-
mographic operator T′ to the image perturbations obtained in Figure 3. For comparison,
Figure 4(a) shows the correct slowness perturbation, i.e., ∆s = s − ŝ; Figure 4(b) is the
predicted slowness perturbation by back-projecting Figure 3(a) using all 401 shot gathers;
Figure 4(c) is the result by back-projecting Figure 3(b) using all 61 data-space plane-wave
encoded gathers and is almost identical to Figure 4(b); Figure 4(d) shows the result by
back-projecting Figure 3(c) using all 40 image-space encoded gathers. The result is also
similar to Figure 4(b). However, notice that Figure 4(d) shows a slightly less focused result
than Figure 4(b) and (c), which might be caused by the unattenuated crosstalk and the
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Figure 2: Migrated image cubes with a constant background slowness (ŝ = 1/2000 s/m).
Panel (a) is the result obtained in the original shot-profile domain; Panel (b) is the result
obtained by migrating 61 plane waves, while panel (c) is obtained by migrating 40 image-
space encoded areal gathers. [CR] yaxun1/. twin-bimg-all
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Figure 3: The image perturbations obtained by applying the forward tomographic operator
T to the correct slowness perturbations in different domains. Panel (a) shows the image
perturbation obtained using the original shot gathers, while panels (b) and (c) are obtained
using the data-space encoded gathers and image-space encoded gathers, respectively. [CR]
yaxun1/. twin-dimg-all



SEP-136 Image-space wave-equation tomography 13

pseudo-random noise presented in Figure 3(c).

The final example we show is the comparison among the gradients of the objective
functional obtained in different domains. For simplicity, here we compare only the negative
DSO gradients (−∇JDSO) defined by Equation 8 (we compare −∇JDSO instead of ∇JDSO,
because −∇JDSO determines the search direction in a gradient-based nonlinear optimization
algorithm). Figure 5 shows the DSO image perturbations computed as follows:

∆I(x,h) = |h|2Î(x,h), (38)

or in matrix form:

∆I = O′OÎ, (39)

where O is the DSO operator. Figure 5(a) is the result obtained in the original shot-profile
domain, whereas Figure 5(b) and (c) are obtained in the data-space phase-encoding domain
and the image-space phase-encoding domain, respectively. The coherent energy at non-zero
offests are indicators of velocity errors.

Figure 6 shows the negative gradients of the DSO objective functional (−∇JDSO) ob-
tained by back-projecting the DSO image perturbations shown in Figure 5. For comparison,
Figure 6(a) shows the exact slowness perturbation, which is the same as Figure 4(a); Fig-
ure 6(b) shows the result obtained in the original shot-profile domain; Figure 6(c) shows
the result obtained in the data-space phase-encoding domain, which is almost identical to
Figure 6(b); Figure 6(d) shows the result obtained in the image-space phase-encoding do-
main. The result is also similar to Figure 6(b), though the unattenuated crosstalk and the
random noise make the gradient less well behaved than those in Figure 6(b) and (c). Most
important, the gradient in Figure 6(d) is pointing towards the correct direction, which is
crucial for a gradient-based optimization algorithm to converge to the correct solution.

CONCLUSIONS

We extend the theory of image-space wave-equation tomography to the generalized source
domain. One important advantage of this new domain is that we are able to synthesize
a much smaller data set while still keeping necessary velocity information for migration
velocity analysis; hence the computational cost of performing image-space wave-equation
tomography can be significantly reduced. We demonstrate how these new data sets can be
generated by using both the data-space phase encoding method and the image-space phase
encoding method. Our preliminary tests on a simple synthetic model show that with the
synthesized gathers, we are able to obtain a gradient of the tomography objective functional
similar to that computed using the original shot gathers, but at significantly lower cost. The
correct gradient is thus important for the gradient-based optimization algorithm to converge
to the correct solution.
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APPENDIX A

This appendix derives the perturbed one-way wave equation with respect to the slowness
perturbation. Let us start with the one-way wave equation for the source wavefield as
follows: { (

∂
∂z + i

√
ω2s2(x)− |k|2

)
D(x,xs, ω) = 0

D(x, y, z = 0,xs, ω) = fs(ω)δ(x− xs)
, (A-1)

We can rewrite the slowness and the source wavefield as follows:

s(x) = ŝ(x) + ∆s(x) (A-2)
D(x,xs, ω) = D̂(x,xs, ω) + ∆D(x,xs, ω), (A-3)

where ŝ(x) and D̂(x,xs, ω) are the background slowness and background wavefield, and
∆s(x) and ∆D(x,xs, ω) are small perturbations in slowness and source wavefield, respec-
tively. If ∆s(x) is small, then the square root in the first equation of A-1 can be approxi-
mated using Taylor expansion as follows:

√
ω2s2(x)− |k|2 ≈

√
ω2ŝ2(x)− |k|2 +

ω∆s(x)√
1− |k|2

ω2bs2(x)

. (A-4)

Substituting Equations A-2, A-3 and A-4 into Equation A-1 and ignoring the second-order
terms yield the following linearized one-way wave equation for the perturbed source wave-
field: 

(
∂
∂z + i

√
ω2ŝ2(x)− |k|2

)
∆D(x,xs, ω) = −iω∆s(x)r

1− |k|2
ω2bs2(x)

D̂(x,xs, ω)

∆D(x, y, z = 0,xs, ω) = 0
. (A-5)

Similarly, we can also obtain the linearized one-way wave equation for the perturbed receiver
wavefield as follows:

(
∂
∂z + i

√
ω2ŝ2(x)− |k|2

)
∆U(x,xs, ω) = −iω∆s(x)r

1− |k|2
ω2bs2(x)

Û(x,xs, ω)

∆U(x, y, z = 0,xs, ω) = 0
. (A-6)

APPENDIX B

This appendix demonstrates a matrix representation of the forward tomographic operator
T. Let us start with the source wavefield, where the source wavefield Dz at depth z is
downward continued to depth z + ∆z by the one-way extrapolator Ez(sz) as follows:

Dz+∆z = Ez(sz)Dz, (B-1)

where the one-way extrapolator is defined as follows:

Ez(sz) = e−ikz(sz)∆z = e−i
√

ω2s2z−|k|2 (B-2)
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The perturbed source wavefield at some depth level can be derived from the background
wavefield by a simple application of the chain rule to equation B-1:

∆Dz+∆z = Ez(ŝz)∆Dz + ∆Ez(ŝz)D̂z, (B-3)

where D̂z is the background source wavefield and ∆Ez represents the perturbed extrap-
olator, which can be obtained by a formal linearization with respect to slowness of the
extrapolator defined in Equation B-2:

Ez(sz) = e−ikz(sz)∆z ≈ e−i∆zbkz + e−i∆zbkz

(
−i∆z

dkz

dsz

∣∣∣∣
sz=bsz

)
∆sz

= Ez(ŝz) + Ez(ŝz)

(
−i∆z

dkz

dsz

∣∣∣∣
sz=bsz

)
∆sz, (B-4)

where k̂z = kz(ŝz) and ŝz is the background slowness at depth z. From Equation B-4, the
perturbed extrapolator reads as follows:

∆Ez(ŝz) = Ez(ŝz)

(
−i∆z

dkz

dsz

∣∣∣∣
sz=bsz

)
∆sz. (B-5)

Substituting Equation B-5 into B-3 yields

∆Dz+∆z = Ez(ŝz)∆Dz + Ez(ŝz)

(
−i∆z

dkz

dsz

∣∣∣∣
sz=bsz

)
D̂z∆sz. (B-6)

Let us define a scattering operator Gz that interacts with the background wavefield as
follows:

Gz(D̂z, ŝz) =

(
−i∆z

dkz

dsz

∣∣∣∣
sz=bsz

)
D̂z =

−iω∆z√
1− |k|2

ω2bs2z
D̂z. (B-7)

Then the perturbed source wavefield for depth z + ∆z can be rewritten as follows:

∆Dz+∆z = Ez(ŝz)∆Dz + Ez(ŝz)Gz(D̂z, ŝz)∆sz. (B-8)

We can further write out the recursive Equation B-8 for all depths in the following matrix
form:

0BBBBBB@

∆D0
∆D1
∆D2

.

.

.
∆Dn

1CCCCCCA =

0BBBBBB@

0 0 0 · · · 0 0
E0 0 0 · · · 0 0
0 E1 0 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 · · · En−1 0

1CCCCCCA

0BBBBBB@

∆D0
∆D1
∆D2

.

.

.
∆Dn

1CCCCCCA +

0BBBBBB@

0 0 0 · · · 0 0
E0 0 0 · · · 0 0
0 E1 0 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0
0 0 0 · · · En−1 0

1CCCCCCA

0BBBBBB@

G0 0 0 · · · 0
0 G1 0 · · · 0
0 0 G2 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 · · · Gn

1CCCCCCA

0BBBBBB@

∆s0
∆s1
∆s2

.

.

.
∆sn

1CCCCCCA ,

or in a more compact notation,

∆D = E(ŝ)∆D + E(ŝ)G(D̂, ŝ)∆s. (B-9)
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The solution of Equation B-9 can be formally written as follows:

∆D = (1−E(ŝ))−1 E(ŝ)G(D̂, ŝ)∆s. (B-10)

Similarly, the perturbed receiver wavefield satisfies the following recursive relation:

∆Uz+∆z = Ez(ŝz)∆Uz + Ez(ŝz)Gz(Ûz, ŝz)∆sz, (B-11)

where Gz(Ûz, ŝz) is the scattering operator, which interacts with the background receiver
wavefield as follows:

Gz(Ûz, ŝz) =

(
−i∆z

dkz

dsz

∣∣∣∣
sz=bsz

)
Ûz =

−iω∆z√
1− |k|2

ω2bs2z
Ûz. (B-12)

We can also write out the recursive Equation B-12 for all depth levels in the following matrix
form: 0BBBBBB@

∆U0
∆U1
∆U2

.

.

.
∆Un

1CCCCCCA =

0BBBBBB@

0 0 0 · · · 0 0
E0 0 0 · · · 0 0
0 E1 0 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 · · · En−1 0

1CCCCCCA

0BBBBBB@

∆U0
∆U1
∆U2

.

.

.
∆Un

1CCCCCCA +

0BBBBBB@

0 0 0 · · · 0 0
E0 0 0 · · · 0 0
0 E1 0 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0
0 0 0 · · · En−1 0

1CCCCCCA

0BBBBBB@

G0 0 0 · · · 0
0 G1 0 · · · 0
0 0 G2 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 · · · Gn

1CCCCCCA

0BBBBBB@

∆s0
∆s1
∆s2

.

.

.
∆sn

1CCCCCCA ,

or in a more compact notation,

∆U = E(ŝ)∆U + E(ŝ)G(Û, ŝ)∆s. (B-13)

The solution of Equation B-13 can be formally written as follows:

∆U = (1−E(ŝ))−1 E(ŝ)G(Û, ŝ)∆s. (B-14)

With the background wavefields and the perturbed wavefields, the perturbed image can
be obtained as follows:

0BBBBBB@

∆I0
∆I1
∆I2

.

.

.
∆In

1CCCCCCA =

0BBBBBBB@

bU0 0 0 · · · 0

0 bU1 0 · · · 0

0 0 bU2 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · bUn

1CCCCCCCA

0BBBBBB@

∆D0
∆D1
∆D2

.

.

.
∆Dn

1CCCCCCA +

0BBBBBBB@

bD0 0 0 · · · 0

0 bD1 0 · · · 0

0 0 bD2 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · bDn

1CCCCCCCA

0BBBBBB@

∆U0
∆U1
∆U2

.

.

.
∆Un

1CCCCCCA ,

or in a more compact notation,

∆I = diag
(
Û
)
∆D + diag

(
D̂
)
∆U. (B-15)

Substituting Equations B-10 and B-14 into Equation B-15 yields

∆I =
(
diag

(
Û
)

(1−E(ŝ))−1 E(ŝ)G(D̂, ŝ) +

diag
(
D̂
)

(1−E(ŝ))−1 E(ŝ)G(Û, ŝ)
)
∆s, (B-16)

from which we can read the forward tomographic operator T as follows:

T = diag
(
Û
)

(1−E(ŝ))−1 E(ŝ)G(D̂, ŝ) +

diag
(
D̂
)

(1−E(ŝ))−1 E(ŝ)G(Û, ŝ). (B-17)
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APPENDIX C

This appendix demonstrates a matrix representation of the adjoint tomographic operator
T

′
. Since the slowness perturbation ∆s is linearly related to the perturbed wavefields,

∆D and ∆U, to obtain the back-projected slowness perturbation, we first must get the
back-projected perturbed wavefields from the perturbed image ∆I. From Equation B-15,
the back-projected perturbed source and receiver wavefields are obtained as follows:

∆D = diag
(
Û
)
∆I (C-1)

and

∆U = diag
(
D̂
)
∆I. (C-2)

Then the adjoint equations of Equations B-10 and B-14 are used to get the back-projected
slowness perturbation ∆s. Let us first look at the adjoint equation of Equation B-10, which
can be written as follows:

∆sD = G′(D̂, ŝ)E′(ŝ)
(
1−E′(ŝ)

)−1 ∆D. (C-3)

We can define a temporary wavefield ∆PD that satisfies the following equation:

∆PD = E′(ŝ)
(
1−E′(ŝ)

)−1 ∆D. (C-4)

After some simple algebra, the above equation can be rewritten as follows:

∆PD = E′(ŝ)∆PD + E′(ŝ)∆D. (C-5)

Substituting Equation C-1 into equation C-5 yields

∆PD = E′(ŝ)∆PD + E′(ŝ)diag
(
Û
)
∆I. (C-6)

Therefore, ∆PD can be obtained by recursive upward continuation, where ∆D = diag
(
Û
)
∆I

serves as the initial condition. The back-projected slowness perturbation from the perturbed
source wavefield is then obtained by applying the adjoint of the scattering operator G(D̂, ŝ)
to the wavefield ∆PD as follows:

∆sD = G′(D̂, ŝ)∆PD. (C-7)

Similarly, the adjoint equation of Equation B-14 reads as follows:

∆sU = G′(Û, ŝ)E(ŝ)′
(
1−E(ŝ)′

)−1 ∆U. (C-8)

We can also define a temporary wavefield ∆PU that satisfies the following equation:

∆PU = E(ŝ)′
(
1−E(ŝ)′

)−1 ∆U. (C-9)

After rewriting it, we get the following recursive form:

∆PU = E(ŝ)′∆PU + E(ŝ)′∆U

= E(ŝ)′∆PU + E(ŝ)′diag
(
D̂
)
∆I. (C-10)
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The back-projected slowness perturbation from the perturbed receiver wavefield is then
obtained by applying the adjoint of the scattering operator G(Û, ŝ) to the wavefield ∆PU

as follows:

∆sU = G′(Û, ŝ)∆PU . (C-11)

The total back-projected slowness perturbation is obtained by adding ∆sD and ∆sU to-
gether:

∆s = ∆sD + ∆sU . (C-12)
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Phase encoding with Gold codes for wave-equation migration

Claudio Guerra and Biondo Biondi

ABSTRACT

Prestack exploding-reflector modeling aims to synthesize a small dataset comprised of
areal shots, while preserving the correct kinematics to be used in iterations of migration
velocity analysis. To achieve this goal, the amount of data is reduced by combining
the modeled areal data into sets, we call super-areal data. However, crosstalk arises
during migration due to the correlation of wavefields resulting from different modeling
experiments. Phase encoding the modeling experiments can attenuate crosstalk during
migration. In the geophysical community, the most used phase-encoding schemes are
plane-wave-phase encoding and random-phase encoding. Here, we exploit the appli-
cation of Gold codes commonly used in wireless communication, radar and medical
imaging communities to phase encode data. We show that adequately selecting the
Gold codes can potentially shift the crosstalk out of the migration domain, or the re-
gion of interest if a target-oriented approach is used, yielding an image free of crosstalk.

INTRODUCTION

Biondi (2006, 2007) introduced the concept of the prestack exploding-reflector modeling.
This method synthesizes source and receiver wavefields along the entire survey at the surface,
in the form of areal data, starting from a prestack migrated image cube computed with wave-
equation migration. For migration velocity analysis, the aim is to generate a considerably
smaller dataset than the one used in the initial migration, while maintaining the necessary
kinematic information to update the velocity.

Conceptually, the synthesized areal data are computed by upward propagating source
and receiver wavefields using subsurface-offset-domain common-image gathers (SODCIGs)
as initial conditions. To decrease the number of experiments to migrate, we take advan-
tage of the linearity of the wave propagation to combine several experiments into a set of
composite records. Combining several experiments gives rise to crosstalk during imaging
(Biondi, 2006; Guerra and Biondi, 2008). Guerra and Biondi (2008) use pseudo-random-
phase encoding (Romero et al., 2000) during the modeling step to attenuate crosstalk.

It is common, in the exploration geophysics community, to employ pseudo-random codes
using intrinsic functions specific to the programing language. These pseudo-random codes
present, generally, a uniform distribution. Their autocorrelation and cross-correlation func-
tions have no special properties. The autocorrelation function presents nearly periodic side
lobes with additive low-amplitude random variations. The peak-to-side lobe ratio is around
30. The cross-correlation function is pseudo-random, and its amplitudes are of the same
order of magnitude as those of the non-zero lags of the autocorrelation function. Herein,
theses codes are called conventional random codes.

23



24 Guerra and Biondi SEP–136

In wireless communication, especially for systems using Code Division Multiple Ac-
cess (CDMA), a class of different pseudo-random codes have been widely used (Shi and
Schelgel, 2003). These codes are binary sequences and have unique autocorrelation and
cross-correlations properties which make them more suited to achieve the above-mentioned
objectives with minimal crosstalk. The autocorrelation function is represented by a large
peak, whose amplitude equals the number of samples in the code, and the cross-correlation
peaks, at non-zero lags, with the same amplitudes as that of the autocorrelation. Examples
of binary pseudo-random codes used by these communities are Golay (Golay, 1961; Tseng,
1972), Kasami (Kasami, 1966) and Gold codes (Gold, 1967). Medical imaging (Gran, 2005)
and radar communities (Levanon and Mozeson, 2004) also exploit the statistical proper-
ties of these pseudo-random codes to increase bandwidth, signal-to-noise ratio and pulse
compression.

Quan and Harris (1991) analyze orthogonal codes to encode simultaneous source sig-
natures for cross-well surveys, and conclude that m-sequences and Gold codes provide the
best results on the separation of the seismograms. Here, we exploit the properties of the
Gold codes to encode the prestack exploding reflector modeling experiments.

In the next section we give a brief description of the prestack exploding-reflector mod-
eling. Then we discuss how to compute the Gold codes. To illustrate the effectiveness of
phase encoding with Gold codes, we compare the migration of prestack-exploding-reflector
modeled data encoded with conventional random codes and Gold codes.

PRESTACK EXPLODING-REFLECTOR MODELING

Starting from a prestack image obtained by wave-equation migration represented by a single
SODCIG, areal source and receiver wavefields are modeled at the surface by

S(x, y, z = 0, ω;xm) = G(xm − h;x, y, z = 0, ω) ∗ Is(x,h;xm),
R(x, y, z = 0, ω;xm) = G(xm + h;x, y, z = 0, ω) ∗ Ir(x,h;xm),

(1)

where S(x, y, z = 0, ω;xm) is the source wavefield and R(x, y, z = 0, ω;xm) is the receiver
wavefield. Is(x,h;xm) and Ir(x,h;xm) are the prestack images used as initial conditions
for the source and receiver wavefield extrapolation, respectively, at a selected position,
xm. These prestack images should be dip-independent gathers. They are computed by re-
mapping the dip along the offset direction according to the apparent geological dip (Biondi,
2007). G(xm±h;x, z = 0, ω) represents the operator that extrapolates the wavefields from
the subsurface to the surface; h is the subsurface offset; ω is the temporal frequency; and
x is the vector of spatial coordinates.

In the case of using an one-way extrapolator, the source and receiver wavefields are
upward continued according to the one-way wave equations{ (

∂
∂z + i

√
ω2s2(x)− |k|2

)
S(x, ω;xm) = Is(x,h;xm)

S(x, y, z = zmax, ω;xm) = 0
, (2)

and { (
∂
∂z − i

√
ω2s2(x)− |k|2

)
R(x, ω;xm) = Ir(x,h;xm)

R(x, y, z = zmax, ω;xm) = 0
, (3)
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where s(x) is the slowness at x; k = (kx, ky) is the spatial wavenumber vector.

Using the linearity of the wave propagation, sets of individual modeling experiments can
be combined into the same areal data, such that the amount of data input into migration can
be significantly decreased, reducing its cost. However, this procedure generates crosstalk
when applying the imaging condition during migration.

Guerra and Biondi (2008) introduce strategies to attenuate the crosstalk. Migration of
(x, ω)-random-phase encoded data disperses the crosstalk energy throughout the image as
a pseudo-random background noise. By adding more realizations of random-phase encoded
areal data, the speckled noise can be further attenuated. The encoded source wavefield,
S̃(x,pm, ω), and the encoded receiver wavefield, R̃(x,pm, ω), are synthesized according to{ (

∂
∂z + i

√
ω2s2(x)− |k|2

)
S̃(x,pm, ω) = Ĩs(x,h,pm, ω)

S̃(x, y, z = zmax,pm, ω) = 0
, (4)

and { (
∂
∂z − i

√
ω2s2(x)− |k|2

)
R̃(x,pm, ω) = Ĩr(x,h,pm, ω)

R̃(x, y, z = zmax,pm, ω) = 0
, (5)

where Ĩs(x,h,pm, ω) and Ĩr(x,h,pm, ω) are the encoded SODCIGs after rotations. They
are defined as follows:

Ĩs(x,h,pm, ω) =
∑
xm

Is(x,h,xm)β(x,xm,pm, ω), (6)

Ĩr(x,h,pm, ω) =
∑
xm

Ir(x,h,xm)β(x,xm,pm, ω), (7)

where β(x,xm,pm, ω) = eiγ(x,xm,pm,ω) is the phase-encoding function; the variable pm is
the index of different realizations of phase encoding.

The areal shot migration is performed by downward continuation of the areal source
and receiver wavefields according to the following one-way wave equations{ (

∂
∂z − i

√
ω2s2(x)− |k|2

)
Ŝ(x,pm, ω) = 0

Ŝ(x, y, z = 0,pm, ω) = S̃(x, y, z = 0,pm, ω)
, (8)

and { (
∂
∂z + i

√
ω2s2(x)− |k|2

)
R̂(x,pm, ω) = 0

R̂(x, y, z = 0,pm, ω) = R̃(x, y, z = 0,pm, ω)
, (9)

where the encoded source wavefield, S̃(x,pm, ω), and the encoded receiver wavefield, R̃(x,pm, ω),
are used as boundary conditions.

The image, Î(x,h), is obtained by cross-correlation of the source wavefield, Ŝ(x,pm, ω),
with the receiver wavefield, R̂(x,pm, ω)

Î(x,h) =
∑
ω

∑
pm

Ŝ?(x− h,pm, ω)R̂(x + h,pm, ω), (10)

where ? represents complex conjugation.
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GOLD CODES

Before describing Gold codes it is useful to define maximum length sequences.

Linear feedback shift registers (LFSR) (Moon and Stirling, 2000) are called state ma-
chines, whose components and functions are:

• the shift register – shifts the bit pattern and registers the output bit; and

• the feedback function – computes the input bit according to the tap sequence and
inserts the computed bit into the input bit position.

The output sequence of bits form pseudo-random binary sequences, which are completely
controlled by the tap sequence. A tap sequence defines which bits in the current state will
be combined to determine the input bit for the next state. The combination is generally
performed using module-2 addition (exclusive or – XOR). This means that adding the
selected bit values defined by the tap sequence, if the sum is odd the output of the function
is one; otherwise the output is zero. Table 1 shows the internal states and the output
sequence of a 4-bit LFSR with tap sequence [4, 1]. For the current state, the input bit (bit
1) is computed by the sum module–2 of the bits defined by the tap sequence(bits 1 and 4).
The rest of the bits in the register (bits 2, 3 and 4) are obtained by shifting the bit values
in the previous state to the right. For example, bit 2 of the current state is bit 1 of the
previous state. The output bit of the current state is the last bit (bit 4) in the register from
the previous state.

Register States
bit1 bit2 bit3 bit4 Output

(Tap) (Tap) Sequence
1 1 0 1
0 1 1 0 1
0 0 1 1 0
1 0 0 1 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
1 0 0 0 1
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
0 1 1 1 1
1 0 1 1 1
0 1 0 1 1
1 0 1 0 1
1 1 0 1 0

Table 1: Internal states and the output sequence of a 4-bit LFSR with tap sequence [4,1].

In number theory, Galois fields (GF) are finite fields in which all operations result in an
element of the field (Lidl and Niederreiter, 1994). Addition, subtraction and multiplication
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of polynomials are defined in a finite field. Module 2 arithmetic forms the basis of GF(2)
(Galois field of order 2). Addition and multiplication operations in GF(2) can be represented
by bitwise operators XOR and AND, respectively. Table 2 synthesizes the possible output
values of addition and multiplication over GF(2).

+ 0 1 × 0 1
0 0 1 0 0 0
1 1 0 1 0 1

Table 2: GF(2) addition and multiplication possible outcomes.

If a polynomial can not be represented as the product of two or more polynomials, it is
called an irreducible polynomial. For instance, x2 +x+1 is irreducible over GF(2) because
it can not be factored. However, x2 +1 is not irreducible over GF(2) because, using normal
algebra, (x + 1)(x + 1) = x2 + 2x + 1, and after reduction module–2, is x2 + 1 (the term 2x
is dropped). So, in GF(2), x2 + 1 ≡ x2 + 2x + 1.

The importance of studying irreducible polynomials GF(2) is that they are used to
represent tap sequences. Considering an irreducible polynomial, the corresponding tap
sequence is given by the exponents of the terms with coefficients of 1 (Dinan and Jabbari,
1998). Special tap sequences can be used to generate particular pseudo-random binary
sequences. They are called maximum length sequences (m-sequences) and, by definition,
are the largest codes that can be generated by a LFSR for a given tap sequence. Their
length is (bn− 1), where n is the number of elements of the tap sequence, and b = 2, 3 or 5.

The autocorrelation function of an m-sequence, Φmls(k), is given by

Φmls(k) =
{

bn − 1 for k = 0,
−1 for k 6= 0,

(11)

where k is the lag of correlation. In spite of the good autocorrelation properties, m-
sequences, in general, are not immune to cross-correlation problems, and they may have
large and unpredictable cross-correlation values. However, the so-called preferred pairs
of m-sequences have cross-correlation functions which might assume the predicted values,
−1, − 1 + p, and −1− p, where p = 2(n+1)/2 for n odd or p = 2(n+2)/2 for n even. Given a
(2n− 1)–length m-sequence, a(k), and gcd{n, 4} = 1 (greatest common divisor of n and 4),
its preferred pair is the result of decimation computed by applying on a(k) a circular shift
of q samples, where q = 2m + 1 and gcd{m,n} = 1. Figure 1 shows the cross-correlation of
m-sequences that form a preferred pair computed with m = 5.

The number of possible preferred pairs of m-sequences is limited, when compared to
the requirements of practical applications of wireless communication. Preferred pairs of
m-sequences, however, are used to generate Gold codes (Dinan and Jabbari, 1998).

In CDMA, Gold codes are used as chipping sequences that allow several callers to use
the same frequency, resulting in less interference and better utilization of the available
bandwidth. Originally proposed by Gold (1967), Gold codes can be computed by module-2
addition (exclusive or) of circularly shifted preferred pairs of m-sequences of length 2n− 1.
The autocorrelation function of a Gold code, Φgc(k), is given by

Φgc(k) =
{
±2n − 1 for k = 0,

±1 for k 6= 0.
(12)
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Figure 1: Cross-correlation of a m-sequences that form a preferred pair.[ER]
claudio1/. prefpairs

More interestingly, the two valued cross-correlation function of Gold sequences, Ψgc(k), is
given by

Ψgc(k) =
{
±(2n − 1) for k = λ,

∓1 for k 6= λ.
(13)

where the correlation lag λ is given by the difference between the number of circular shifts
applied to the m-sequence to compute the Gold codes.

Figure 2 illustrates the correlation properties of the Gold codes. The left part shows
the autocorrelation of the Gold code generated with one circular shift of the preferred
pair of m-sequence. The right part shows the cross-correlation of the Gold code generated
with one circular shift of the preferred pair of m-sequence with the Gold code generated
with 84 circular shifts. Note that the peak of the cross-correlation occurs at lag 84. For
comparison, we show the correlation functions of conventional random codes in Figure 3.
The autocorrelation function presents nearly periodic side lobes with additive low-amplitude
random variations. The peak-to-side lobe ratio is around 30. The cross-correlation function
is pseudo-random, and its amplitudes are of the same order of magnitude as those of the
non-zero lags of the autocorrelation function.

After computing Gold codes, we use their phase information to encode the modeling
experiments.

EXAMPLES

We illustrate the use of the encoding methods on a simple model of a flat reflector, 0.5
km deep, embedded in a medium with a constant velocity of 2 km/s. The original data
is migrated with a 5% slower velocity. We used the same slower velocity to perform the
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Figure 2: Correlation functions of Gold codes. a) Autocorrelation of Gold code generated
with one circular shift of the preferred pair of m-sequence. b) Cross-correlation of the
Gold code generated with one circular shift of the preferred pair of m-sequence with that
generated with 84 circular shifts. The peak of the cross-correlation occurs at lag -84.[ER]
claudio1/. gold184

Figure 3: Correlation functions of conventional random codes. a) Autocorrelation of the
conventional random code. b) A cross-correlation.[ER] claudio1/. rand
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modeling. For the areal shot migration, we show examples of migrating Gold code phase-
encoded data with the slower velocity. For comparison of the crosstalk behavior, when
migrating with a velocity different from that used to model, we also show images migrated
with a 5% faster velocity. Super-areal data are comprised of the collection of 10 modeling
experiments initiated at every 10th CMP coordinate. We computed the prestack migrated
image with 61 subsurface offsets to observe how crosstalk is shifted when using Gold codes.
It should have been reasonable to use a much smaller number of offsets, as the moveout
information is restricted to the 21 central offsets.

Figure 4 shows the areal shot migration of data generated by the prestack exploding-
reflector modeling without combining the modeling experiments into super-areal shots. The
panel on the left is the zero-subsurface-offset section, and the panel on the right is a SOD-
CIG. This result represents the ideal image we would like to obtain if the crosstalk could
be eliminated. Our objective in phase encoding the modeling experiments is to achieve sat-
isfactory crosstalk attenuation in such a way that the moveout information is not altered.

Figure 4: Areal shot migration of synthesized data with no combination of the modeling
experiments into super-areal data.[CR] claudio1/. perm0

Figure 5 shows the areal shot migration of data generated by the prestack exploding-
reflector modeling with no phase encoding applied. The super-areal data, input to areal
shot migration, are comprised of modeling experiments initiated at every tenth SODCIG.
The SODCIGs resulting from the areal shot migration, show strong crosstalk at subsurface
offsets different from zero. The crosstalk is periodic with a period half of the spacing of the
modeling experiments in a super-areal shot.

Figure 6 shows areal shot migration of one realization of phase encoding modeling with
conventional random codes. The strong crosstalk observed in Figure 4 is now dispersed
throughout the image. The dispersed crosstalk can be further attenuated by migrating
more random realizations, but this increases the cost of migration. Figure 7 shows the
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Figure 5: Areal shot migration of synthesized data with no phase encoding applied.
The super-areal data comprises 10 modeling experiments. Notice the crosstalk in the
SODCIG.[CR] claudio1/. perma

Figure 6: Areal shot migration of one realization of synthesized data with conventional
random-phase encoding.[CR] claudio1/. conv1r
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migration of 4 realizations of conventional random encoding modeling.

Figure 7: Areal shot migration of four realizations of synthesized data with conventional
random-phase encoding.[CR] claudio1/. conv5r

Crosstalk attenuation is incomplete when using conventional random codes because their
autocorrelations are not a perfect spike, nor are their cross-correlations zero. Gold codes
partially satisfy these requirements: the autocorrelation is almost a perfect spike, except for
-1’s at lags different from zero, and, similarly, the cross-correlations are -1 everywhere except
where they peak. Therefore, to obtain good results when using Gold codes, it is critical to
select the codes which provide the best crosstalk attenuation. That is because the cross-
correlation functions have peaks with the same magnitude as those of the autocorrelation
function.

In Figure 8, the areal shot migration was performed on encoded data with Gold codes
that have cross-correlation peaks at every 5th (Figure 8a), 10th (Figure 8b) and, 20th lags
(Figure 8c). This means that when applying the multi-offset imaging condition, unrelated
wavefields, delayed in time by the phase functions, will cross-correlate at depths different
from that of the related wavefields, which were encoded with the same phase. The crosstalk
of the Figure 5 is now shifted in depth according to the selected set of Gold codes. In
Figure 8a, the apexes of the crosstalk are displaced in depth at a constant spacing of,
approximately, 0.1 km; in Figure 8b the spacing is approximately 0.2 km, and in Figure 8c,
0.4 km. Notice that in spite of the crosstalk is still present in Figure 8c, its complete
elimination can be achieved with a simple depth-windowing of the image.

The amount of depth shift of the crosstalk is defined by the lag where the cross-
correlation of the Gold codes peaks. For the simple case of constant velocity, the depth
shifts, δz, are given by

δz =
nλv

2nωdω
(14)

where nω is the number of frequencies, dω is the frequency interval and nλ is the lag where
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Figure 8: Areal shot migration of one
realization of synthesized data with
Gold code phase encoding. Gold
codes have cross-correlation peaks at
every 5th (a), 10th (b) and, 20th
lag (c), and the depth shifts are, re-
spectively, 0.1 km, 0.2 km, and 0.4
km.[CR] claudio1/. gold1x
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the cross-correlation of the Gold codes peaks. For the present example, this amounts to
δz = 0.021 ∗ nλ km.

One possibility to statistically attenuate the crosstalk is to randomly select the Gold
codes. Figure 9 shows the areal shot migration of one realization of encoded data with
randomly selected Gold codes. The crosstalk shows different patterns than that of the
sequentially selected Gold codes.

Figure 9: Areal shot migration of one realization of synthesized data with Gold code phase
encoding. Gold codes are randomly selected.[CR] claudio1/. gold1r

As before, migrating more realizations of randomly selected Gold-encoded data further
attenuates crosstalk. Figure 10 shows the migration of 4 realizations of randomly selected
Gold-encoded data. Comparison with Figure 9 shows that much of the remaining crosstalk
energy has been attenuated. However, this approach does not exploit the statistical prop-
erties of the Gold phase functions and the crosstalk shows up locally coherent, at random
positions. This strategy is definitely not suited to provide a kinematically reliable image.

Considering that the crosstalk is shifted in depth, as observed in Figure 8, and that
the amount of shift is determined by the lag where the cross-correlation of the Gold codes
peaks (equation 14), one can choose the Gold codes according to a suitable interval that
completely shifts the crosstalk away from the zone of interest. This strategy shares similar
idea as the linear-phase encoding Romero et al. (2000), which aims to shift the crosstalk
out of the migration domain by using a linear function of frequency. In the Appendix, we
show that phase encoding with Gold codes is equivalent to linear phase encoding. Figure 11
shows the areal shot migration of data encoded by selecting every 50th Gold code, meaning
that the depth shifts are multiples of 1 km, as predicted by equation 14, which should be
adequate to completely push the crosstalk away from the SODCIG. Contrary to what was
expected, the crosstalk is still present. Of course, its complete elimination can be achieved
by windowing around the central traces (Figure 12).
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Figure 10: Areal shot migration of four realizations of synthesized data with Gold code
phase encoding. Gold codes are randomly selected.[CR] claudio1/. gold5r

Figure 11: Areal shot migration of one realization of synthesized data with Gold phase
encoding. Gold codes are selected such that the crosstalk is shifted away from the reflector.
A simple windowing should completely eliminate the crosstalk.[CR] claudio1/. gold1o
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Figure 12: Crosstalk of Figure 11 can be completely eliminated by windowing the SODCIG.
Compare with Figure 5.[CR] claudio1/. goldwd

To understand the origin of the crosstalk in Figure 11, we migrated the data without
adding the results of individual migrations of the super areal data. Figure 13 shows three
of these migrations. The three panels show the same spatial position. The top panel shows
the migration of super areal data whose modeling includes a SODCIG coincident with that
displayed. Remember that we are using a “comb” function to select every 10th SODCIG
to initiate the modeling experiments comprised by a super areal data. The central panel
shows the migration of the super areal data modeled from the initial image shifted five CMP
positions away from that of the uppermost panel, and the panel on the bottom shows the
migration of the super areal data modeled from the initial image shifted nine CMP positions
away from that of the uppermost panel. The modeling experiments which generated the
super areal data for Figure 13c are actually separated one CMP position from the ones for
Figure 13a, given that the modeling experiments in super areal data are separated every
10th CMP. Figure 13a and Figure 13c show that much of the reflector energy comes from
the migration of modeling experiments initiated at CMP positions close to the considered
image point. Figure 13b shows that much of the crosstalk energy of Figure 11 is related
to migration of super areal shots whose modeling experiments are initiated at SODCIGs
shifted five CMP positions with respect to the considered SODCIG.

In migration velocity analysis, at every velocity iteration, data is migrated with an
updated velocity. To verify how the crosstalk behaves when migrating with a different
velocity, we used a 5% faster velocity to migrate the Gold encoded data modeled with the
initial 5% slower velocity. We used sets of Gold codes with cross-correlation peaks at every
5th (Figure 14a), 10th (Figure 14b) and, 20th lag (Figure 14c) lags. The depth shift of
the crosstalk is proportional to the increase in velocity. The behavior is similar to that of
migration with a slower velocity, regarding that the interference with the region of interest
decreases with the increase of the lag of the cross-correlation peaks.
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Figure 13: Areal shot migration of
three super areal data. The results
were not stacked together. Notice
that much of the crosstalk energy of
Figure 11 is related to the migration
of super areal shots (b) other than
the one which modeling was initiated
at that CMP position (a and c).[CR]
claudio1/. goldsp
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Figure 14: Areal shot migration of
one realization of synthesized data
with Gold phase encoding. Gold
codes have cross-correlation peaks at
every 5th (a), 10th (b) and, 20th lag
(c).[CR] claudio1/. gold2x
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The use of Gold codes can be less costly than conventional random codes, given that
just one realization is necessary to achieve an almost perfect result, while even using more
realizations of conventional random encoding does not produce an image with similar qual-
ity. In addition, it is suited to be used in a horizon based strategy to migration velocity
analysis, where a few important reflectors are chosen to do velocity update.

However, an inadequate choice of the Gold codes is potentially more dangerous than
using conventional random codes. Because the crosstalk may not be shifted out of the
region of interest, coherent artifacts can coincide with reflectors and obliterate the moveout
information. Conventional random codes, in turn, randomizes the crosstalk. This can
lead to a noisy residual moveout scan or a noisy gradient. In a companion paper Tang
et al. (2008) show that the prestack exploding-reflector modeled data, phase encoded with
conventional random codes, is able to provide a reasonable direction for velocity update.

CONCLUSION

We showed that the use of Gold codes in phase encoding can virtually eliminate crosstalk
if the codes are satisfactorily selected. Its advantage over conventional random codes is not
only in the image quality but also cost. The elimination of the crosstalk can be achieved with
only one realization of Gold codes, while for conventional random codes more realizations
are needed to obtain reasonable images, but still of lower quality when compared to the
ones obtained by using Gold codes. The need for more realizations increases the cost of
modeling and migration.

We also showed that the phase of the cross-correlation of Gold codes is given by the lag
in time where the cross-correlation peaks multiplied by frequency. This amounts to apply
linear phase encoding to the encoded wavefields.

We used a simple example with just one reflector to illustrate the encoding techniques.
The performance of the Gold codes in the presence of more than one reflector needs to
be tested. However, as just one realization is sufficient to drastically reduce the crosstalk,
they can be affordable to use in a horizon-based approach to the modeling in which each
reflector is modeled separately. Additional research is needed to analyze the performance
of Gold codes in more complex situations, where the depth shift of the crosstalk may not
be a simple function of velocity.
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APPENDIX

We show that phase encoding using Gold codes is equivalent to the linear phase encoding
introduced by (Romero et al., 2000). The cross-correlation function of Gold codes is given
by equation 13. It corresponds to a spike of amplitude ±2n at lag λ, which depends on the
difference between the number of circular shifts applied to the m-sequences to compute the
Gold codes, plus a DC term, ∓1. The phase of the cross-correlation function is given by
the phase of the spike, tλω, and is equal to the phase difference of the input signals. If Gold
codes have phases γ1(ω) and γ2(ω), the phase of their cross-correlation is

γ1(ω)− γ2(ω) = tλω. (A-1)

According to equation A-1, the phase of the cross-correlation of Gold codes is a linear
function of the frequency. Equation A-1 is equal to equation 26 of Romero’s paper.
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An image-focusing semblance functional for velocity analysis

Biondo Biondi

ABSTRACT

Analyzing the focusing and defocusing of migrated images provides valuable velocity
information that can supplement the velocity information routinely extracted from
migrated common-image gathers. However, whereas qualitative focusing analysis is
readily performed on ensemble of images generated by prestack residual migration,
quantitative focusing analysis remains a challenge. I use two simple synthetic-data
examples to show that the maximization of a minimum-entropy norm, a commonly-
used measure of image focusing, yields accurate estimates for diffracted events, but it
can be misleading in the presence of continuous but curved reflectors.
I propose to measure image focusing by computing coherency across structural dips, in
addition to coherency across aperture/azimuth angles. Images can be efficiently decom-
posed according to structural dips during residual migration. I introduce a semblance
functional to measure image coherency simultaneously across the aperture/azimuth
angles and the dip angles. Using 2D synthetic data examples, I show that the si-
multaneous evaluation of semblance across aperture-angles and dips can be effective
in quantitatively measuring image focusing and also avoiding the biases induced by
reflectors’ curvature.

INTRODUCTION

Even a superficial analysis of depth migrated seismic images obtained with different migra-
tion velocities clearly shows that velocity information could be extracted by measuring image
focusing along the spatial dimensions (i.e. horizontal axes and depth). This information is
particularly abundant in areas where complex structure and discontinuous reflectors reveal
lack of focusing caused by velocity errors; such as in presence of faults, point diffractors,
buried channels, uncomformities or rough salt/sediment interfaces.

If we were able to extract this focusing-velocity information reliably from migrated im-
ages it could supplement the velocity information that we routinely extract by analyzing
residual moveout along the offsets or aperture-angles axes, and thus enhance velocity esti-
mation by increasing resolution and decrease uncertainties. It would be particularly useful
to improve the interpretability of the final image and the accuracy of time-to-depth con-
version in areas where the reflection aperture range is narrow either because of unfavorable
depth/offset ratio or because of the presence of fast body in the overburden (e.g. salt bodies)
that deflect the propagating waves. Today, the most common application of image focusing
is to migration-velocity scans for subsalt imaging (Wang et al., 2006). However, current
practical applications exploit the image-focusing information by using subjective interpre-
tation criteria instead of quantitative measurements (Sava et al., 2005). This limitation
makes almost impossible to automate the process and potentially reduces its reliability, and
thus it is a serious obstacle to its extensive application.
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Minimum entropy has been often proposed as a quantitative measure of image focusing,
starting with Harlan et al. (1984), De Vries and Berkhout (1984), and more recently by
Stinson et al. (2005) and Fomel et al. (2007). Minimizing the “spatial entropy” measured on
image windows privileges images that consist of isolated spikes. If the reflectivity function
consists of isolated diffractors, minimum entropy is a good indicator of image focusing.
However, field data are usually a combination of diffracted events, specular reflections from
planar reflectors, and reflections for high-curvature reflectors. In these cases minimum
entropy may yield bias estimates unless the diffractions are successfully separated from the
other events before performing the analysis (Fomel et al., 2007). In complex geology, this
separation can be unreliable when performed in the data space, and even more challenging
when performed in the image space because it is biased by the initial migration velocity. In
the following section I show that in presence of reflector curvature (e.g. a sinusoidal reflector)
measuring focusing by minimum entropy leads to under-migrated images of convex reflectors
(e.g. an anticline,) and over-migrated images of concave reflectors (e.g. a syncline.)

I aim to overcome these shortcomings by generalizing the conventional concept of sem-
blance commonly used in velocity analysis. In addition to measuring semblance along the
reflection-aperture angle (or offset for Kirchhoff migration,) as is routinely done, I propose
to measure semblance along the structural-dip axes. In this paper I work with 2D data,
and thus I compute semblance on 2D patches (structural dip and aperture angle.) With 3D
full-azimuth data, semblance would be computed on 4D patches (indexed by two structural
dips, reflection aperture and reflection azimuth.)

The proposed method can be applied to locally select the best-focused image among
an ensemble of images obtained with different migration velocities. I use residual prestack
depth migration in the angle domain (Biondi, 2008) to generate this ensemble of images
starting from prestack depth-migrated image in the angle domain. Stolt prestack depth
migration could be used as well to perform residual prestack migration (Sava, 2003). With
either choice of residual migration, the image decomposition according to structural dip
is easily performed within the residual prestack migration process, since both migrations
require the image to be transformed into the spatial Fourier domain. The final goal, not
addressed by this paper, is to use the image focusing information to enhance interval-velocity
estimation for depth migration. In particular, I plan to update the interval-velocity model
by using the wave-equation migration velocity analysis method starting from a spatially-
varying field of optimal-focusing parameters (Biondi and Sava, 1999; Sava and Biondi,
2004a,b; Sava, 2004).

THE CHALLENGE OF QUANTIFYING IMAGE FOCUSING

In this section, I introduce two simple synthetic data sets that illustrate the opportunities
and challenges of measuring image focusing for velocity analysis. I start by showing how the
application of a minimum entropy functional can help to determine the correct migration
velocity, but also it can mislead the estimation.

Figure 1a and Figure 2a show the reflectivity functions assumed to generate the two data
sets. The first one contains a strong diffractor and two dipping planar reflectors broken by
a fault. Focusing analysis of the diffractor and the reflectors’ truncations provides velocity
information additional to the one available by conventional analysis of the reflections from
the planar interfaces. The second model consists of a continuous sinusoidal reflector. It



SEP-136 Image-focusing analysis 45

Figure 1: (a) Reflectivity function assumed to compute a synthetic prestack data set, and
(b) the stacked section obtained by migrating the data set with a low velocity. [CR]
biondo1/. Refl-Mig-fault-overn

shows the potential pitfalls of measuring image focusing in presence of curvature in the
structure. Figure 1b and Figure 2b show the result of migrating with a low velocity the
modeled data corresponding to the reflectivity functions shown in Figure 1a and Figure 2a,
respectively. In Figure 1b both the image of the point diffractor and the image of the
reflectors’ truncations show the typical signs of undermigration; that is, not fully collapsed
diffracted events. In Figure 2b the bottom of the syncline shows triplication that are signs
of undermigration, whereas the top of the anticline does not show any clear defocusing
problems.

Pitfalls of Minimum Entropy functional

Minimizing the image entropy measured on moving spatial windows is a well-known ap-
proach to measuring image focusing. The varimax norm (Wiggins, 1985) is commonly used
to measure the ”entropy” of an image instead of the conventional entropy functional. The
varimax norm is cheaper to evaluate than the conventional entropy functional because it
does not require the evaluation of a logarithmic function. A peak in the varimax corresponds
to a point of minimum entropy. I computed the varimax for local windows extracted from
image ensembles computed by applying residual prestack migration to an initial prestack
migration performed with a low velocity.

I define R (x, γ, ρ) as an ensemble of prestack images obtained by residual prestack
migration where the parameter ρ is the ratio between the new migration velocity and the
migration velocity used for the initial migration. The aperture angle is γ and x = {z, x} is
the vector of spatial coordinates, where z is depth and x is the horizontal location.

I define the image window x̄ as:

x̄ : {z̄ −∆z ≤ z ≤ z̄ + ∆z, x̄−∆x ≤ x ≤ x̄ + ∆x} , (1)
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Figure 2: (a) Reflectivity function assumed to compute a synthetic prestack data set, and
(b) the stacked section obtained by migrating the data set with a low velocity. [CR]
biondo1/. Refl-Mig-sinus-overn

Figure 3: (a) Graph of the varimax norm as a function of ρ, (b) stacked section for ρ = 1,
(c) stacked section for ρ = 1.025, and (d) angle-domain common image gather for ρ = 1.025
at x = 4, 700 meters. [CR] biondo1/. Probl-4700-diffr-overn

where 2∆z is the height of the window and 2∆x is its width, and z̄ and x̄ are the coordinates
of the window’s center.

The varimax norm computed for x̄ is defined as:

Ex (ρ) =
Nx̄
∑

x̄

[∑
γ R (x, γ, ρ)

]4
{∑

x̄

[∑
γ R (x, γ, ρ)

]2}2 , (2)

where
∑

x signifies summation over all the image points in x̄ and Nx̄ is the number of points
in x̄. Notice that the varimax in equation 2 includes stacking over the aperture angle γ.

For the first data set (Figure 1,) I computed the varimax in equation 2 as a function
of ρ in two windows: the first centered on the point diffractor, the second centered on the
reflector truncation. Figure 3 shows the following four plots for the point-diffractor window:
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Figure 4: (a) Graph of the varimax norm as a function of ρ, (b) stacked section for ρ = 1,
(c) stacked section for ρ = 1.04, and (d) angle-domain common image gather for ρ = 1.04
at x = 4, 700 meters. [CR] biondo1/. Probl-4700-trunc-overn

a) the graph of the varimax norm as a function of ρ, b) the stacked section for ρ = 1; that
is, the window of the initial undermigrated section in Figure 1b, c) the stacked section for
ρ = 1.025; that is; for the peak of the curve shown in Figure 3a, and d) the angle-domain
common image gather for the same value of ρ = 1.025 and extracted from the prestack cube
at the horizontal location of the point diffractor.

Figure 4 shows analogous plots as the ones shown in the previous figure, but for the
reflector-truncation window. Figure 4a shows the graph of the varimax as a function of
ρ. Figure 4b shows the stacked section for ρ = 1. Figure 4c shows the stacked section for
ρ = 1.04; that is, for the peak of the curve shown in Figure 4a, whereas Figure 4d shows
the angle-domain common image gather for the same value of ρ = 1.04 and extracted from
the prestack cube at the horizontal location of the reflector’s truncation.

For both windows, the maximum of the varimax norm corresponds to the value of ρ that
best focuses the prestack image and best flattens the angle-domain common image gathers.
The semblance peak for the point diffractor is sharper than for the reflector truncation,
suggesting that point diffractors provide higher-resolution information on migration velocity
than reflectors’ truncations.

I also computed the varimax in equation 2 as a function of ρ in two windows of the
prestack migrated image corresponding to the sinusoidal reflector (Figure 2.) The first
window is centered on the bottom of the syncline and the second centered on the top of
the anticline. Figure 5 and Figure 6 show: a) graphs of the varimax as function of ρ,
b) the stacked sections corresponding the correct values of ρ (ρ = 1.06 for Figure 5b and
ρ = 1.045 for Figure 6b,) c) the stacked sections corresponding the the varimax peaks
(ρ = .995 for Figure 5c and ρ = 1.105 for Figure 6c,) and d) the angle-domain common
image gathers extracted at the very bottom of the syncline in Figure 5d and top of the
anticline in Figure 6d.

For the first window, the peak of the varimax corresponds to a value of ρ that is too
low, whereas for the second window the peak of the varimax corresponds to a value of ρ
that is too high. The cause of these errors is that the image of concave reflectors can be
made more spiky (i.e. lower entropy) by undermigration than by migration with the correct
velocity. Similarly, the image of a convex reflector can be made more spiky by overmigration
than by migration with the correct velocity. If the varimax norm were used to determine
the residual-migration parameter ρ it would lead to images with wrong structure and non-
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Figure 5: (a) Graph of the varimax norm as a function of ρ, (b) stacked section for ρ = 1.06,
(c) stacked section for ρ = .995, and (d) angle-domain common image gather for ρ = .995
at x = 4, 250 meters. [CR] biondo1/. Probl-4250-overn

Figure 6: (a) Graph of the varimax norm as a function of ρ, (b) stacked section for ρ = 1.045,
(c) stacked section for ρ = 1.105, and (d) angle-domain common image gather for ρ = 1.105
at x = 4, 750 meters. [CR] biondo1/. Probl-4750-overn

flat common-image gathers. However, the secondary peaks of the varimax norm in both
Figure 5 and Figure 6 are approximately located at the correct value of ρ. This secondary
peaks indicate that there is potentially useful focusing information in the images, but to be
practically useful we must devise a method that is not biased by the reflectors’ curvature.

Measuring image coherency across structural dips

As an alternative to minimizing entropy, in this paper I propose to measure image focusing
by maximizing coherency along both the structural-dip axes and the aperture/azimuth axes.
The simultaneous use of dips and aperture angles is discussed in the next section. In this
section, I show that measuring coherency along the structural dips does provide information
on image focusing and I illustrate the concept by using the same two 2D synthetic data sets
shown above. I will also demonstrate that maximizing coherency only along the structural
dips may lead us to similar problems as the minimization of entropy.

To measure coherency along the structural dip α, I first create the dip-decomposed
prestack image R (x, γ, α, ρ) by residual prestack migration, and then I compute the follow-
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Figure 7: a) Dip-decomposed stack
image of the diffractor-point win-
dow as a function of the dip
angle extracted at x = 4, 700
meters and ρ = 1.025), and
(b) semblance ρ-spectrum computed
at x = 4, 700 meters. [CR]
biondo1/. Dips-4700-diffr-overn

ing semblance functional:

Sα (x, ρ) =

[∑
α

∑
γ R (x, γ, α, ρ)

]2
Nα
∑

α

[∑
γ R (x, γ, α, ρ)

]2 , (3)

where Nα is the number of dips to be included in the computation. Notice that, as for the
varimax in equation 2, semblance along structural dips is computed after stacking over the
aperture angle γ.

The determination of the dip summation range at each image location and for each value
of the parameter ρ is a practical problem of the proposed method. For the examples shown
in this paper I determined the summation ranges for both α and γ by applying an amplitude
thresholding criterion based on both local and global amplitude maxima measured from the
images. To improve the smoothness of the semblance spectra, I averaged the evaluation of
equation 3, and of all the other semblance functionals introduced in this paper, over spatial
windows extending along both the z and x directions.

Figure 7a shows the dip-decomposed stack image of the diffractor-point window as a
function of the dip angle α extracted from R (x, α, ρ) at the point-diffractor’s horizontal
position and for ρ = 1.025; that is, the correct value of ρ. The image is consistent as a
function of dips, with the exception of an image artifact caused by interference with the
image from the planar reflectors below the point diffractor. Figure 7b shows the semblance
computed by applying equation 3 at the horizontal position of the point diffractor. It has
a sharp peak for ρ = 1.025. The dip-coherency analysis has thus the potential to provide
accurate velocity information.

Figure 8a shows the dip-decomposed stack image of the reflector-truncation window as
a function of the dip angle α at extracted from R (x, α, ρ) at the horizontal position of the
reflector’s truncation for ρ = 1.04; that is, the correct value of ρ. The dip-decomposed
image is strongly peaked at α = −15o; that is the dip of the reflector. The event is weak
away from α = −15o; and much weaker than the point-diffractor event shown in Figure 7a.
Furthermore, polarity of the event switches at α = −15o. At the transition corresponding
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Figure 8: a) Dip-decomposed stack
image of the reflector-truncation
window as a function of the dip
angle extracted at x = 4, 700
meters and ρ = 1.04), and
(b) semblance ρ-spectrum computed
at x = 4, 700 meters. [CR]
biondo1/. Dips-4700-trunc-overn

to the reflector dip, the image is actually rotated by 45 degrees. To compute a higher-
quality semblance spectrum, I zeroed the image at α = −15o and split the computation of
the numerator in equation 3 between dips larger than 15 degrees and dips smaller than 15
degrees; that is I computed the following modified semblance functional:

Sᾱ (x, ρ) =

[∑
α<ᾱ

∑
γ R (x, γ, α, ρ)

]2
+
[∑

α>ᾱ

∑
γ R (x, γ, α, ρ)

]2
(Nα − 1)

∑
α 6=ᾱ

[∑
γ R (x, γ, α, ρ)

]2 , (4)

where ᾱ is the structural dip of the truncated reflector. The need to identify a reflector
truncation and to estimate the local dip of the reflector is potentially a practical problem
with using dip coherency to extract velocity information from reflector’s truncations.

The semblance spectrum shown in Figure 8b was computed by applying equation 4 with
ᾱ = −15o. The semblance peak is at the correct value of ρ = 1.04 but it is much broader
than the peak corresponding to the point diffractor shown in Figure 7b. As noted when
comparing Figure 3a with Figure 4a, the velocity information provided by focusing analysis
of reflectors’ truncations seems to be more difficult to use than the one provided by point
diffractors.

The computation of the dip spectra for the data set with sinusoidal reflector illustrates
the limitations and potential dangers of relying on dip-only spectra when continuous reflec-
tors have a strong curvature. Figures 9a and 9b show the image decomposed according to
structural dips for the bottom of the syncline window for two different values of ρ: ρ = .995
for Figure 9a, and ρ = 1.06 for Figure 9b (same values of ρ as for Figure 5c and Figure 5b,
respectively.) The image is flat as a function of the dip angle for the wrong value of ρ and
is frowning for the correct value of ρ. Consequently the dip spectrum shown in Figure 9c
peaks at a low value of ρ and would mislead velocity estimation.

The analysis of Figure 10 leads to similar conclusions. In this case the image is flat for
a higher value of ρ (ρ = 1.105) than the correct one (ρ = 1.045), for which the image is
actually smiling. The semblance spectrum is also biased toward higher values of ρ.
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Figure 9: a) Dip-decomposed stack
image of the bottom of the syn-
cline window as a function of the
dip angle extracted at x = 4, 250
meters and ρ = .995), (b) dip-
decomposed stack image for ρ =
1.06), and (c) semblance ρ-spectrum
computed at x = 4, 250 meters.
[CR] biondo1/. Dips-4250-overn

Figure 10: a) Dip-decomposed stack
image of the top of the anticline win-
dow as a function of the dip an-
gle extracted at x = 4, 750 meters
and ρ = 1.105), (b) dip-decomposed
stack image for ρ = 1.045), and
(c) semblance ρ-spectrum computed
at x = 4, 750 meters. [CR]
biondo1/. Dips-4750-overn

IMAGE-FOCUSING SEMBLANCE

In the previous section, I showed that we can measure image coherency across the struc-
tural dip axes to extract focusing information from stacked images. I also showed the
shortcomings of this procedure in presence of reflector’s curvature. In this section, I intro-
duce a generalization of the semblance functional that measures coherency simultaneously
along the dip axes and the aperture/azimuth axes. I name this semblance functional the
Image-focusing semblance. In 2D it is defined as:

S(γ,α) (x, ρ) =

[∑
γ

∑
α R (x, γ, α, ρ)

]2
NγNα

∑
γ

∑
α R (x, γ, α, ρ)2

, (5)

where Nγ is the number of aperture angles to be included in the computation.

As discussed in the previous section, the polarity of reflectors’ truncation reverses at
the reflectors’ dip (Figure 8.) The semblance functional introduced in equation 5 can be
modified to better measure image focusing of reflectors’ truncation in a way analogous to
the way I modified equation 3 to become equation 4. For reflector truncations, the image-
focusing semblance can thus be computed as:

S(γ,ᾱ) (x, ρ) =

[∑
γ

∑
α<ᾱ R (x, γ, α, ρ)

]2
+
[∑

γ

∑
α>ᾱ R (x, γ, α, ρ)

]2
Nγ (Nα − 1)

∑
γ

∑
α 6=ᾱ R (x, γ, α, ρ)2

. (6)

To better evaluate the amount of additional information provided by measuring co-
herency along the structural dips, I also computed a conventional semblance functional
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that measured coherency only along the aperture angle from the residual prestack migra-
tion results. I computed this conventional semblance function according to the following
expression:

Sγ (x, ρ) =

[∑
γ R (x, γ, ρ)

]2
Nγ
∑

γ R (x, γ, ρ)2
. (7)

The ρ spectrum shown in Figure 11a was computed by applying equation 7. To com-
pute the ρ spectrum shown in Figure 11b I used a combination of the semblance functional
expressed in equation 5 for the two shallower events, and of the semblance functional ex-
pressed in equation 6 for the deepest event, which corresponds to the reflector’s truncation.
The semblance peak corresponding to the point diffractor (the top event) is much sharper
in Figure 11b than in Figure 11a. This result confirms that the use of image-focusing sem-
blance instead of conventional semblance has the potential of enhancing velocity estimation.
In Figure 11b the semblance peaks corresponding to the planar dipping event (second from
the top) and the reflector’s truncation (first from the bottom) are substantially smaller than
the one for the point diffractor, but are still located at the correct value of ρ. The relative
scaling between the semblance peaks could be improved.

Figure 12 compares conventional aperture-angle ρ spectrum with the proposed image-
focusing spectrum evaluated at the horizontal location of the bottom of the syncline in the
model shown in Figure 2a. Both spectra peak for the correct value of ρ; that is ρ = 1.06.
The spectrum computed using the proposed method has a small secondary peak for low
ρs, but not as strong as the one for only-dip spectrum (Figure 9c) or the varimax norm
(Figure 5a.) Similarly, the spectra computed at the horizontal location of the top of the
anticline in the same model peak for the correct value of ρ, as shown in Figure 13.

CONCLUSIONS

Image-focusing analysis can provide useful velocity information, in particular in areas where
conventional velocity analysis lacks resolution. Measuring image coherency across the
structural-dip axes provides quantitative information on image focusing. However, in the
presence of curved reflectors coherency across dips suffers similar shortcomings as conven-
tional minimum entropy functional. To overcome these difficulties, I propose to perform
image-focusing analysis by measuring image coherency simultaneously across structural dips
and reflection aperture/azimuth angles. The application of the proposed image-focusing
semblance to two synthetic data sets demonstrates its potential as a tool to extract quan-
titative velocity information from image-focusing analysis.
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Figure 11: Semblance ρ spectra
computed from the first data set
(point diffractor and reflector trun-
cations) at x = 4, 700 meters
with: (a) conventional aperture-
angle semblance (equation 7,) and
(b) aperture-angle and dip-angle
semblance (equations 5 and 6.) [CR]
biondo1/. Sembl-4700-both-overn

Figure 12: Semblance ρ spectra com-
puted from the second data set (si-
nusoidal reflector) at x = 4, 250 me-
ters with: (a) conventional aperture-
angle semblance (equation 7,) and
(b) aperture-angle and dip-angle
semblance (equation 5.) [CR]
biondo1/. Sembl-4250-both-overn

Figure 13: Semblance ρ spectra com-
puted from the second data set (si-
nusoidal reflector) at x = 4, 750 me-
ters with: (a) conventional aperture-
angle semblance (equation 7,) and
(b) aperture-angle and dip-angle
semblance (equation 5.) [CR]
biondo1/. Sembl-4750-both-overn



54 Biondi SEP-136

Harlan, W. S., J. F. Claerbout, and F. Rocca, 1984, Signal/noise separation and velocity
estimation: Geophysics, 49, 1869–1880.

Sava, P., 2004, Migration and velocity analysis by wavefield extrapolation: PhD thesis,
Stanford University.

Sava, P. and B. Biondi, 2004a, Wave-equation migration velocity analysis—I: Theory: Geo-
physical Prospecting, 52, 593–623.

——–, 2004b, Wave-equation migration velocity analysis—II: Examples: Geophysical
Prospecting, 52, 607–623.

Sava, P. C., 2003, Prestack residual migration in frequency domain: Geophysics, 68, 634–
640.

Sava, P. C., B. Biondi, and J. Etgen, 2005, Wave-equation migration velocity analysis by
focusing diffractions and reflections: Geophysics, 70, U19–U27.

Stinson, K., E. Crase, W.-K. Chan, and S. Levy, 2005, Optimized determination of migration
velocities: Recorder, 30, 5–6.

Wang, B., V. Dirks, P. Guillaume, F. Audebert, and D. Epili, 2006, A 3d subsalt tomography
based on wave-equation migration-perturbation scans: Geophysics, 71, E1–E6.

Wiggins, R., 1985, Entropy guided deconvolution: Geophysics, 50, 2720–2726.



Stanford Exploration Project, Report SEP136, April 14, 2009

Migration velocity analysis with cross-gradient constraint

Mohammad Maysami

ABSTRACT

Velocity analysis plays a fundamental to seismic imaging. A variety of techniques
using pre-stack seismic data exist for migration-velocity analysis, including reflection
tomographic inversion methods. However, when the wavefield propagation is complex,
reflection tomography may fail to converge to a geologically reasonable velocity esti-
mation. Non-seismic geological properties can be integrated in the reflection-seismic
tomography problem to achieve better velocity estimation. Here, I propose to use
cross-gradients function as a similarity measure to constrain the tomography problem
and enforce a general geometrical structure for the seismic velocity estimates.

INTRODUCTION

Precise estimation of subsurface velocities is a requirement for high quality seismic imaging.
Without an accurate velocity, seismic reflectors are misplaced, the image is unfocused, and
seismic images can easily mislead earth scientists (Claerbout, 1999; Clapp, 2001). Defining
a reliable velocity model for seismic imaging is a difficult task, especially when sharp lateral
and vertical velocity variations are present. Velocity estimation becomes even more chal-
lenging when seismic data are noisy. Therefore it is harder to extract velocity information
(Clapp, 2001).

In areas with complex structures, and significant lateral velocity variations, velocity
analysis is a challenging task. In these areas, reflection-tomography methods are often
more effective than conventional velocity-estimation methods based on measurements of
stacking velocities (Biondi, 1990; Clapp, 2001). Unfortunately, the reflection-tomography
problem is ill-posed and under-determined. Furthermore, it may not converge to a realistic
velocity model without a priori information, e.g., regularization constraints and other types
of geophysical properties in addition to seismic data (Clapp, 2001).

The main challenge in integrating different geophysical data sets is the absence of an
analytical relationship between properties exploited by different geophysical surveys. Most
often, probabilistic relations among these geophysical properties are used to address this
shortcoming. A different approach would be to use gradients field as an objective measure
of geometrical similarity. This is true since the variations of geophysical properties can be
described by a magnitude and a direction (Gallardo and Meju, 2004, 2007).

Here, I use the cross-gradients function introduced by Gallardo and Meju (2004, 2007)
to integrate the resistivity field measured by electromagnetic surveys into the reflection-
seismic tomography problem. The integration of this additional piece of information may
lead to velocity estimates that are geologically reasonable.

My paper is organized as follows. First, I present a short overview of reflection tomog-
raphy, followed by introducing the cross-gradients function as a structural similarity mea-
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sure. Next, I show how we can use this measure as an extra constraint for the reflection-
tomography problem, with the goal of obtaining at a more accurate velocity estimation.
Last, I discuss the future work based on these ideas.

REFLECTION SEISMIC-TOMOGRAPHY

By definition, tomography is an inverse problem, where a field is reconstructed from its
known linear path integrals, i.e., projections (Clayton, 1984; Iyer and Hirahara, 1993).
We can think of tomography as a matrix operator T, which integrates slowness along the
raypath. The tomography problem can then be stated as

t = T s, (1)

where t and s are travel time and slowness vector, respectively (Clapp, 2001).

The raypaths are dependent on the velocity field. Consequently, the tomography opera-
tor is a function of the model parameters. This dependency causes the tomography problem
to be nonlinear, which makes it difficult to solve. A common technique to overcome this
non-linearity is to iteratively linearize the operator around a prior estimation of the slow-
ness field s0 (Biondi, 1990; Etgen, 1990; Clapp, 2001). The linearization of the tomography
problem by using a Taylor expansion is then given by

t ≈ Ts0 +
∂T
∂s

∣∣
s=s0

∆s. (2)

Here, ∆s = s − s0 represents the update in the slowness field with respect to the a priori
slowness estimation, s0. Equation 2 can be simplified as

∆t = t−Ts0 ≈ TL∆s, (3)

where TL = ∂T
∂s

∣∣
s=s0

is a linear approximation of T. A second, but not least, difficulty
arises because the location of reflection points are unknown and a function of the velocity
field (van Trier, 1990; Stork, 1992).

Clapp (2001) attempts to resolve some of the non-linearity issues with the introduction
of a new tomography operator in the tau domain and use of steering filters. In addition to
geologic models other types of geophysical data can also be extremely important. In the
following section, I show how the cross-gradients function can be used to add constraints
to the seismic tomography problem.

THE CROSS-GRADIENTS FUNCTION AS A CONSTRAINT FOR
THE TOMOGRAPHY PROBLEM

As mentioned in the previous section, integrating different types of geophysical data can
lead to improvements in reflection-seismic tomography results due to reduction of model
uncertainty. For this purpose, I propose the cross-gradients function, which can also be
considered as a metric to measure the structural similarity between two fields. Following
Gallardo and Meju (2004), we can define the cross-gradients function for the tomography
problem as

g = ∇r×∇s, (4)
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where r and s can represent any two model parameters, e.g., resistivity and slowness in our
case, respectively. Zero values of the cross-gradients function correspond to points where
spatial changes in both geophysical properties, i.e., ∇r and ∇s, align. However, the function
is also zero where the magnitude of spatial variations of either field is negligible, e.g., where
either property is smooth. Note that the cross-gradients function is a non-linear function
of s and r if both are unknowns.

Figure 1 shows a synthetic 2-D resistivity profile with two anomalies in a constant re-
sistivity background. Ideally, we expect different types of geophysical measurements to
produce a geometrically similar image of the subsurface. The cross-property relations be-
tween pairs of geophysical properties, e.g., seismic velocity and electrical resistivity of rocks
(for more details refer to Hacikoylu et al., 2006; Carcione et al., 2007) also support this
similarity. Figure 2 shows the corresponding 2-D velocity profile of the modeled subsur-
face region in Figure 1, which includes both fast and slow anomalies in comparison to the
background velocity. The velocity profile is computed using the Archie/time-average cross-
property relation (Carcione et al., 2007) with arbitrary parameter values. Note that, the
structural similarity of Figures 1 and 2 suggest that the cross-gradients function should
vanish almost everywhere.

In a 2-D problem, g simplifies to a scalar function at each point, given by

g =
∂s
∂x

∂r
∂z
− ∂s

∂z

∂r
∂x

, (5)

where the model parameters are given in x−z plane. In order to compute the cross-gradients
function, we can further simplify it by using first-order forward differences approximation
of the first derivative operators. Figure 3 shows the estimated cross-gradients function.
Note that it is approximately zero everywhere as expected. Negligible non-zero values are
caused by errors in forward-difference estimation. This implies that geometrical changes,
e.g., layer boundaries and other subsurface structures, should be sensed by measurement of
both geophysical properties, i.e., seismic slowness and electrical resistivity. Therefore, the
cross-gradients function can be used as a constraint for joint data inversion problems or to
integrate a priori information from other fields into the seismic tomography problem.

If an accurate estimate of the electrical resistivity profile is provided, we can use the
cross-gradients function as a constraint for the reflection-seismic tomography problem to
improve the accuracy of the velocity estimations. In this case, we can write the cross-
gradients function given in equation 5 as a linear operator G on the slowness field, s0 +∆s.
We can then extend the linearized tomography problem by employing G as an additional
constraint. The objective function, P(∆s), of this extended problem becomes

P(∆s) = ||∆t−TL∆s||2 + ε21 ||A∆s||2 + ε22 ||G(s0 + ∆s)||2, (6)

where ε1 and ε2 are problem-specific weights, and A represents any regularization operator
other than cross-gradients function such as smoothing operator.

The important advantage of using the cross-gradients function over using steering filters
may not be very clear in this synthetic example. Steering filters are most effective for
continuous anomalies with smooth boundaries. However, in the case of sharp boundaries,
e.g., Gaussian anomalies or salt boundaries, the cross-gradients function is better able to
handle the seismic tomography problem. As mentioned in previous section, we can also
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Figure 1: Synthetic resistivity (Ohm.m). [ER] mohammad1/. fltp-res

Figure 2: Synthetic velocity (m/s) associated with Figure 1. [ER] mohammad1/. fltp-vel
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Figure 3: Cross-gradients function of the velocity and resistivity shown in Figures 1 and 2.
[ER] mohammad1/. fltp-xgrad

use the cross-gradients function as a constraint for joint inversion, where steering filters are
not effective. This is true because steering filters assume a priori knowledge of the model
parameters while the cross-gradients function use the collocated data field to build this
information.

FUTURE WORK

The tomography problem stated in Equation 6 is based on the assumption that we have
a reasonably accurate estimate of the collocated resistivity field. Given this assumption, I
expect the similarity constraint to improve the estimation of slowness profile. I will first
incorporate the similarity constraint into the reflection-seismic tomography problem for
the synthetic model shown above. Then, I will extend the application of the idea to the
tomography problem for 2-D sections of a field data set.
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Transmission effects of localized variations of Earth’s
visco-acoustic parameters

Abdullah Al Theyab and Biondo Biondi

ABSTRACT

In an effort to understand the transmission effects of localized heterogenities in the
subsurface, we present the travel-time and amplitude distortions caused by localized
variations in velocity and absorption. To examine the relative impact of velocity and
absorption heterogeneities on seismic events, we conducted numerical experiments using
visco-acoustic finite-difference modeling of the linearized wave-equation for Newtonian
fluids. We analyzed the distortions in the midpoint-offset domain. We find that the
distortion caused by an anomaly that is both slow and absorptive is different from that
an anomaly that is either slow or absorptive, but not both. Our results also indicate
that amplitude distortion of highly absorptive anomalies (Q < 50) can be comparable
to that of small velocity variation (less than 4%), and therefore absorption must be
considered in seismic amplitude inversion and AVO analysis.

INTRODUCTION

Localized heterogeneities in the subsurface cause amplitude and travel-time distortions of
seismic reflections from underlying reflectors. These distortions are problematic to imaging
and AVO analysis. The distortions come in almost regular patterns and usually are recog-
nizable by V-shaped trajectories in the midpoint-offset domain (X-shapes for split-spread
acquisition geometry). These distortions can be used to find the locations of the anoma-
lies, which can reveal valuable information for interpreters such as fault locations (Hatchell,
2000). Moreover, they can be used to invert for velocity and absorption anomalies. The
analyses of several authors Vlad (2005), Hatchell (2000) and Harlan (1994) have considered
mostly velocity anomalies, which cause focusing and defocusing effects.

In this report, we stress that absorption must be considered in the analysis of these
distortions. A seismic amplitude inversion that disregards absorption is likly to be biased,
especially if velocity perturbations of interest are less than 4%. We examine the relative
impact of localized velocity anomalies versus absorption anomalies on seismic amplitude.

BACKGROUND

For a constant background velocity with non-dipping reflector, the distortion trajectory (i.e.
the location in prestack data space) caused by a single anomaly can be described by

h =
t

t− ta
| m−ma | , (1)
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where h is the half offset, t is travel-time, m is the midpoint, and ma and ta are the midpoint
and traveltime location of the anomaly (Vlad, 2005). The trajectory of the distortion is
controlled by the background velocity and the geometry of the reflectors (Vlad, 2005).
Besides the trajectory, the distortion has a time-signature (i.e. changes in travel time caused
by the presence of the anomaly) and an amplitude-signature (i.e. changes in amplitude).
Hatchell (2000) showed real data examples of different amplitude signatures caused by
faulting. He also showed that the asymmetry of a velocity anomaly causes different focusing
effects depending on whether it is encountered in the receiver leg or source leg, which means
the signature can be asymmetric. The signature of an anomaly depends on it’s size, shape,
type (i.e. velocity, absorption, or both), and the strength (departure from the background
velocity and/or absorption).

Considering only type of the anomaly for this study, we use a constant-background ve-
locity and constant-background Q-factor with non dipping-reflectors. Although simple, this
geologic model of non-dipping reflectors exists in many geologic provinces, which justifies
using it here.

VISCO-ACOUSTIC MODELING

For this study, several seismic experiments were simulated using many different geologic
visco-acoustic models. The models are parametrized by three fields for velocity, density, and
Q-factor (i.e. the Q-factor for the peak frequency in the source wavelet used). Direct wave-
equation modeling was conducted using time-domain finite differencing of the linearized
wave equation for Newtonian fluids (Mavko et al., 2003). Finite differencing was explicit
in time, and the spatial derivatives were computed in the Fourier domain to attain better
accuracy.

A problem with using the linearized wave equation for Newtonian fluids is the acausality,
which was observed as negative time shifts in some of our test cases (see Figure 1). Those
time shifts, however, are extremely small and can be observed only after dense resampling,
which is unreasonable considering the accuracy of our numerical modeling. For this study,
only the time shifts of the maximum absolute amplitude are considered.

Figure 1: Distortions of a wavelet after passing an absorption anomaly. The amplitude
drop as a function of Q-factor is accompanied by a wavelet stretch and a shift of the zero
crossing. [CR] altheyab1/. avpwiggle
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EFFECT ON REFLECTED WAVES

The models used to analyze transmission effects on reflection data have four reflections
caused by density contrasts in a constant-background velocity and constant background
absorption medium. Four different possible models are considered, two of which are shown
Figure 2. In the first model (left), there are three slowness anomalies with a velocity that
is 2% less than the background velocity (3000 m/s). In the second model (right), the
three anomalies are replaced by absorption anomalies with same shape and size. These
absorption anomalies have a Q-factor 50% less than the background Q-factor (Q = 100).
The third model has the both the velocity and absorption anomalies. In the fourth model, a
similar model, but without the anomalies, was used as a reference model for the subsequent
analysis.

Figure 2: Visco-acoustic models with a constant background velocity (top) and Q-factor
(bottom), with four density (middle) reflectors, and three anomalies at depths of 100 m,
200 m and 400 m. Left: the anomalies are velocity variations of 2% from the background
velocity. Right: the anomalies are absorption variations with Q-factor 50% less than the
background.[ER] altheyab1/. rflmodels

To measure the effect of the anomalies, we applied NMO correction to the seismic events
coming from the reference model. Then, the maximum amplitude Aref of each reflection
event and its arrival time tref were picked (trace by trace). The same procedure was applied
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to the resulting data from the models with anomalies to obtain Amax and tmax. Time delays
are then computed by taking the difference of the arrival times,

δt = tmax − tref . (2)

Figure 3 shows the travel-time delays δt of the maximum amplitude (caused by the presence
of the anomalies) sorted into the midpoint-offset domain. The maximum amplitude differ-
ences normalized with the amplitude of reference reflections (i.e. reflections if the model
had no anomalies) were computed using

δA =
Amax −Aref

Aref
, (3)

and are shown in Figure 4.

Each row of the Figures 3 and 4 corresponds to one of the four reflectors; the top rows
are for the shallowest reflector and the bottom ones are for the deepest. The left columns
of the two figures are for the data resulting from the left model in Figure 2, and the right
columns are for the right model in Figure 2.

Each anomaly in the model causes an X-shaped signature centered at the midpoint
location of the anomaly. The arms of the shape generally spread further apart and each
becomes broader with increasing offsets. The trajectory angle (i.e. the angle between the
arms of the X-shape) is generally narrower for the deepest anomaly, especially for the first
reflector, with which the anomaly coincides. This distinction, however, is gradually lost
with increasing depth of reflectors, as shown in the fourth reflector, where the trajectory
angles are almost the same for all three anomalies.

As expected, the slow anomalies cause time delays (positive shifts) as shown in the left
side of Figure 3. The magnitudes of the time shifts are smaller for deeper reflectors, and
span a larger range of offsets, which results in fatter patterns. Absorption anomalies cause
almost no time shifts. The width of the signature is less dependent on increasing offset.
Instead, it depends on the depth of the anomaly.

Amplitude distortions in Figure 4 show trajectories similar to time shifts in the midpoint-
offset domain. The magnitude of the distortion generally decreases with depth, and becomes
less focused with increasing offsets. The arms of signatures narrow with depth. Because of
tilting of the upcoming waves, the energy is confined closer to the source and stretches with
increasing offset. This causes the asymmetry of the signatures about the axes of the arms.
Velocity anomalies cause focusing. Therefore, we have higher amplitudes paired with two
shadow zones (drops in amplitude), as shown in the left side of Figure 4. The absorption
signature, on the other hand, shows only a drop in amplitude. The width of the absorption
signature is generally smaller than that of velocity because of the absence of focusing.

From Figures 3 and 4, we can observe that the time delay of the velocity signature is
strictly positive, and the amplitude signature has a doublet of positive and negative ampli-
tude changes. The absorption amplitude signature is strictly negative, with no time shifts.
It should be noticed, however, that that the magnitude of the absorption amplitude distor-
tions matches those of the velocity distortions. This is shown in the two cases presented.
Figure 6 shows amplitude changes to the zero-offset reflection that passes twice through
an anomaly (left). The changes in amplitude are shown as functions of percentile change
of velocity (middle) relative to the background velocity (v = 3000 m/s), and Q-factor



SEP–136 Transmission effects 65

CMP location(km)

O
ff
s
e
t(

k
m

)

 

 

1 2 3 4 5

−4
−2

0
2
4

δ
 t
(m

s
)

−2
0
2

CMP location(km)

O
ff
s
e
t(

k
m

)

 

 

1 2 3 4 5

−4
−2

0
2
4

δ
 t
(m

s
)

−2
0
2

CMP location(km)

O
ff
s
e
t(

k
m

)

 

 

1 2 3 4 5

−4
−2

0
2
4

δ
 t
(m

s
)

−2
0
2

CMP location(km)

O
ff
s
e
t(

k
m

)

 

 

1 2 3 4 5

−4
−2

0
2
4

δ
 t
(m

s
)

−2
0
2

CMP location(km)

O
ff
s
e
t(

k
m

)

 

 

1 2 3 4 5

−4
−2

0
2
4

δ
 t
(m

s
)

−2
0
2

CMP location(km)

O
ff
s
e
t(

k
m

)
 

 

1 2 3 4 5

−4
−2

0
2
4

δ
 t
(m

s
)

−2
0
2

CMP location(km)

O
ff
s
e
t(

k
m

)

 

 

1 2 3 4 5

−4
−2

0
2
4

δ
 t
(m

s
)

−2
0
2

CMP location(km)

O
ff
s
e
t(

k
m

)

 

 

1 2 3 4 5

−4
−2

0
2
4

δ
 t
(m

s
)

−2
0
2

Figure 3: Time delays caused by the velocity anomalies (left) and absorption anomalies
(right) on on the four primary reflections, the shallowest (top) to the deepest (bottom) in
the midpoint-offset domain. [CR] altheyab1/. rfltimes
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Figure 4: Amplitude changes caused by the velocity anomalies (left) and absorption anoma-
lies (right) on the four primary reflections, the shallowest (top) to the deepest (bottom) in
the midpoint-offset domain. [CR] altheyab1/. rflamps
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Figure 5: The time (left) and amplitude (right) changes to reflections from the shallowest
(top) to deepest (bottom) caused by anomalies that are both slow and absorptive. [CR]
altheyab1/. rflvq
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(right) relative to the background Q-factor (Q = 100). The range of amplitude drop due to
absorption is generally similar to that caused by the velocity changes of interest (< 5%).

Figure 5 shows the time signature (left) and the amplitude signature (right) for the
third model, i.e. the model with both velocity and absorption anomalies coinciding. The
time signature looks similar to that of slowness-only anomalies. The amplitude signature
is more complex than the two velocity-only and absorption-only cases. For the near offsets,
the focusing effect and the absorption effect cancel each other leaving only two parallel
shadow zones. The focusing effect dominates the amplitude signature at the far offsets and
we see the dim-bright-dim signature again. From this, we can see that the near offsets play
a significant role in determining the presence of absoroption. Missing or noisy near offsets
can potentially cause the velocity-absorption effect to be mistaken for velocity-only effect.
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Figure 6: Left: a geologic model of a single reflector and an anomaly that will perturb the
primary reflection. The changes of the zero offset reflection are normalized with respect to
unperturbed reflection. The amplitude changes as a function of percent change in velocity
(middle) or Q-factor (right). [CR] altheyab1/. avpcurve

CONCLUSION

In this report, we showed that localized variations in velocities and absorption have smooth
effect on seismic amplitude with increasing offset and can hinder AVO analysis. We also
showed that the effect of highly absorptive anomalies on seismic amplitude can be of the
same magnitude as the effect of small velocity perturbation. Consequently, a possible
cancellation of concurrent effects of velocity and absorption can cause different amplitude
signatures, which could be confused with the signature of smaller absorption or velocity
anomalies.

REFERENCES

Harlan, W. S., 1994, Tomographic correction of transmission distortions in reflected seismic
amplitudes: SEG Technical Program Expanded Abstracts, 13, 968–971.



SEP–136 Transmission effects 69

Hatchell, P. J., 2000, Fault whispers: Transmission distortions on prestack seismic reflection
data: Geophysics, 65, 377–389.

Mavko, G., T. Mukerji, and J. Dvorkin, 2003, The rock physics handbook: Cambridge
University Press.

Vlad, I., 2005, Focusing-effect AVO/AVA: overview of results and assessment of problems:
Technical report, SEP-120.



70 Al Theyab and Biondi SEP–136



Stanford Exploration Project, Report SEP136, April 14, 2009

Joint wave-equation inversion of time-lapse seismic data

Gboyega Ayeni and Biondo Biondi

ABSTRACT

We discuss two regularized least-squares inversion formulations for time-lapse seismic
imaging. Differences in acquisition geometries of baseline and monitor datasets or the
presence of a complex overburden can degrade the quality of the time-lapse seismic
signature. In such a scenario, the time-lapse amplitude information are poor indicators
of the true reservoir property changes. Although the migration operator accurately
images the seismic data, it does not remove these amplitude distortions. We pose
time-lapse imaging as joint linear inverse problems that utilize concatenations of a
target-oriented approximation to the least squares imaging Hessian. In one of the two
formulations considered, outputs are inverted time-lapse images, while in the other,
outputs are evolving images of the study area. Using a 2D-synthetic sub-salt model,
we demonstrate that either joint-inversion formulation can attenuate overburden and
geometry artifacts in time-lapse images and that joint wave-equation inversion yields
more accurate results than migration or separate inversion.

INTRODUCTION

Hydrocarbon exploration and production has gradually shifted from simple to complex geo-
logical environments. Relatively simple imaging and monitoring objectives (e.g. anticlinal-
type traps) have been replaced by more complex ones (e.g., sub-salt reservoirs and strati-
graphic traps). Since most of the current time-lapse seismic imaging technologies are inad-
equate in many emerging frontiers, new imaging and monitoring methods are required. In
addition, differences almost always exist between acquisition geometries of different seismic
datasets. Such geometry differences may be due to new (or more efficient) acquisition sys-
tems and design, production facilities (absent at the time of the baseline survey) or nature
(e.g., ocean currents).

Our goal is to attenuate artifacts from two major sources:

1. poor and uneven sub-surface illumination in reservoirs under complex overburden,
and

2. disparities in acquisition geometries of the baseline and monitor surveys.

We achieve these objectives by simultaneously inverting migrated images from different
vintages with a target-oriented approximation (Valenciano, 2008) to the linear least-squares
wave-equation Hessian. The Hessian operator in this problem can be regarded as a set of
non-stationary deconvolution filters in a single survey, or a concatenation of sub-matrices
built from such filters in multiple surveys. We discuss two joint-inversion formulations of
the seismic monitoring problem:

71
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1. regularized joint-inversion for image differences (RJID):

• input: staggered sums of migrated images, and

• output: inverted baseline image and image differences between successive sur-
veys;

2. regularized joint-inversion of multiple images (RJMI)

• input: migrated images for all surveys,

• output: inverted images for all input surveys.

Solving a single joint-inversion problem enables the incorporation of prior knowledge of the
reservoir location, extent and geometry, temporal constraints or information from other
sources (e.g., production history-matching).

As previously noted, inputs into the RJID formulation are staggered sums of migrated
images from multiple surveys and the outputs are inverted baseline and time-lapse images
between successive surveys. Since the imaging and monitoring objectives are decoupled, dif-
ferent regularization schemes can be defined for the baseline and time-lapse images. Inputs
and outputs to RJMI are migrated images and corresponding inverted images respectively.
RJMI differs from separate inversion, because a coupling operator introduces desirable tem-
poral constraints during inversion.

In order to arrive at both formulations, we have assumed that the background baseline
velocity model is known and that it changes slowly between surveys. We also assume that
such small velocity changes have negligible impact on wave propagation through the earth,
at least to the top of the reservoir. Where there are noticeable displacements between
images — as a result of significant velocity changes or geomechanical effects around the
reservoir — an event alignment step (Hale, 2007) can be applied prior to inversion.

In this paper, we briefly summarize the seismic monitoring problem, and then we discuss
the basic theory of linear least-squares inversion and its extension to the RJID and RJMI
formulations for an arbitarary number of surveys. Finally, using six datasets from a 2D-
synthetic sub-salt model, we show that both joint-inversion formulations yield noticeably
improved results over migration or separate inversion.

BACKGROUND

There is a wide range of published work on the most important considerations for time-lapse
seismic monitoring. For example, Batzle and Wang (1992) outline important rock and fluid
relationships; Lumley (1995), Rickett and Lumley (2001), Calvert (2005), and Johnston
(2005) discuss important processing and practical applications; and Lefeuvre et al. (2003),
Whitcombe et al. (2004), and Zou et al. (2006) showed successful case studies. Ayeni
and Biondi (2008) discuss additional considerations and previous work related to seismic
monitoring of hydrocarbon reservoirs.

Nemeth et al. (1999), Kuhl and Sacchi (2001), Clapp (2005), and Valenciano (2008) have
shown that linear least-squares wave-equation migration of seismic data improves structural
and amplitude information. We demonstrate that an extension of least-squares migration to
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the time-lapse imaging can improve time-lapse amplitude information, especially if all avail-
able data are jointly inverted. Previous authors have discussed joint-inversion applications,
including impedance inversion (Sarkar et al., 2003), ray-tomography (Ajo-Franklin et al.,
2005) and wave-equation velocity analysis (Albertin et al., 2006). Lumley et al. (2003) show
that improvements can be made to time-lapse processing through simultaneous processing.
Dynamic imaging strategies that utilize aspects of spatio-temporal regularization have also
been discussed in other scientific disciplines (Schmitt and Louis, 2002; Schmitt et al., 2002;
Zhang et al., 2005; Kindermann and Leitao, 2007).

A joint wave-equation inversion formulation of the time-lapse imaging problem has the
advantage that the attenuation of image differences is based on the physics of wave propa-
gation, making it less susceptible to removal of true time-lapse changes than conventional
methods. The method proposed by Ajo-Franklin et al. (2005) for tomographic inversion
can be directly extended to wave-equation inversion, and it actually forms a first step in
the RJMI formulation. Such direct extension to wave-equation migration is too expensive,
requiring at least one set of migration and modeling per survey per iteration. In most
practical inversion problems, parameter selection requires that the inversion procedure be
carried out more than once. By pre-computing the Hessian operators, we are able to test
different regularization schemes and parameters for the inversion at several orders of mag-
nitude cheaper than directly solving the least-squares migration problem. In addition, we
avoid the use of matching filters which can have unpredictable effects on time-lapse changes
within the reservoir (Lumley et al., 2003).

THEORY

Linear inversion

Given a linear modeling operator L, the seismic data d can be computed as

Lm = d, (1)

where m is the reflectivity model. The modeling operator, L, in this study, represents
the seismic acquisition process. Two different surveys — say a baseline and monitor —
acquired at different times (t = 0 and t = 1 respectively) over the same earth model can
be represented as follows:

L0m0 = d0,
L1m1 = d1,

(2)

where m0 and m1 are respectively the reflectivity models at the times when the datasets d0

and d1 were acquired, and L0 and L1 are the modeling operators defining the acquisition
process for the two surveys (baseline and monitor).

The quadratic cost functions for equation 2 are given by

S(m0) = ‖L0m0 − d0‖2,
S(m1) = ‖L1m1 − d1‖2,

(3)

and the least-squares solutions are

m̂0 = (L′0L0)−1L′0d0 = (L′0L0)−1m̃0 = H−1
0 m̃0,

m̂1 = (L′1L1)−1L′1d1 = (L′1L1)−1m̃1 = H−1
1 m̃1,

(4)
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where m̃0 and m̃1 are the migrated baseline and monitor images, m̂0 and m̂1 are the
inverted images, L′0 and L′1 are the migration operators (adjoints to the modeling operators
L0 and L1 respectively), and H0 ≡ L′0L0 and H1 ≡ L′1L1, are the Hessian matrices.
Here, and in other parts of this paper, the symbol ′ denotes transposed complex conjugate.
These formulations are based on (but not limited to) one-way wave-equation extrapolation
methods.

The Hessian matrices are the second derivatives of the cost functions (equation 3) with
respect to all model points in the image. Because the Hessian matrices are generally not
invertible for almost any practical scenario, equation 4 is solved iteratively as follows:

H0m̂0 = m̃0,
H1m̂1 = m̃1.

(5)

An inverted time-lapse image, ∆m̂, can be obtained as the difference between the two
images, m̂1 and m̂0, obtained from equation 5:

∆m̂ = m̂1 − m̂0. (6)

We will refer to the method of computing the time-lapse image using equation 6 as separate
inversion throughout the rest of this paper.

Joint-inversion

Two joint-inversion formulations are discussed in the following sections.

Joint-inversion for image differences (JID)

First, we re-formulate the data modeling operations for the two surveys in equation 2 as
follows:

L0m0 = d0,
L1(m0 + ∆m) = d1,

(7)

where m0 + ∆m = m1. In matrix form, these expressions can be combined to give[
L0 0
L1 L1

] [
m0

∆m

]
=
[

d0

d1

]
. (8)

In principle, using an iterative solver, a least-squares solution to equation 8 can be
obtained by minimizing the cost function

S(m0,∆m) =
∣∣∣∣∣∣∣∣[ L0 0

L1 L1

] [
m0

∆m

]
−
[

d0

d1

]∣∣∣∣∣∣∣∣2 . (9)

The computational cost of this approach is proportional to the number of iterations times
at least twice the cost of one set of migrations — since each iteration requires at least one
modeling and one migration for the baseline and monitor datasets. Since several iterations
would typically be required to reach convergence, and the inversion process would usually
be repeated several times to fine-tune inversion parameters, the overall cost of this scheme
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will be high. An important advantage of the JID (or JMI) formulation is that modifications
can be made to inversion parameters and the inversion repeated several times without the
need for new migration or modeling. The least-squares solution to equation 8 is given by[

L′0L0 + L′1L1 L′1L1

L′1L1 L′1L1

] [
m̂0

∆m̂

]
=
[

L′0 L′1
0 L′1

] [
d0

d1

]
=
[

m̃0 + m̃1

m̃1

]
, (10)

or [
H0 + H1 H1

H1 H1

] [
m̂0

∆m̂

]
=
[

m̃0 + m̃1

m̃1

]
, (11)

which can be recast as[
m̂0

∆m̂

]
=
[

H0 + H1 H1

H1 H1

]−1 [ m̃0 + m̃1

m̃1

]
. (12)

Thus, the inverted baseline and time-lapse images (m̂0 and ∆m̂ respectively) can be ob-
tained from equation 12. However, since the Hessian matrices H0 and H1 (and hence the
joint Hessian operator) are not invertible, equation 11 is solved iteratively. We have ex-
tended equation 11 to multiple surveys (Appendix A). When multiple surveys are available,
the outputs of the JID formulation are the inverted baseline image and image differences
between successive surveys.

Joint-inversion of multiple images (JMI)

The data modeling operations for two surveys can be written as follows[
L0 0
0 L1

] [
m0

m1

]
=
[

d0

d1

]
. (13)

In principle, it is possible to solve for a least-squares solution to equation 13 by mini-
mizing the cost function

S(m0,m1) =
∣∣∣∣∣∣∣∣[ L0 0

0 L1

] [
m0

m1

]
−
[

d0

d1

]∣∣∣∣∣∣∣∣2 . (14)

As discussed in the JID formulation, this would be too expensive to be practical since
the cost of one iteration is at least the cost of four migrations. Ajo-Franklin et al. (2005)
have shown a tomographic example of this formulation, but since each migration is orders
of magnitudes more expensive than ray-based tomography, this approach would be too
expensive for wave-equation inversion. Therefore, we reformulate equation 14 as[

L′0L0 0
0 L′1L1

] [
m̂0

m̂1

]
=
[

L′0 01

0 L′1

] [
d0

d1

]
=
[

m̃0

m̃1

]
, (15)

or [
H0 0
0 H1

] [
m̂0

m̂1

]
=
[

m̃0

m̃1

]
, (16)
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which can be written as [
m̂0

m̂1

]
=
[

H0 0
0 H1

]−1 [ m̃0

m̃1

]
. (17)

Thus, the inverted baseline and monitor images (m̂0 and m̂1 respectively) can be obtained
from equation 17 and the time-lapse image as a difference between the two images as done
in equation 5. Also, note that without coupling, as done in the next section, equation 16
is equivalent to equation 5. Since the Hessian matrices H0 and H1 (and hence the joint
Hessian operator) are not invertible, equation 16 is solved iteratively. An extension of
equation 16 to multiple surveys is given in Appendix A.

Joint-inversion with Regularization

In most seismic monitoring problems, the general geology and reservoir architecture of the
study area are known — thus providing some information that can be used to determine ap-
propriate regularization for the inversion. Such regularization incorporates prior knowledge
of the reservoir geometry and location, and expectation of changes in different parts of the
study area. As shown in the Appendix, the regularized joint-inversion for image difference
(RJID) for two surveys is given by([

H0 + H1 H1

H1 H1

]
+
[

R00 0
0 R11

]
+
[

Λ00 0
−Λ10 Λ11

])[
m̂0

∆m̂1

]
=
[

m̃0 + m̃1

m̃1

]
,

(18)
where

Rij = εiR′
iεjRj,

Λij = ζiΛ′
iζjΛj,

(19)

while R0 and R1 are the spatial/imaging constraints for the baseline and time-lapse images
respectively, and Λ0 and Λ1 the temporal regularization (or coupling) between the surveys.
In the implementation of equation 19, the regularization terms, Rij and Λij are not explicitly
computed, but instead, the appropriate operators Ri and Λi (and their adjoints, R′

i and Λ′
i

respectively) are applied at each step of the inversion. The parameters ε0 and ε1 determine
strength of the spatial regularization on the baseline and time-lapse images respectively,
while ζ0 and ζ1 determine the coupling between surveys. The regularized joint-inversion of
multiple images (RJMI) formulation for two surveys is given as([

H0 0
0 H1

]
+
[

R00 0
0 R11

]
+
[

Λ00 −Λ01

−Λ10 Λ11

])[
m̂0

m̂1

]
=
[

m̃0

m̃1

]
. (20)

The spatial regularization operator contains information on the structural geometry of the
reservoir (or implied properties of correctly migrated gathers, e.g. horizontal angle gathers,
or near-zero concentration of amplitudes in subsurface offset gathers), while the temporal
regularization ensures that the reservoir changes evolve according to a reasonable scheme
(e.g., smooth variation over time). The temporal regularization operator in the RJMI
formulation is similar to that used in spatio-temporal tomographic inversion (Ajo-Franklin
et al., 2005).

As shown in Appendix A, the general regularized joint-inversion problem can be written
in compact notation as

[Ξ + <+ Γ]
[
M̂
]

=
[
M̃
]
, (21)
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where Ξ is the Hessian operator, < is the spatial/imaging regularization operator, Γ is the
temporal regularization operator, M̂ is the model vector and M̃ the data vector. Each of
the components of the RJID and RJMI formulations are fully described in Appendix A.

Note that in the RJID formulation, the imaging (baseline inversion) and monitoring
(time-lapse inversion) goals are decoupled, thus allowing for application of different regu-
larization schemes. Since the baseline and time-lapse images are expected to have different
desirable properties, the baseline (R0 and Λ0) and monitor (R1 to RN and Λ0 to ΛN)
regularization operators are different. The RJMI formulation is cheaper to solve, since the
joint Hessian operator is less dense and with appropriate regularization, the results from
the two formulations should be comparable.

Target-oriented Hessian

The computational cost of the full Hessian matrix for one survey (needless to say for multiple
surveys) is prohibitive and not practical for any reasonably sized survey. Several authors
have discussed possible approximations to the wave-equation Hessian (Shin et al., 2001;
Rickett, 2003; Guitton, 2004; Valenciano, 2008; Symes, 2008; Tang, 2008b,a) . The wave-
equation Hessian for synthetic seismic data, d (s, r;ω) at a given frequency, ω, recorded by
receiver r (xr , yr , zr ), from a shot s (xs , ys , zs) and scattering point x(x , y , z ), is given by

H (x,y) =
∑
w

ω4
∑
s

∣∣f ′ (s)∣∣2G′ (x, s;ω)G (y, s;ω)
∑
r

G′ (x, r;ω)G (y, r;ω), (22)

where y(x , y , z ) corresponds to all model points. A detailed derivation of the explicit wave-
equation Hessian is given by Mulder and Plessix (2004).

Because reservoirs are typically limited in extent, the region of interest is usually smaller
than the full image space. Thus, the required Hessian matrices are constructed for a region
around the target zone and not for the full survey area. In this paper, we follow the
target-oriented approach of Valenciano (2008) in the Hessian computation. Phase-encoding
approximations to the target-oriented Hessian (Tang, 2008a) offer improved efficiency in
the Hessian computation and are currently being explored as alternatives to the explicit
method used in this paper.

The target oriented Hessian (Valenciano, 2008) is given by:

H(xT,xT + ax) =
∑

w ω4
∑

s |f ′ (s)|
2G′(xT, s;ω)G(xT + ax, s;ω)∑

r G′(xT, r;ω)G(xT + ax, r;ω),
(23)

where ax is the offset from the target image-point xT defining the filter size and hence the
number of off-diagonal terms to be computed. The filter size ax can be determined heuris-
tically or from an analysis of the amplitudes of filter coefficients away from the diagonal.
As noted by Valenciano (2008), the frequency sampling required to prevent wrap-around
artifacts for the local filter (or row of the Hessian) for a given image point is coarser than
that used in migration. Examples of the target-oriented Hessian operator for the model in
Figures 1 and three surveys are shown in Figures 2 and 3 for both RJID and RJMI.

In a single survey, each row of the Hessian is a point-spread function that describes
the effects of the limited-bandwidth seismic waveform, geometry and illumination on a
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Figure 1: Full impedance model. The box indicates the target area for which Figures 2
and 3 were computed, while the anomaly centered at distance 0m and depth 3000m rep-
resents the approximate location of reservoir change. The triangular block is a salt with
velocity 4500m/s, while the surrounding sediments have velocities ranging from 2200m/s
and 2700m/s. The densities range from 2.5g/cc to 3.0g/cc. [ER] gayeni1/. surv5-salt-imp

Figure 2: JID: Joint target-oriented
Hessian operator for one baseline
and two monitor surveys for the
reservoir models in Figure 1. The
dimension of the square matrix here
and in Figure 3 is equal to the
number of surveys times the size of
the model space. This figure corre-
sponds to the Ξ operator in equa-
tion A-24. Note however that the
zeros (light regions in the matrices)
were neither computed nor stored.
[NR] gayeni1/. hesssalt3
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Figure 3: JMI: Joint target-oriented
Hessian for one baseline and two
monitor surveys for the reservoir
models in Figure 1. See caption
in Figure 2 for further description.
[NR] gayeni1/. hesssaltjimi3

reflectivity spike in the subsurface. In multiple surveys, each band belonging to individual
sub-matrices contains similar information from a single or combination of surveys as shown
in equations A-25 and A-12. In addition, note that the empty bins in Figures 2 and 3
are neither computed nor stored and that because of the matrix symmetry, only one-half
of its elements needs to be computed. The structure of the problem gives a large leeway
for parallelization over several domains in both the Hessian computation and inversion.
Finally, since we assume that there is not a significant variation in the background velocity
between surveys, and since some shot and receiver locations would be re-occupied during
the monitor survey(s), some Green’s functions can be reused in the Hessian computation
for different surveys.

NUMERICAL EXAMPLE

The inversion formulations were tested on synthetic datasets modeled for the 2D-synthetic
sub-salt model in Figure 1. We simulated six datasets (representing different stages of
production) using a variable-density acoustic finite-difference algorithm. Reservoir changes
were modeled as an expanding Gaussian anomaly centered at x = 0m and z = 3000m. In
order to simulate non-repeated acquisition geometries, we modeled all the datasets with
spatially different geometries as summarized in Table 1. We modeled 76 shots spaced
at 80m and 301 receivers spaced at 20m and for each survey, the receiver spread was kept
constant while the shots move along. We consider that reflectivity change is most influenced
by a change in the density within the reservoir and that there is not a significant change
in the background velocity model between surveys. The spatial regularization operator
is a gradient along reflector dips, while a temporal gradient was used to ensure temporal
smoothness.
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Table 1: Modeling parameters for synthetic datasets
Shot/receiver depth Shot/receiver spread

Geometry 1 0m −3000 to 3000m
Geometry 2 100m −3500 to 2500m
Geometry 3 200m −2600 to 3400m
Geometry 4 40m −2900 to 3100m
Geometry 5 240m −3200 to 2800m
Geometry 6 300m −2500 to 3500m

Figure 4 shows the migrated images for the six surveys, while corresponding illumi-
nation maps (diagonal of the Hessian) are shown in Figure 5. The irregular illumination
patterns explain the uneven amplitudes of reflectors below the salt in Figure 4. Figure 6
shows the illumination-ratio (normalized rms-difference in illumination) between baseline
and the monitor surveys, which measures of the variability of illumination between surveys.
We represent the variation in illumination at any image point as the illumination-ratio be-
tween the point-spread functions for the different surveys. For example, Figure 7 shows
the point-spread functions at image point [x = −200m, z = 2800m], while Figure 8 shows
the coresponging illumination-ratio. The time-evolution of the true reflectivity model is
shown in Figure 9 and the inversion goal is to reconstruct these. Figure 10 is the reflec-
tivity change obtained from migration, while Figures 11 to 13 were obtained from separate
inversion, RJID and RJMI respectively. Both the RJID and RJMI results contain less noise
relative to migration (Figures 10) and separate inversion (Figures 11). No pre-processing
was done to remove multiples from the data and hence these are expected to adversely affect
the inversion.

DISCUSSION

Uneven illumination of the reservoir region as captured by the Hessian diagonal (Figure 5)
and ratio (Figure 6) explain the high-amplitude artifacts observed in the migrated time-
lapse images in Figure 10. The noticeable shadow zones in parts of the reservoir below
the salt (Figure 4) result from the high impedance contrast at the salt-sediment boundary
and the complex wave propagation. As shown by Ayeni and Biondi (2008), even where the
survey geometries are perfectly repeated, uneven illumination below complex overburden
can strongly distort time-lapse seismic amplitudes.

Since different geometries were used for all surveys in the numerical test, deterioration of
the time-lapse amplitudes is due to a combined effect of geometry and complex overburden.
The illumination-ratio maps (Figure 5) show the variability of illumination between surveys.
Disparities in point-spread functions (Figure 8) suggest that the a diagonal approximation
to the Hessian is insufficient to remove the unwanted artifacts. Although separately inverted
time-lapse images in Figure 11 show some improvement in resolution over migration results
(Figure 10), the images are dominated by the large amplitude residual artifacts. Time-lapse
images obtained from joint-inversion using the RJID (Figure 12), and RJMI (Figure 13)
formulations are less noisy than those from the migration (Figure 10) and separate inversion
(Figure 11) and are comparable to the true reflectivity change in Figure 9. Since one-way
operators were used in this study, the Hessian contains no information regarding secondary
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Figure 4: Migrated images obtained for six surveys (see modeling parameters in Table 1) for
the target area in shown Figure 1. Figure (a) is the baseline image, while Figures (b)-(f) are
images of the monitor images. Note the irregular amplitude patterns cause by the presence
of the overlying salt structure.[CR] gayeni1/. migs
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Figure 5: Illumination maps for the six surveys described in Table 1. Each section corre-
sponds to the migrated sections in Figure 4 and explain the observed irregular seismic am-
plitudes. Light color represent high illumination and dark represents low illumination.[CR]
gayeni1/. illums-salt
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Figure 6: Base-Monitor illumination-ratio for the six surveys described in Table 1. Each
section corresponds to a normalized rms-ratio (over 3x3 patches) between the Hessian
diagonal of the monitor surveys (Figure 5b-f) to that of the baseline (Figure 5a).[CR]
gayeni1/. illums-salt-r
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Figure 7: Point spread functions at the image point [x = −200m, z = 2800m] for the six
surveys in Figure 5. Each section corresponds to a row of the Hessian for the images in
Figure 4a-f). Note that only one half of each filter is computed, since the Hessian matrix is
symmetric.[CR] gayeni1/. hess-salt-off

Figure 8: Base-Monitor illumination-ratio at image point [x = −200m, z = 2800m] for the
six surveys described in Table 1. section corresponds to a normalized rms-ratio (over 3x3
patches) between the point-spread functions (a row of the Hessian) of the monitor surveys
(Figure 7b-f) to that of the baseline (Figure 7a).[CR] gayeni1/. illums-salt-off
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Figure 9: True cumulative time-lapse reflectivity images at the times for which the six
surveys (Table 1) were modeled. These should be compared with the results in Figures 10
to 13.[CR] gayeni1/. refs4d
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Figure 10: Migrated time-lapse at six different times corresponding to Figure 4. Each
section shows the amplitude change between time 1 (baseline) and the time of the monitor
survey. Note that the inversion has resulted in an increase in the noise amplitudes relative
to migrated time-lapse images shown in Figure 10.[CR] gayeni1/. migs4d
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Figure 11: Separately inverted time-lapse images at six different times. Each section shows
the amplitude change between time 1 (baseline) and the time of the monitor survey. Note
that the inversion has resulted in an increase in the noise amplitudes relative to migrated
time-lapse images shown in Figure 10.[CR] gayeni1/. invs4d
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Figure 12: RJID: Jointly inverted time-lapse images at six different times. Each section
shows the amplitude change between time 1 (baseline) and the time of the monitor survey.
Compare these results to Figures 9, 10, 11 and 13.[CR] gayeni1/. inv14d
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Figure 13: RJMI: Jointly inverted time-lapse images at six different times. Each section
shows the amplitude change between time 1 (baseline) and the time of the monitor survey.
Compare these results to Figures 9, 10, 11 and 12.[CR] gayeni1/. inv24d
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events such as multiples. Residual effects of internal multiples due to the salt persist in the
inversion results but are significantly suppressed in the jointly inverted images. In many
cases of interest, multiple energy will be sufficiently attenuated or may not fall within the
target region, and thus have little impact on the inversion.

CONCLUSIONS

We have proposed two regularized least-squares inversion formulations for time-lapse seismic
imaging. -hese formulations arise from the linearized least-square wave-equation inversion.
By using a target-oriented approximation to the least-squares Hessian with appropriate
spatial and temporal regularization, we have shown that image difference due to geometry
dissimilarity and complex overburden can be attenuated. We show that we can directly
invert for image differences (RJID) or multiple images (RJMI) using a concatenation of
target-oriented Hessian operators and combinations of migrated images. From numeri-
cal tests using a synthetic 2D-subsalt model, we conclude that both the RJID and RJMI
joint-inversion formulations give more accurate time-lapse images than either migration or
separate inversion.
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APPENDIX A

JOINT-INVERSION FORMULATIONS FOR MULTIPLE SURVEYS

Here, we show a brief derivation of the joint-inversion formulation for two surveys and its
generalization to multiple surveys.
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Regularized joint-inversion

The process of acquiring two seismic datasets over an evolving earth model can be repre-
sented as [

L0 0
0 L1

] [
m0

m1

]
=
[

d0

d1

]
, (A-1)

where d0 and d1 are the baseline and monitor datasets, and m0 and m1 are the baseline
and monitor reflectivity models respectively. The linear operators (L0 and L1) define the
modeling/acquisition experiments for datasets d0 and d1 respectively. We rewrite equa-
tion A-1 to include spatial and regularization operators (R0 and Λ0 respectively), and we
seek to minimize the objective function

S(m0,m1) =

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣


L0 0
0 L1

R0 0
0 R1

−Λ0 Λ1


[

m0

m1

]
−


d0

d1

0
0
0


∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

2

. (A-2)

This cost function can be expanded as follows:([
L′0L0 0

0 L′1L1

]
+
[

R′
0R0 0
0 R′

1R1

]
+
[

Λ′
0Λ0 −Λ′

0Λ1

−Λ′
1Λ0 Λ′

1Λ1

])[
m̂0

m̂1

]
=
[

m̃0

m̃1

]
,

(A-3)
which can be written as([

H0 0
0 H1

]
+
[

R00 0
0 R11

]
+
[

Λ00 −Λ01

−Λ10 Λ11

])[
m̂0

m̂1

]
=
[

m̃0

m̃1

]
, (A-4)

where
Rij = εiR′

iεjRj,
Λij = ζiΛ′

iζjΛj,
(A-5)

while R0 and R1 are the spatial/imaging constraints for the baseline and monitor images
respectively, and Λ0 and Λ1 the temporal constraints between the surveys. The parameters
ε0 and ε1 determine the strength of the spatial regularization on the baseline and monitor
images respectively, while ζ0 and ζ1 determine the coupling between surveys. Equation A-4
is the RJMI formulation. Using a similar procedure, the RJID formulation for two seismic
datasets can be shown to be([

H0 + H1 H1

H1 H1

]
+
[

R00 0
0 R11

]
+
[

Λ00 0
−Λ10 Λ11

])[
m̂0

∆m̂1

]
=
[

m̃0 + m̃1

m̃1

]
.

(A-6)
In the next sections, we derive the RJID and RJMI formulations for multiple surveys.

Regularized joint-inversion of multiple images: RJMI

The data modeling process for three seismic datasets (a baseline and two monitors) over an
evolving earth model can be written as L0 0 0

0 L1 0
0 0 L2

 m0

m1

m2

 =

 d0

d1

d2

 , (A-7)
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where d0, d1 and d2 are respectively datasets for the baseline, first and second monitor,
m0, m1, and m2 are the baseline and monitor reflectivity models. The linear operators
(L0, L1 and L2) define the modeling/acquisition experiments for datasets d0, d1 and d2

respectively. The least-squares solution to equation A-7 is given as L′0L0 0 0
0 L′1L1 0
0 0 L′2L2

 m̂0

m̂1

m̂2

 =

 L′0 0 0
0 L′1 0
0 0 L′2

 d0

d1

d2

 , (A-8)

where the symbol ′ denotes transposed complex conjugate.

We rewrite equation A-8 as H0 0 0
0 H1 0
0 0 H2

 m̂0

m̂1

m̂2

 =

 m̃0

m̃1

m̃2

 , (A-9)

where m̃i is the migrated image from the ith survey, and Hi is the corresponding Hessian
matrix. Introducing spatial and temporal constraints into equation A-9 we obtain H0 0 0

0 H1 0
0 0 H2

+

 R00 0 0
0 R11 0
0 0 R22

+

 Λ00 −Λ01 0
−Λ10 2Λ11 −Λ12

0 −Λ21 Λ22

 m̂0

m̂1

m̂2

 =

 m̃0

m̃1

m̃2

 .

(A-10)
Equation A-10 can be generalized to an arbitrary number of surveys as follows

[Ξ + <+ Γ]
[
M̂
]

=
[
M̃
]
, (A-11)

where, Ξ is the Hessian operator, defined as

Ξ =



H0 0 0 ... 0 0
0 H1 0 ... 0 0
0 0 H2 ... ... 0
: : : : : :
: : : : HN−1 0
0 0 0 ... 0 HN

 . (A-12)

The spatial and temporal regularization operators, < and Γ are defined as

< = R′R,
Γ = Λ′Λ,

(A-13)

where,

R =



R0 0 0 ... 0 0
0 R1 0 ... 0 0
0 0 R2 ... 0 0
: : : : : :
: : : 0 RN−1 0
0 0 0 0 0 RN

 , (A-14)
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and,

Λ =



Λ0 Λ1 0 0 ... 0
0 −Λ1 Λ2 0 ... 0
0 0 −Λ2 −Λ3 ... 0
: : : : : :
0 0 ... 0 −ΛN−1 ΛN

0 0 ... 0 0 ΛN

 . (A-15)

The input vector into the RJMI formulation, M̃ is given as

M̃ =



m̃0

m̃1

m̃2

:
m̃N−1

m̃N

 , (A-16)

while the inversion targets are in the vector:

M̂ =



m̂0

m̂1

m̂2

:
m̂N−1

m̂N

 . (A-17)

Regularized joint-inversion for image differences: RJID

The data modeling process for three seismic datasets over an evolving earth model can be
written as  L0 0 0

L1 L1 0
L2 L2 L2

 m0

∆m1

∆m2

 =

 d0

d1

d2

 , (A-18)

where d0, d1 and d2 are respectively datasets for the baseline, first and second monitor,
m0 is the baseline reflectivity and the time-lapse reflectivities ∆m1 and ∆m2 are defined
as

∆m1 = m1 −m0,
∆m2 = m2 −m1,

(A-19)

where m1 and m2 are respectively the monitor reflectivities at the times data d1 and d2

were acquired (with survey geometries defined by the linear L1 and L2).

The least-squares solution to equation A-18 is given as L′0L0 + L′1L1 + L′2L2 L′1L1 + L′2L2 L′2L2

L′1L1 + L′2L2 L′1L1 + L′2L2 L′2L2

L′2L2 L′2L2 L′2L2

 m̂0

∆m̂1

∆m̂2

 =

 L′0 L′1 L′2
L′1 L′2

L′2

 d0

d1

d2

 ,

(A-20)
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where the symbol ′ denotes transpose complex conjugate. We rewrite equation A-20 as H0 + H1 + H2 H1 + H2 H2

H1 + H2 H1 + H2 H2

H2 H2 H2

 m̂0

∆m̂1

∆m̂2

 =

 m̃0 + m̃1 + m̃2

m̃1 + m̃2

m̃2

 , (A-21)

where m̃i is the migrated image from the ith survey, and Hi is the corresponding Hes-
sian matrix. Introducing spatial and temporal regularization goals that incorporates prior
knowledge of the reservoir geometry and location as well as constraints on the inverted
time-lapse images into equation A-21 we obtain H0 + H1 + H2 H1 + H2 H2

H1 + H2 H1 + H2 H2

H2 H2 H2

 +

 R00 0 0
0 R11 0
0 0 R22



+

 Λ00 0 0
0 2Λ11 −Λ12

0 −Λ21 Λ22

 m̂0

∆m̂1

∆m̂2

 =

 m̃0 + m̃1 + m̃2

m̃1 + m̃2

m̃2

 ,

(A-22)

where,
Rij = εiR′

iεjRj

Λij = ζiΛ′
iζjΛj

, (A-23)

with Ri being the spatial regularization terms for the baseline and time-lapse images re-
spectively while Λi is the temporal regularization between the surveys. Note that Rij and
Λij are not explicitly computed, but instead, the regularization operators Ri and Λi (and
their adjoints) are applied at each step of the inversion. Parameters εi and ζi determine the
relative strengths of the spatial and temporal regularization respectively. Equation A-22
can be generalized to an arbitrary number of surveys as follows

[Ξ + <+ Γ]
[
M̂
]

=
[
M̃
]
, (A-24)

where, Ξ is the Hessian operator, defined as

Ξ =



H0 + .. + HN H1 + .. + HN H2 + .. + HN ... HN−1 + HN HN

H1 + .. + HN H1 + .. + HN H2 + .. + HN ... HN−1 + HN HN

H2 + .. + HN H2 + .. + HN H2 + .. + HN ... ... HN

: : : : : :
: : : : HN−1 + HN HN

HN HN HN ... NN HN

 . (A-25)

The regularization operators < and Γ are defined as

< = R′R,
Γ = Λ′Λ,

(A-26)

where,

R =



R0 0 0 ... 0 0
0 R1 0 ... 0 0
0 0 R2 ... 0 0
: : : : : :
: : : 0 RN−1 0
0 0 0 0 0 RN

 , (A-27)
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and,

Λ =



Λ0 0 0 0 ... 0
0 −Λ1 Λ2 0 ... 0
0 0 −Λ2 −Λ3 ... 0
: : : : : :
0 0 ... 0 −ΛN−1 ΛN

0 0 ... 0 0 ΛN

 . (A-28)

The input vector into the RJID formulation, M̃ is given as

M̃ =



m̃0 + ... + m̃N

m̃1 + ... + m̃N

m̃2 + ... + m̃N

:
m̃N−1 + m̃N

m̃N

 , (A-29)

while the inversion targets are

M̂ =



m̂0

∆m̂1

∆m̂2

:
:

∆m̂N

 . (A-30)

The temporal constraint on the baseline image, Λ0 may be set to zero, since it is assumed
that the original geological structure is unchanged over time or that geomechanical changes
are accounted for before/during inversion.
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Modeling, migration, and inversion in the generalized source
and receiver domain

Yaxun Tang

ABSTRACT

I extend the theory of Born modeling, migration and inversion to the generalized source
and receiver domain, a transformed domain that is obtained by linear combination of
the encoded sources and receivers. I show how to construct the target-oriented imaging
Hessian with encoded sources, with encoded receivers and with simultaneously encoded
sources and receivers. I also demonstrate the connection of the imaging Hessian in the
generalized source and receiver domain to the phase-encoded Hessian that I developed
in SEP-134. As an application of the theory, I introduce a mixed phase-encoding
scheme to compute the Hessian operator. The new scheme combines the advantages of
both random phase encoding and plane-wave phase encoding. My preliminary tests of
this new method on a simple model show promising results.

INTRODUCTION

Shot-profile migration is an accurate imaging technique. The computation is performed in
each shot gather; thus it closely mimics the actual physical experiment. However, migrating
shot by shot is expensive, since the number of shot gathers is usually very big for a typical
seismic survey. To reduce the cost, Whitmore (1995), Zhang et al. (2005) and Duquet and
Lailly (2006) develop plane-wave source or delayed-shot migration, which migrates a small
number of synthesized shots made by linear combination of the original shot gathers after
linear time delays. In fact, plane-wave source or delayed-shot migration is only a special
case of a more general class of migration technique, phase-encoding migration (Romero
et al., 2000; Liu et al., 2006), where the source encoding functions can be any type of
phase functions, such as linear phase functions, random phase functions, etc.. Though the
methods mentioned above involve encoding only the original sources, there is no reason that
the receivers could not be encoded. For example, besides assuming tilted line sources (plane-
wave source or delayed-shot migration), we can also assume the data are recorded by tilted
line receivers, or assume both line sources and line receivers at the same time. Such ideas
have been explored by Stoffa et al. (2006), who develop the ray-based asymptotic theory
for plane-wave source migration, plane-wave receiver migration and plane-wave source and
receiver migration. In this paper, I extend those ideas from the plane-wave domain to more
general cases and unify them under the generalized source and receiver domain.

Another important aspect of imaging is how to preserve the amplitude information of the
reflectors. It is widely known that because of the non-unitary nature of the Born forward
modeling operator, its adjoint, the migration operator, can only preserve the kinematic
information of the reflectors (Lailly, 1983). To better preserve the amplitude, the inversion
should be used. Bleistein (2007) derives closed-form asymptotic inversion formulas based
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on the synthesized shot gathers (e.g. plane-wave sources) under the assumption that the
acquisition geometry is infinite. However, we never have infinite acquisition geometry in
practice. In fact, the limited acquisition geometry is an important factor distorting the
amplitude of the reflectors, especially in complex geologies; hence it should not be neglected.

In this paper, I also extend the target-oriented inversion theory (Valenciano, 2008) to
the generalized source and receiver domain for limited acquisition geometry. The effect
of limited acquisition geometry is then taken into account in the least-squares sense and
corrected by the pseudo-inverse of the target-oriented Hessian, the second derivative of the
least-squares misfit functional with respect to the model parameters (Plessix and Mulder,
2004; Valenciano, 2008; Tang, 2008). I demonstrate that in the generalized source and
receiver domain, the target-oriented Hessian can be more efficiently computed without
storing the Green’s functions, which is a major obstacle for the Hessian computation in the
original shot-profile domain. I also show that the Hessian obtained in the generalized source
and receiver domain is essentially the same as the phase-encoded Hessian (Tang, 2008), the
physics of which, however, was not carefully discussed in Tang (2008). Therefore, from
this perspective, this paper completes the discussion of the phase-encoded Hessian from the
physical point of view. The modeling, migration and target-oriented Hessian formulas are
all derived in terms of Green’s functions, so that any type of Green’s functions can be used
under this framework, such as ray-based asymptotic Green’s functions, Green’s functions
obtained by solving one-way wave equations, and Green’s functions obtained by solving
two-way wave equations. Anisotropy can also be taken into account, provided that the
Green’s functions are properly modeled.

This paper is organized as follows: I first briefly review the theory of Born modeling,
migration and the target-oriented Hessian in the original shot-profile domain. Then I extend
the theory to the encoded source domain, the encoded receiver domain, and the encoded
source and receiver domain. Finally, I introduce a new phase-encoding scheme, which
mixes both random and plane-wave phase encoding, to compute the Hessian operator. The
new scheme combines advantages of both random phase encoding and plane-wave phase
encoding. Finally, I apply the mixed phase-encoding scheme to a simple synthetic model.

BORN MODELING AND INVERSION IN THE SHOT-PROFILE
DOMAIN

By using the Born approximation to the two-way wave equation, the primaries can be
modeled by a linear operator as follows:

d(xr,xs, ω) =
∑
x

G(x,xs, ω)G(x,xr, ω)m(x), (1)

where d(xr,xs, ω) is the modeled data for a single frequency ω with source and receiver
located at xs = (xs, ys, 0) and xr = (xr, yr, 0) on the surface; G(x,xs, ω) and G(x,xr, ω)
are the Green’s functions connecting the source and receiver, respectively, to the image
point x = (x, y, z) in the subsurface; and m(x) denotes the reflectivity at image point x. In
Equation 1, we assume xs and xr are infinite in extent and independent of each other. For a
particular survey, however, we do not have infinitely long cable and infinitely many sources;
thus we have to introduce an acquisition mask matrix to limit the size of the modeling. We
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define

w(xr,xs) =
{

1 if xr is within the recording range of a shot at xs;
0 otherwise .

(2)

For the marine acquisition geometry, w(xr,xs) is similar to a band-limited diagonal matrix;
for Ocean Bottom Cable (OBC) or land acquisition geometry, where all shots share the
same receiver array, w(xr,xs) is a rectangular matrix. Figure 1 illustrates the acquisition
mask matrices for these two typical geometries in 2-D cases.

Figure 1: Acquisition mask matrices for different geometries in 2-D cases. Greys denote
ones while whites denote zeros. The left panel shows the acquisition mask matrix for a
typical marine acquisition geometry; the right panel shows the acquisition mask matrix for
a typical OBC or land acquisition geometry. [NR] yaxun2/. acquisition-mask

To find a model that best fits the observed data, we can minimize the following data-
misfit function in the least-squares sense:

J(m(x)) =
1
2

∑
ω

∑
xs

∑
xr

|w(xr,xs)(d(xr,xs, ω)− dobs(xr,xs, ω))|2. (3)

The gradient of the above objective function gives the conventional shot-profile migration
algorithm:

∇J(x) = <

(∑
ω

∑
xs

G′(x,xs, ω)
∑
xr

G′(x,xr, ω)w′(xr,xs)r(xr,xs, ω)

)
, (4)

where < denotes the real part of a complex number and ′ means the complex conjugate;
r(xr,xs, ω) is the weighted residual defined as follows:

r(xr,xs, ω) = w(xr,xs)(d(xr,xs, ω)− dobs(xr,xs, ω)). (5)
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The gradient or migration is only a rough estimate of the model m(x); to get a bet-
ter recovery of the model space, the inverse of the Hessian, the second derivatives of the
objective function, should be applied to the gradient:

m ≈ H−1∇J. (6)

The Hessian can be explicitly constructed by taking the second-order derivatives of the
objective function with respect to the model parameters as follows (Plessix and Mulder,
2004; Valenciano, 2008; Tang, 2008):

H(x,y) = <

(∑
ω

∑
xs

G(x,xs, ω)G′(y,xs, ω) ×

∑
xr

w2(xr,xs)G(x,xr, ω)G′(y,xr, ω)

)
, (7)

where y is a neighbor point around the image point x in the subsurface.

Valenciano (2008) demonstrates that the Hessian can be directly computed using the
above formula; however it requires storing a large number of Green’s functions, which is
inconvenient for dealing with large 3-D data set. Tang (2008) shows that with some minor
alteration of Equation 7, an approximate Hessian can be efficiently computed using the
phase-encoding method. However, Tang (2008) focuses more on the algorithm development,
and the physics behind the Hessian by phase-encoding has not been carefully discussed. In
this companion paper, I complete the discussion of the actual physics behind using phase-
encoding methods, such as plane-wave phase encoding and random phase encoding, to
obtain the Hessian. In the subsequent sections, I start with the modeling equation in the
encoded source, encoded receiver and simultaneously encoded source and receiver domains.
I show that the corresponding imaging Hessian in the generalized source and receiver domain
is the same as those phase-encoded Hessians discussed in Tang (2008).

ENCODED SOURCES

Let us define the encoding transform along the xs coordinate of the surface data as follows:

d(xr,ps, ω) =
∑
xs

w(xr,xs)d(xr,xs, ω)α(xs,ps, ω), (8)

where α(xs,ps, ω) is the source phase-encoding function. Equation 8 integrates along the
horizontal dashed lines shown in Figure 1 for each receiver location xr and transforms
the surface data from (xs,xr) domain into the (ps,xr) domain. For the plane-wave phase
encoding, the encoding function is:

α(xs,ps, ω) = eiωpsxs , (9)

where ps is defined to be the ray parameter of the source plane waves. For random phase
encoding, the encoding function is

α(xs,ps, ω) = eiγ(xs,ps,ω), (10)
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where γ(xs,ps, ω) is a random sequence in xs and ω, and ps defines the index of different
realizations of the random sequence.

Substituting Equation 1 into 8, rearranging the order of summation, we get the forward
modeling equation in the encoded source domain:

d(xr,ps, ω) =
∑
x

G(x,xr, ω)G(x,ps, ω;xr)m(x), (11)

where the encoded source Green’s function G(x,ps, ω;xr) is defined as follows:

G(x,ps, ω;xr) =
∑
xs

w(xr,xs)G(x,xs, ω)α(xs,ps, ω). (12)

Note that G(x,ps, ω;xr) depends on xr because of the acquisition mask w(xr,xs) inside
the summation. It should only integrate the grey segment for each horizontal dashed line
shown in Figure 1.

As derived in Appendix A, the objective function in the encoded source domain can be
written as follows:

J(m(x)) =
1
2

∑
ω

|c|2
∑
xr

∑
ps

|d(xr,ps, ω)− dobs(xr,ps, ω)|2, (13)

where c = ω for plane-wave phase encoding, and c = 1 for random phase encoding.

The gradient of the objective function in Equation 13 gives the following migration
formula in the encoded source domain:

∇J(x) = <

(∑
ω

|c|2
∑
ps

G′(x,ps, ω;xr)
∑
xr

G′(x,xr, ω)r(xr,ps, ω)

)
, (14)

where the residual r(xr,ps, ω) is defined as follows:

r(xr,ps, ω) = d(xr,ps, ω)− dobs(xr,ps, ω). (15)

It is easy to see that Equation 14 defines the phase-encoding migration (Liu et al., 2006;
Romero et al., 2000). By taking the second-order derivatives of the objective function
defined in Equation 13 with respect to the model paramters, we obtain the Hessian in the
encoded source domain:

H(x,y) = <

(∑
ω

|c|2
∑
xr

G(x,xr, ω)G′(y,xr, ω) ×

∑
ps

G(x,ps, ω;xr)G′(y,ps, ω;xr)

)
. (16)

ENCODED RECEIVERS

Let us define the encoding transform along the xr coordinate of the surface data as follows:

d(pr,xs, ω) =
∑
xr

w(xr,xs)d(xr,xs, ω)β(xr,pr, ω), (17)
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where β(xr,pr, ω) is the receiver phase-encoding function. Equation 17 integrates along
the vertical dashed lines shown in Figure 1 for each source location xs and transforms the
surface data from (xs,xr) domain into the (xs,pr) domain. The receiver phase-encoding
function is defined similar to the source phase-encoding function discussed in the previous
section. For receiver plane-wave phase encoding,

β(xr,pr, ω) = eiωprxr , (18)

where pr is the ray parameter for the receiver plane-waves. For receiver random phase
encoding,

β(xr,pr, ω) = eiγ(xr,pr,ω), (19)

where γ(xr,pr, ω) is the prth random realization. Substituting Equation 1 into 17, we get
the forward modeling equation in the receiver plane-wave domain:

d(pr,xs, ω) =
∑
x

G(x,xs, ω)G(x,pr, ω;xs)m(x), (20)

where G(x,pr, ω;xs) is the encoded receiver Green’s function defined as follows:

G(x,pr, ω;xs) =
∑
xr

w(xr,xs)G(x,xr, ω)β(xr,pr, ω). (21)

Also note that G(x,pr, ω;xs) depends on xs because of the acquisition mask matrix inside
the summation. It should only integrate the grey segment for each vertical dashed line
shown in Figure 1.

We minimize the following objective function in the encoded receiver domain (see Ap-
pendix B for derivation):

J(m(x)) =
∑
ω

|c|2
∑
pr

∑
xs

|d(pr,xs, ω)− dobs(pr,xs, ω)|2, (22)

The gradient of the objective function in Equation 22 gives the following migration formula
in the encoded receiver domain:

∇J(x) = <

(∑
ω

|c|2
∑
xs

G′(x,xs, ω)
∑
pr

G′(x,pr, ω;xs)r(pr,xs, ω)

)
, (23)

where the residual r(pr,xs, ω) is defined as follows:

r(pr,xs, ω) = d(pr,xs, ω)− dobs(pr,xs, ω). (24)

The Hessian in the encoded receiver domain is then obtained by taking the second derivative
of the objective function:

H(x,y) = <

(∑
ω

|c|2
∑
xs

G(x,xs, ω)G′(y,xs, ω) ×

∑
pr

G(x,pr, ω;xs)G′(y,pr, ω;xs)

)
. (25)
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We can rewrite Equation 25 as follows

H(x,y) =
∑
pr

H(x,y,pr), (26)

where

H(x,y,pr) = <

(∑
ω

|c|2
∑
xs

G(x,xs, ω)G′(y,xs, ω) ×

G(x,pr, ω;xs)G′(y,pr, ω;xs)
)

= <

(∑
ω

|c|2
∑
xs

G(x,xs, ω)G′(y,xs, ω) ×(∑
xr

w(xr,xs)G(x,xr, ω)β(xr,pr, ω)

)
×∑

x′
r

w(xr,xs)G(y,x′r, ω)β(x′r,pr, ω)

′ . (27)

Equation 27 is equivalent to Equations 9 and B-1 in Tang (2008), which are called the
receiver-side encoded Hessian. As I show here, the receiver-side encoded Hessian is the
same as the Hessian in the encoded receiver domain; both of them are derived from the
same forward modeling equation defined in Equation 20.

ENCODED SOURCES AND RECEIVERS

We can simultaneously encode the sources and the receivers as follows:

d(pr,ps, ω) =
∑
xr

∑
xs

w(xr,xs)d(xr,xs, ω)α(xs,ps, ω)β(xr,pr, ω), (28)

where α(xs,ps, ω) and β(xr,pr, ω) are defined by Equations 9 and 18, respectively, for
plane-wave phase encoding, and by Equations 10 and 19, respectively, for random phase
encoding.

Substituting Equations 1 into 28, notice that w2(xr,xs) = w(xr,xs). With the defini-
tion of G(x,ps, ω;xr) and G(x,pr, ω;xs) by Equations 12 and 21, we obtain the forward
modeling equation in the encoded source and receiver domain:

d(pr,ps, ω) =
∑
x

G(x,pr, ω;xs)G(x,ps, ω;xr)m(x). (29)

Now we minimize the following objective function in the encoded source and receiver
domain (see Appendix C for derivation):

J(m(x)) =
∑
ω

|c|4
∑
pr

∑
ps

|d(pr,ps, ω)− dobs(pr,ps, ω)|2. (30)
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The gradient of the objective function in Equation 30 gives the following migration formula
in the encoded source and receiver domain:

∇J(x) = <

(∑
ω

|c|4
∑
pr

G′(x,pr, ω;xs)
∑
ps

G′(x,ps, ω;xr)r(pr,ps, ω)

)
, (31)

where r(pr,ps, ω) is the residual in the encoded source and receiver domain:

r(pr,ps, ω) = d(pr,ps, ω)− dobs(pr,ps, ω). (32)

The Hessian is obtained as follows:

H(x,y) = <

(∑
ω

|c|4
∑
pr

G(x,pr, ω;xs)G′(y,pr, ω;xs) ×

∑
ps

G(x,ps, ω;xr)G′(y,ps, ω;xr)

)
. (33)

We can also rewrite Equation 33 as follows:

H(x,y) =
∑
ps

∑
pr

H(x,y,ps,pr), (34)

where

H(x,y,ps,pr)

= <

(∑
ω

|c|4G(x,ps, ω;xr)G′(y,ps, ω;xr)G(x,pr, ω;xs)G′(y,pr, ω;xs)

)

= <

(∑
ω

|c|4 ×

(∑
xs

w(xr,xs)G(x,xs, ω)α(xs,ps, ω)

)∑
x′

s

w(xr,x′s)G(y,x′s, ω)α(x′s,ps, ω)

′

×

(∑
xr

w(xr,xs)G(x,xr, ω)β(xr,pr, ω)

)∑
x′

r

w(x′r,xs)G(y,x′r, ω)β(x′r,pr, ω)

′ .

(35)

Equation 35 is equivalent to Equations 17 and C-1 in Tang (2008), which are called the
simultaneously encoded Hessian. However, Equation 35 is more general, because it is not
limited to OBC or land acquisition geometry. Up to this point, we have proved that both
the simultaneously encoded Hessian and the Hessian in the encoded source and receiver
domain are derived from the same forward modeling equation defined in 29.

A MIXED PHASE-ENCODING SCHEME

Tang (2008) compares the computational cost for the Hessian obtained using different phase-
encoding and shows that the most efficient way to compute the Hessian is to use simultane-
ous random phase encoding. The cost is just two downward continuations (using one-way
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wave equation to model the Green’s functions) of the encoded wavefields plus the cross-
correlation (for a single realization of the random phases). However, the random phase
encoding may not be very effective in attenuating the cross-talk when many Green’s func-
tions are simultaneously encoded (Romero et al., 2000; Tang, 2008); a lot of random noise
may appear in the final result. In fact, for the simultaneous phase encoding or the Hes-
sian in the encoded source and receiver domain defined by Equation 33, the phase-encoding
functions for sources (α(xs,ps, ω))and receivers (β(xr,pr, ω)) need not be the same. For ex-
ample, we can use plane-wave phase encoding function to encode the sources but use random
phase-encoding function to encode the receivers, or vice visa. Because plane-wave phase
encoding functions are very effective in attenuating the cross-talk (Liu et al., 2006; Tang,
2008), while random phase encoding is efficient, by combining those two phase-encoding
functions, we are able to balance cost and accuracy.

I apply this idea to a simple constant-velocity model. The acquisition geometry is
assumed to be OBC geometry, where all shots share the same receiver array. There are 201
shots from −2000 m to 2000 m with a 10 m sampling; for each shot, there are 201 receivers
spanning from −2000 m to 2000 m. Figure 2 shows the diagonal of the Hessian obtained
using different methods. Figure 2(a) shows the exact diagonal of the Hessian computed
in the original shot-profile domain with Equation 7, which requires pre-computing and
saving the Green’s functions and is efficient for practical applications. However, since there
is no cross-talk in the original shot-profile domain, I use the result as a benchmark to
compare the accuracy of other methods. Figure 2(b) is obtained using the most efficient
simultaneous random phase-encoding method (only one realization of the random-phase
functions has been used), by using Equation 33, with both α(xs,ps, ω) and β(xr,pr, ω)
being random phase functions. As expected, the result is full of random noise, useful
illumination information is greatly distorted, and the result is very far from the exact
Hessian. Figure 2(c) shows the result obtained using the mixed phase-encoding scheme,
i.e., by using Equation 33, with the weighting function α(xs,ps, ω) being the plane-wave
phase-encoding function and β(xr,pr, ω) being the random phase-encoding function. A
total of 61 plane-wave-encoded source-side Green’s functions have been used to generate
the result. The cost is the same as a plane-wave source migration with 61 source plane
waves. The result looks very similar to the exact Hessian, and the random noise shown
in Figure 2(b) has been greatly reduced. For comparison, Figure 2(d) shows the Hessian
computed in the encoded receiver domain, i.e., by using Equation 25, where the weighting
function β(xr,pr, ω) is chosen to be a random phase function. The result is also very
accurate. However, its cost is the same as a shot-profile migration with 201 shot gathers
(Tang, 2008).

Figure 3 and 4 show the Hessian with off-diagonals (with size 21 × 21) obtained using
different methods. Figure 3 illustrates the result at image point (x = 0, z = 800), while
Figure 4 illustrates the result at image point (x = 420, z = 800). These results also demon-
strate that although simultaneous random phase encoding is efficient, the Hessian operator
obtained by this method (Figure 3(b) and Figure 4(b)) suffers a lot from unwanted crosstalk.
Encoding only the receiver-side Green’s function with random phase functions gives accu-
rate results (Figure 3(d) and Figure 4(d)); however, the cost is similar to a shot-profile
migration. In situations where the number of shot gathers is big, this encoding scheme may
not be a good choice. In contrast, the mixed phase-encoding scheme gives us very accu-
rate results (Figure 3(c) and Figure 4(c)) but with less cost than the receiver-side encoded
Hessian.
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(a) (b)

(c) (d)

Figure 2: The diagonal of the Hessian obtained with different methods. Panel (a) is the exact
diagonal of Hessian computed in the original shot-profile domain. Panel (b) is the result
computed in the encoded source and receiver domain, where both the source and receiver
Green’s functions are randomly encoded. Panel (c) is the result also computed in the
encoded source and receiver domain, where the source-side Green’s functions are encoded
with the plane-wave phase encoding function, while the receiver-side Green’s functions are
encoded with the random phase functions. Panel (d) is the result computed in the encoded
receiver domain, where only the receiver-side Green’s functions are randomly encoded. [CR]
yaxun2/. hess-exact,hess-simul-random,hess-simul-mixed,hess-random
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(a) (b) (c) (d)

Figure 3: The Hessian operator for an image point at x = 0 m and z = 800 m,
with the same acquisition geometry as in Figure 2. The size of the Hessian op-
erator is 21 × 21. Panel (a) shows the exact Hessian computed in the original
shot-profile domain, which is artifact-free; Panel (b) is the result of simultaneous
random phase encoding. Note the strong artifact which distorts the useful informa-
tion; Panel (c) is the result of the mixed phase encoding; the result is very similar
to the exact Hessian in (a); Panel (d) is the result computed in the encoded re-
ceiver domain, where only the receiver-side Green’s functions are randomly encoded. [CR]
yaxun2/. hess-exact-offd1,hess-simul-random-offd1,hess-simul-mixed-offd1,hess-random-offd1

(a) (b) (c) (d)

Figure 4: The Hessian operator for an image point at x = 420 m and z = 800
m, with the same acquisition geometry as in Figure 2. The size of the Hessian
operator is 21 × 21. Panel (a) shows the exact Hessian computed in the original
shot-profile domain, which is be artifact-free; Panel (b) is the result of simultaneous
random phase encoding. Note the strong artifact which distorts the useful informa-
tion; Panel (c) is the result of the mixed phase encoding; the result is very similar
to the exact Hessian in (a); Panel (d) is the result computed in the encoded re-
ceiver domain, where only the receiver-side Green’s functions are randomly encoded. [CR]
yaxun2/. hess-exact-offd2,hess-simul-random-offd2,hess-simul-mixed-offd2,hess-random-offd2
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CONCLUSION

I extend the theory of Born modeling, migration and inversion from the conventional shot-
profile domain to the generalized source and receiver domain, and to the plane-wave phase-
encoding domain and the random phase-encoding domain in particular. One important
advantage of these new domains is that computing the target-oriented Hessian no longer
requires storing the Green’s functions, which is a major obstacle preventing the Hessian
computation in the original shot-profile domain. I also prove that the Hessians obtained
in the generalized source and receiver domain are equivalent to those phase-encoded Hes-
sians discussed in Tang (2008), and they both can be derived from the same modeling
equations. To balance the accuracy and cost of computing the Hessian, I introduce a new
phase encoding domain, i.e., the mixed phase-encoding scheme, which combines plane-wave
phase encoding and random phase encoding. My preliminary tests shows that this new
phase-encoding scheme achieves high accuracy with relatively low cost.
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APPENDIX A

This appendix derives the objective function in the encoded source domain. We start with
the objective function in the source and receiver domain as follows:

J(m(x)) =
1
2

∑
ω

∑
xs

∑
xr

|w(xr,xs)(d(xr,xs, ω)− dobs(xr,xs, ω))|2. (A-1)
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From Equation 8, we can also get the inverse phase-encoding transform. For source plane-
wave phase encoding, since the forward operator is unitary, the inverse transform can be
written as follows:

w(xr,xs)d(xr,xs, ω) = |ω|2
∑
ps

d(xr,ps, ω)e−iωpsxs . (A-2)

For random phase encoding, a similar result can also be obtained, because different realiza-
tions of random sequences should be approximately orthogonal, provided that those random
sequences are ”sufficiently” random; thus we have

w(xr,xs)d(xr,xs, ω) =
∑
ps

d(xr,ps, ω)e−iγ(xs,ps,ω). (A-3)

Therefore, we can use a more general form to express the inverse phase-encoding transform:

w(xr,xs)d(xr,xs, ω) = |c|2
∑
ps

d(xr,ps, ω)α′(xs,ps, ω), (A-4)

where for plane-wave phase encoding, c = ω and α(xs,ps, ω) = eiωpsxs ; for random phase
encoding, c = 1 and α(xs,ps, ω) = eiγ(xs,ps,ω).

Substituting Equation A-4 into A-1 yields:

J(m(x)) =
1
2

∑
ω

∑
xs

∑
xr

|c|4
∣∣∣∣∣∑

ps

r(xr,ps, ω)α′(xs,ps, ω)

∣∣∣∣∣
2

=
1
2

∑
ω

∑
xs

∑
xr

|c|4
(∑

ps

r(xr,ps, ω)α′(xs,ps, ω)

)′
×∑

p′
s

r(xr,p′s, ω)α′(xs,p′s, ω)


=

1
2

∑
ω

∑
xr

|c|4
∑
ps

∑
p′

s

r′(xr,ps, ω)r(xr,p′s, ω)×

∑
xs

α(xs,ps, ω)α′(xs,p′s, ω), (A-5)

where r(xr,ps, ω) is defined to be the residual in the encoded source domain:

r(xr,ps, ω) = d(xr,ps, ω)− dobs(xr,ps, ω). (A-6)

For plane-wave phase encoding, if the xs is sampled densely enough,∑
xs

α(xs,ps, ω)α′(xs,p′s, ω) =
∑
xs

eiω(p′
s−ps)xs ≈ 1

|ω|2
δ(p′s − ps). (A-7)

For random phase encoding, the following property also holds as long as the random se-
quences are ”sufficiently” random:∑

xs

α(xs,ps, ω)α′(xs,p′s, ω) =
∑
xs

ei(γ(xs,p′
s,ω)−γ(xs,ps,ω)) ≈ δ(p′s − ps). (A-8)
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Substituting Equation A-7 or A-8 into A-5, we get the data-misfit function in the encoded
source domain:

J(m(x)) ≈ 1
2

∑
ω

|c|2
∑
xr

∑
ps

|d(xr,ps, ω)− dobs(xr,ps, ω)|2. (A-9)

APPENDIX B

This appendix derives the objective function in the encoded receiver domain. We start with
the objective function in the source and receiver domain as follows:

J(m(x)) =
1
2

∑
ω

∑
xs

∑
xr

|w(xr,xs)(d(xr,xs, ω)− dobs(xr,xs, ω))|2. (B-1)

Similar to the discussion in Appendix A, the general form of the inverse transform of receiver
phase encoding can be written as follows:

w(xr,xs)d(xr,xs, ω) = |c|2
∑
pr

d(pr,xs, ω)β′(xr,pr, ω), (B-2)

where for plane-wave phase encoding, c = ω and β(xr,pr, ω) = eiωprxr ; for random phase
encoding, c = 1 and β(xr,pr, ω) = eiγ(xr,pr,ω). Substituting Equation B-2 into B-1 yields:

J(m(x)) =
1
2

∑
ω

∑
xs

∑
xr

|c|4
∣∣∣∣∣∑

pr

r(pr,xs, ω)β′(xr,pr, ω)

∣∣∣∣∣
2

=
1
2

∑
ω

∑
xs

∑
xr

|c|4
(∑

pr

r(pr,xs, ω)β′(xr,pr, ω)

)′
×∑

p′
r

r(p′r,xs, ω)β′(xr,p′r, ω)


=

1
2

∑
ω

∑
xs

|c|4
∑
pr

∑
p′

r

r′(pr,xs, ω)r(p′r,xs, ω)×

∑
xr

β(xr,pr, ω)β′(xr,p′r, ω), (B-3)

where r(pr,xs, ω) is defined to be the residual in the encoded receiver domain:

r(pr,xs, ω) = d(pr,xs, ω)− dobs(pr,xs, ω). (B-4)

Similar to the discussion in Appendix A, the inner-most summation in Equation B-3 is
approximately a Dirac delta function under certain conditions. Therefore, the data-misfit
function in the encoded receiver domain reads as follows:

J(m(x)) ≈ 1
2

∑
ω

|c|2
∑
pr

∑
xs

|d(pr,xs, ω)− dobs(pr,xs, ω)|2. (B-5)
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APPENDIX C

This appendix derives the objective function in the simultaneously encoded source and
receiver domain. We start with the objective function in the source and receiver domain as
follows:

J(m(x)) =
1
2

∑
ω

∑
xs

∑
xr

|w(xr,xs)(d(xr,xs, ω)− dobs(xr,xs, ω))|2. (C-1)

If we follow a discussion similar to those in Appendices A and B, we obtain the general
expression of the inverse transform of the simultaneous encoding:

w(xr,xs, ω)d(xr,xs, ω) = |c|4
∑
ps

∑
pr

d(pr,ps, ω)α′(xs,ps, ω)β′(xr,pr, ω). (C-2)

Substituting Equation C-2 into C-1 yields:

J(m(x)) =
1
2

∑
ω

∑
xs

∑
xr

|c|8
∣∣∣∣∣∑

ps

∑
pr

r(pr,ps, ω)α′(xs,ps, ω)β′(xr,pr, ω)

∣∣∣∣∣
2

=
1
2

∑
ω

∑
xs

∑
xr

|c|8
(∑

ps

∑
pr

r(pr,ps, ω)α′(xs,ps, ω)β′(xr,pr, ω)

)′
×∑

p′
s

∑
p′

r

r(p′r,p
′
s, ω)α′(xs,p′s, ω)β′(xr,p′r, ω)


=

1
2

∑
ω

|c|8
∑
ps

∑
p′

s

∑
pr

∑
p′

r

r′(pr,ps, ω)r(p′r,p
′
s, ω)×

∑
xs

∑
xr

α(xs,ps, ω)β(xr,pr, ω)α′(xs,p′s, ω)β′(xr,p′r, ω), (C-3)

where r(pr,ps, ω) is defined to be the residual in the encoded source and receiver domain:

r(pr,ps, ω) = d(pr,ps, ω)− dobs(pr,ps, ω). (C-4)

For plane-wave phase encoding, with sampling dense enough in xs and xr, the inner-most
summations become Dirac delta functions:∑

xs

∑
xr

α(xs,ps, ω)β(xr,pr, ω)α′(xs,p′s, ω)β′(xr,p′r, ω)

≈ 1
|ω|4

δ(p′r − pr)δ(p′s − ps). (C-5)

For random phase encoding, we can also approximately have∑
xs

∑
xr

α(xs,ps, ω)β(xr,pr, ω)α′(xs,p′s, ω)β′(xr,p′r, ω)

≈ δ(p′r − pr)δ(p′s − ps). (C-6)

Therefore the data-misfit function in the encoded source and receiver domain is

J(m(x)) ≈ 1
2

∑
ω

|c|4
∑
ps

∑
pr

|d(pr,ps, ω)− dobs(pr,ps, ω)|2. (C-7)
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Salt body segmentation with dip and frequency attributes

Adam Halpert and Robert G. Clapp

ABSTRACT

Image segmentation can automatically locate salt boundaries on seismic sections, an
often time-consuming and tedious task when undertaken manually. However, using a
single seismic attribute (usually amplitude) is sometimes insufficient to achieve an ac-
curate segmentation. Since any quantifiable measure may be employed as an attribute
for segmentation, exploring other possible attributes is an important step in developing
a more robust segmentation algorithm. Dip variability within a seismic section is one
attribute with many advantages for segmentation, and experimenting with different
methods for calculating dips can yield improved results. Determining the frequency
content of a seismic image offers other opportunities for improvement. Specifically,
instantaneous frequency shows promise as another attribute for segmentation, while
employing a continuous wavelet transform to study envelope amplitude at different
frequencies can improve the performance of the amplitude attribute.

INTRODUCTION

Automated image segmentation offers a means of quickly and efficiently delineating salt
bodies on seismic images. When adapted for seismic purposes (Lomask, 2007; Lomask
et al., 2007), the Normalized Cuts Image Segmentation (NCIS) algorithm (Shi and Malik,
2000) provides a global solution to the salt boundary calculation. This helps overcome some
of the weaknesses of other methods, such as local horizon trackers, that can fail when the
boundary fades or becomes discontinuous. A global determination of salt boundaries can
be especially important for building velocity models in complex areas; in such cases, image
segmentation may be employed to automatically build or update velocity models, helping
to alleviate a major bottleneck for iterative imaging projects (Halpert and Clapp, 2008).

The NCIS algorithm relies on one or more seismic attributes to segment an image; the
most straightforward of these attributes is envelope of the amplitude. Often, this single
attribute provides an accurate calculation of the salt boundary. Unfortunately, in some
instances a single attribute is insufficient, and the algorithm cannot produce a reasonable
result. Here, we demonstrate situations in which a single-attribute segmentation fails. We
then explore possibilities for useful attributes other than amplitude, most notably dip and
instantaneous frequency. Finally, we discuss an ultimate goal of designing an interpreter-
guided multi-attribute segmentation scheme.

ATTRIBUTE-BASED SEGMENTATION

The NCIS algorithm (Shi and Malik, 2000) functions by calculating relationships between
individual pixel pairs in an image. For seismic image segmentation, each pixel is compared
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to a random selection of neighboring pixels (Lomask, 2007), and each pair is assigned a
weight value inversely proportional to the likelihood of a salt boundary existing between
them. If these weights are placed in a matrix W, a salt boundary path may be calculated
via the eigensystem

(D−W)y = λDy , (1)

where D is a diagonal matrix whose elements are the sum of each column of W, and λ
and y are an eigenvalue and eigenvector of the system, respectively. Because the smallest
eigenvalue will yield only a constant eigenvector, the eigenvector correseponding to the
second smallest eigenvalue of the system is used to segment the image. The eigenvector in
question ranges in value from -1 to +1 across the estimated boundary path. The image is
segmented either by following a constant eigenvector value across the image - usually the
zero-value contour; see Lomask (2007) - or by using outside information to follow different
eigenvector values across the image (Halpert and Clapp, 2008).

In the examples cited above, the most common measure or attribute used to determine
the likely presence of a salt boundary is amplitude of the envelope. For instance, a large
amplitude between two pixels suggests a salt boundary is likely, and will result in a relatively
small weight assigned to that pixel pair. Amplitude, however, is not the only attribute that
can be used for this purpose. In fact, any quantifiable measure that relates to the presence
of a salt boundary may be used as an attribute for segmentation.

Limitations of a single attribute

The sources cited above contain several examples of accurate salt boundary picking using
only amplitude to segment the image. In some instances, however, such an approach can
lead to inaccurate results. Figure 1 shows one such instance. Since the algorithm attempts
to find a minimized path across the image, it often tends toward a straight line in areas
of uncertainty. In this case, the algorithm incorrectly cuts across a very steep salt canyon
in the Sigsbee synthetic model. Even though the outline of the salt top is faintly visible,
amplitude information alone is not enough to correctly guide the segmentation process in
this instance. This suggests that further information, in the form of attributes other than
amplitude, may be an important part of a more robust segmentation algorithm.

DIP AS AN ATTRIBUTE

Estimating dip in seismic images has long been recognized as a useful interpretation tech-
nique, especially for 3D volumes (Bednar, 1997). Dip can be a particularly useful attribute
when the goal is delineation of salt bodies. Lomask (2007) notes that salt boundaries and
nearby sediments will often display different dips; furthermore, the seemingly random dips
that often characterize the interior of salt bodies on field seismic data should contrast con-
siderably with more ordered dipping layers outside the salt. Therefore, an attribute that
highlights variability in dip throughout a seismic image may be helpful for locating salt
boundaries.
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Figure 1: Example of single-attribute segmentation failing to accurately track a salt
boundary. The algorithm cuts across the top of the indicated salt canyon. [CR]
adam1/. sig-ann

Dip calculation

Dips on seismic images may be esitmated in several ways. Working from an image processing
perspective, van Vliet and Verbeek (1995) describe the process of calculating dips using
gradient-square tensors to estimate “orientation” in images. Such methods may easily be
adapted to estimate dips of reflectors on seismic images. Claerbout (1992) describes a
“plane-wave destructor” mechanism to estimate dips, while Fomel (2002) and Hale (2007)
use different plane-wave destructor stencils to implement dip filters. Each of these methods
for estimating dips produces a different result, so it is important to determine how these
differences can affect the segmentation process.

Figure 2 shows a migrated section of a 2D Gulf of Mexico dataset used for examples
throughout this paper; the strong reflector represents the base of a salt body. The first
column of Figure 3 displays dip calculations for the three methods metioned above. Panel
(a) is the result of applying Claerbout’s “puck” method (Claerbout, 1992), which uses
a four-point differencing stencil to calculate directional derivatives. In this example, the
random character of dips inside the salt body is readily apparent from the chaotic nature of
the dip field, although the boundary itself is difficult to discern. To overcome some of the
shortcomings of a four-point stencil, the methods used to obtain the results in panels (b)
and (c) instead employ a six-point stencil. The stencil used for panel (b) (Fomel, 2002) is

− (1+σ)(2+σ)
12

(1−σ)(2−σ)
12

− (2+σ)(2−σ)
6

(2+σ)(2−σ)
6

− (1−σ)(2−σ)
12

(1+σ)(2+σ)
12

, (2)

where σ is the slope of the plane wave being “killed.” The stencil used for panel (c) (Hale,
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2007) was designed to fit on the previous stencil, while allowing for improved handling of
very steep dips. It looks like

−2m2 2mp

−4mp 1
−2p2 2mp

, (3)

where m = 1
2

[
cos(tan−1 σ) + sin(tan−1 σ)

]
and p = 1

2

[
cos(tan−1 σ)− sin(tan−1 σ)

]
. Be-

cause of the six-point stencil in use, both methods do a better job of recovering the coherent
dips along the salt boundary; panel (c) is the best result, as it performs more accurately
even at the steepest dips.

Figure 2: A 2D seismic section used throughout this paper. The strong reflector is the base
of a salt body. [ER] adam1/. gulf

Segmentation using dips

To prepare a dip volume for segmentation, additional steps are necessary. To highlight
changes in the dip (an abrupt change is indicative of a salt boundary), a roughener should
be applied; here, the helical derivative (Claerbout, 2005) is used to facilitate extension to
three dimensions. Finally, calculating the envelope of this volume will produce an image
suitable for the segmentation process. The second column of figure 3 shows envelopes for the
three dip volumes seen in the left column. Panel (c) shows the clearest salt boundary path,
so we expect this image to produce the superior segmentation eigenvector. Figure 4, which
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Figure 3: Dip calculations (left column) and their corresponding envelope volumes (right
column) for the section in Figure 2. Row (a) uses Claerbout’s puck method, row (b) uses
Fomel’s plane-wave destruction filtering stencil, and row (c) uses Hale’s filtering stencil.
[ER] adam1/. gulf-er
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Figure 4: Eigenvectors (left column) and zero-contour boundaries (right column) derived
from the dip envelope volumes in Figure 3. [CR] adam1/. gulf-cr
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displays segmentation results - eigenvectors in the left column, and the corresponding zero-
contour boundaries on the right - confirms this expectation. The eigenvector in panel (c)
shows the clearest transition from light to dark along the boundary. Panel (b) is skewed by
a strong anomaly in the upper left, and panel (a) rarely exhibits a clearly defined boundary.
The corresponding zero-contour boundary picks shown in the second column differ greatly
in terms of accuracy. Clearly, using Hale’s stencil as part of a dip attribute segmentation
algorithm produces the most accurate result in this case.

FREQUENCY AS AN ATTRIBUTE

Seismic waves behave differently inside salt bodies than they do when traveling through
sediment layers. One way to take advantage of this fact is to calculate instantaneous fre-
quency (Taner et al., 1979) in different parts of an image. In the complex representation of
a seismic trace

A(t)eiφ(t), (4)

A(t) is the amplitude of the envelope (the most common segmentation attribute), and
φ(t) is the instantaneous phase. The first derivative of the instantaneous phase yields
instantaneous frequency. A rapid change in instantaneous frequency may be indicative of
a salt boundary, especially if it occurs in a coherent manner across an image. Figure 5
shows the instantaneous frequency calculation for the same 2D section used previously. It
is apparent that frequency behavior inside the salt differs noticeably from behavior outside
the salt. An eigenvector and boundary derived from this volume can be seen in Figure 6.

Figure 5: Instantaneous frequency calculation for the seismic section. There is a clear
difference in character inside and outside the salt body. [ER] adam1/. gulf-ifreq
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Figure 6: Eigenvector (a) and boundary calculation (b) using the instantaneous frequency
attribute from Figure 5. [CR] adam1/. gulf-ifreq-seg

Continuous wavelet transform

Another method for investigating frequency properties of an image is to employ the contin-
uous wavelet transform (Sinha et al., 2005), or CWT, to explore an image’s “response” to
different frequencies. Because the interior of salt bodies is often characterized by random,
high-frequency noise, one application of the CWT is to improve the effectiveness of the
amplitude attribute by eliminating this noise, thereby emphasizing the amplitude contri-
butions of the salt boundary. Figure 7 compares envelope amplitudes for both the original
seismic section in panel (a), and for the same section after a CWT has been used to isolate
and stack over only the low frequencies in panel (b). The right-hand image features a much
clearer boundary path, and less ”noise” both inside and outside the salt body. Such an
image allows for an easier segmentation process with less uncertainty.

TOWARD MULTI-ATTRIBUTE SEGMENTATION

As a way of comparing segmentation results from different attributes, Figure 8 displays
three boundaries overlain on the seismic section. Each boundary is the result of segmenting
with a different attribute: amplitude of the envelope, dip (from Hale’s filtering stencil),
or instantaneous frequency. Clearly, the results using amplitude and dip are extremely
similar, and both closely track the strong reflector known to be the salt base across nearly
the entire image. The amplitude boundary is more accurate in the upper left corner, while
the dip boundary appears to follow a more likely path at around x = 17000m. This result
suggests that these attributes can function either independently, or more importantly, in a
complementary manner if used together in a multi-attribute segmentation scheme. While
the boundary obtained using the instantaneous frequency attribute does not as accurately
track the salt interface at all points of the image, it does seem to provide some useful
information that may also be important in such a scheme.
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Figure 7: Amplitude envelope when all frequencies are included (a), and after a CWT is
used to isolate and stack over only low frequencies (b). [ER] adam1/. cwtamp

Interpreter-guided segmentation

The purpose of this area of research is to find multiple attributes that may be useful for
seismic image segmentation. This raises the important question of how to determine which
attribute(s) should be used for segmentation when several are available, especially since not
all attributes may be appropriate for a given situation. Here, a human interpreter’s input
is vital to the process. An ultimate goal for seismic image segmentation is to create an
algorithm that can “learn” from the interpreter. For example, if the interpreter picks salt
boundaries on a small number of 2D lines from a 3D survey, an inversion algorithm could
determine which specific attributes were most important for the manual interpretation.
Once this determination is made, the entire 3D volume could be segmented based on the
information provided by the human interpreter. This scheme would take advantage both
of humans’ abilities to accurately pick boundaries on 2D sections, and computers’ superior
abilities to “see” in three dimensions.

CONCLUSIONS

Amplitude is only one possible seismic attribute that may be used for image segmenta-
tion. Because the NCIS algorithm does not always succeed using amplitude alone, other
attributes are necessary to achieve higher accuracy. One such attribute is dip; both the
nature of salt boundaries and random character of salt body interiors on seismic data make
the dip variability attribute useful for segmentation. Frequency content of an image is an-
other important attribute; calculating instantaneous frequencies throughout an image shows
promise as a boundary-detection technique. Examining wavelet properties via a continu-
ous wavelet transform also yields potentially useful information for segmentation, especially
when used in combination with other attributes like amplitude of the envelope. Ultimately,
these attributes could be an important part of an interpreter-aided seismic segmentation
algorithm that robustly and accurately picks salt boundaries on 3D seismic volumes.
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Figure 8: A comparison of boundaries calculated using three different attributes: envelope
amplitude (solid line), dip from Hale’s filtering stencil (dashed line), and instantaneous
frequency (dotted line). [CR] adam1/. bnd-ann
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Hyercube viewer: New displays and new data-types

Robert G. Clapp and Nelson Nagales

ABSTRACT

No single way to view seismic data is effective in all cases. Rather than building
separate tools for each viewing approach, we added functionality to SEP’s existing
hypercube viewing tool. In addition to other functionality improvements, we added
the capability to view wiggle traces, contours, out-of-core datasets, and datasets with
different number of dimensions and size.

INTRODUCTION

Seismic viewing tools can be broken into two categories: batch viewing programs and inter-
active viewers. SEP has a long history of both program types. Static viewing programs can
produce line graphs, wiggle traces, hidden line plots, contours, and raster images. These
programs, in combination with utility programs that allow windowing and transposing of
arrays offer the ability to create effective static graphics. For viewing and understanding
multi-dimensional volumes, these tools are not as useful.

A series of SEP’s interactive viewers (Ottolini, 1982, 1983, 1988, 1990; Clapp, 2001;
Chen and Clapp, 2006) have also been developed at SEP. These viewers are more effective
in viewing multi-dimensional volumes but have been limited in three key ways. The first
shortcoming is their inability to produce high quality graphics and reproduce a given view
of a dataset. Second, they were restricted to viewing a single (later a few) datasets that
had to be identical in size and fit in memory. Finally, they only display data in raster
format. Clapp et al. (2008) made an initial attempt in addressing the first shortcoming by
recording, and allowing, replaying of mouse and keyboard actions.

In this paper we attempt to address the viewer’s dataset and display limitations. We
describe changes to the way the program interacts with datasets. These changes allow the
viewer to handle datasets with different sampling and different number of dimensions, and
even operate in an out-of-core mode. We show the new display options that allow the user
to view the data as contour and wiggle plots. Finally we describe additional changes in the
UI to the viewer and briefly discuss what might be added in the future.

DISPLAY OPTIONS

There are several possible ways to plot regular fields. SEP has generally used raster plots to
display data. These plots have the advantage of being able to display relatively dense data
within wide spatial frequency range. In some cases raster is not the ideal plotting option.

When examining waveforms it is often useful to display traces in a wiggle format. Wiggle
format allows you to see more clearly the actual waveform recorded by the sensor. Figure 1
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demonstrates hypercube’s wiggle capabilities. In this case we are overlaying a velocity model
on top of a migrated volume. In order to see the waveform each trace must take a few pixels
of screen width, we chose to use a minimum of 8 pixels. If 8n > w, where n is the number
of traces and w is the width in pixels of the display we subsample the data volume until
this criteria is met.

Figure 1: Velocity model overlain by a wiggle plot of a migrated volume. [NR]
bob1/. wiggle

For fields that vary smoothly it is often useful to contour the data rather than display
directly each cells value. Figure 2 demonstrates this concept by drawing velocity contours
on top of migrated volume. The program attempts to separate contour labels by some
distance. Note the jagged nature of the contour lines. This is due to storing the velocity
data as a series of bytes rather floats.

DATASET DEFINITION

How to define a dataset poses a challenge and is where using an object language proves
most beneficial. The hypercube viewer uses a grid concept similar to SEPlib and SEP3D.
The user, either directly, or indirectly, describes an n-dimensional grid in which the viewer
operates. Each dataset is then described in terms of this overlying grid. Each dataset must
fit within this grid description. A io func class is responsible for reading the dataset from
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Figure 2: Migrated volume overlain by contours. Note the jagged nature of the contours
due to the velocity volume being stored as bytes. [CR] bob1/. contour

disk or creating the dataset. A buffer class is used to store the data, and the dataset
class is responsible for handling requests from other portions of the program.

IO

For conventional datasets the io func class is responsible for reading from disk a subsection
of the controlling grid. It first converts from the grid coordinate system to the local dataset’s
coordinate system. This amounts to honoring the range of each axis requested. For example,
imagine the grid is defined by the table below.

Axis n o d
1 100 0 1
2 100 0 1
3 100 0 1

And the dataset is only 2-D (an example is a grid that define time, offset, and midpoint
while the dataset contains only time and midpoint) with the following sampling.

Axis n o d
1 50 0 .2
2 1 0 1
3 80 0 1
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If there is a read request for the entire volume it will be converted into a read request for
the 2-D subsection of the grid in which the dataset exists. Currently the io func module
can read SEPlib, RSF, SU, SEG-Y, and SeisPak formats from disk in this manner.

The io func does not necessarily have to read from disk, and the data isn’t necessarily
static. For example imagine doing interactive NMO on 2-D dataset. Three datasets can
exist: the original CMP, a semblance panel, and NMO corrected gather. In this case the grid
contains 4 axes: time, offset, midpoint, and velocity. None of the three datasets contain all
four axes. The latter two change depending user interaction. When the midpoint location
changes semblance is recomputed. When a new velocity is selected on the semblance panel
the NMOed data changes. To support this type of functionality the io func has a changed
boolean.

Buffer

The buffer class has two main responsibilities. It holds a subsection of the data and can
return a 2-D slice of the subsection it holds in memory. Currently buffer class stores data
as either a series of bytes of floats in a regular mesh, but it is not limited to this storage
mechanism. The data could be stored in number of compressed formats. A dataset can be
composed of several different buffers.

Dataset

A dataset is initialized by an io func and creates buffers as it needs them. Currently there
are four basic buffer types. The simplest is inherited from incore data. As the name
implies this data type is stored completely in memory and has the same number of axes
as the controlling grid. The created data class is for data that changes depending on
the user’s interaction with the program. An example of this is the semblance and NMO
corrected datasets in the velocity analysis example. If a dataset does not contain all of the
axes of the grid, it should be stored using the partial data class.

The outcore data class, as the name implies, is for datasets that are not stored com-
pletely in memory. This class reads in a 3-D subset of the domain based on the order the
axes are being displayed in a given view. For example, given a 4-D volume and a view that
is displaying the first, third, and fourth axis, a 3-D subset of the data will be read centered
at the current position along the second axis. As long as the position is only being changed
in these three dimension no further read requests are necessary. Several of these out-of-core
buffers are created for each dataset allowing multiple views display multiple subsets and
allowing switching back and forth between positions without having constant data read
delays.

USER INTERFACE CHANGES

Several changes where made to the user interface beyond the plotting options discussed
above. In this section we will highlight the most significant changes.
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Mouse/status

As discussed in Clapp et al. (2008) how the hypercube viewer interacts with the mouse can
be altered. The main tab, submenu info the mouse controls can be modified. Currently
there are three options: zoom, navigate, and pick. The options refer to the action of the
left mouse button. The effect of the middle and right button can be displayed in the status
bar.

Status bar

The status bar is located at the bottom portion of the view window. It starts off displaying
the current mouse controls. The main tab, submenu info changes the status bar to display
either the current position, in grid coordinates, or the actual sample value that has been
selected.

Overlay/display options

The view tab, submenu data has been modified so that both the primary displayed data
and the data (if any) you wish to overlay can be changed easily.

How you wish to display the primary and overlaid data can be modified in the Display
tab, general submenu. For each dataset you can choose to display using various color maps,
in wiggle format, or with contours. The Display tab contains two additional submenus,
Wiggle and Contour. The Wiggle submenu allows you to change the line color and whether,
and what color, to fill positive and negative portion of the wiggle trace. The Contour
submenu allows you to set the number of contours, the initial contour value, and the contour
interval.

FUTURE DIRECTIONS

There are three active areas of development for the viewer. The first is the ability to
partition space in N-D. This ability will enable the second area, interactive processing. Many
processes need human guidance but that guidance often is more complex then modifying a
single 1-D line. The final area is the ability to store additional data types. The ability to
store data in a compressed form, such as curvelets, would enable very large volumes to be
manipulated effectively.

CONCLUSION

We expanded SEP’s hypercube viewer by addressing two of its weaknesses. First we add
the ability to view contour and wiggle plots. Second we added the ability to view multiple
datasets which exist in the same space but might not have the sampling, the same number
of dimensions, or even be possible to completely hold in memory.
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Many-core and PSPI: Mixing fine-grain and coarse-grain
parallelism

Ching-Bih Liaw and Robert G. Clapp

ABSTRACT

Many of today’s computer architectures are supported for fine-grain, rather than coarse-
grain, parallelism. Conversely, many seismic imaging algorithms have been imple-
mented using coarse-grain parallelization techniques. Sun’s Niagara2 uses several pro-
cessing threads per computational core, therefore the amount of memory per thread
makes a strict coarse-grain approach to problems impractical. A strictly fine-grain par-
allelism approach can be problematic in algorithms that require frequent synchroniza-
tion. We use a combination of fine-gain and coarse-grain parallelism in implementing a
downward continuation based migration algorithm on the Niagara2. We show the best
performance can be achieved by mixing these two programing styles.

INTRODUCTION

Seismic imaging problems lend themselves well to coarse-grain parallelism. Kirchoff migra-
tion can be parallelized by splitting the image space (and/or data space) over many pro-
cessing units. Downward continuation based migration can be parallelized over frequency.
Flavors of downward continuation and reverse time migration can be further parallelized
over shot or plane wave. All of these parallelism methods can be described as ‘coarse-gained’.
Coarse-grained parallelism fits well the cluster computing of the last decade. Several excit-
ing new architectures including Nvidia’s Grahic’s Precision Unit (GPU), IBM’s cell, Field
Programable Gate Arrays (FPGA), and Sun’s Niagara platform are more aimed at a fine-
grained parallelism model. These platforms can have threads in the 10s-100s often making
coarse-grain parallelism impractical because of memory constraints. Early results (Pell
et al., 2008) on these architecture’s are promising but implementation can be challenging.

Downward-continuation based migration (Claerbout, 1995) is a more challenging imag-
ing algorithm to implement on a fine-grained parallel machine. The challenge in the imple-
mentation comes from the 2-D (shot-profile, plane-wave) 3-D (common-azimuth), or 4-D
(narrow-azimuth, full-azimuth) FFT. The implicit-transpose and the non-uniform data ac-
cess pattern does not easily port to FPGA and GPU solutions. The multi-thread per core
approach of the Sun Niagara2 offers an easier parallelism route.

In this paper we demonstrate that the optimal solution for PSPI migration on the
Niagara2 is by mixing the coarse-grained and fine-grained parallelism models. We begin
by presenting an overview of the Niagara2 architecture and the PSPI algorithm. We show
how some portions of the PSPI algorithm benefit from Niagara’s multiple threads per core
while others show only minimal improvement. We conclude by discussing the bottlenecks
to further efficiency improvements.
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NIAGARA2 OVERVIEW

Niagara2 is the second generation innovative CMT, Chip Multi-Threading, CPU design
from Sun Microsystems, Inc. It has eight computation cores with 4 Megabytes of shared
L2 cache and 4 dual channel FBDIMM memory controller. It also contains integrated
networking units, PCI-Express unit, embedded wire-speed cryptography coprocessor, and
built-in virtualization supports. Each core has two integer execution pipes and one floating
point execution pipe shared by eight fine-grained hardware threads. In all, Niagara2 sports
64 hardware threads and combines all major server and network functions on a single chip
and is well suited for power efficient secure data-center and thread level parallel computing
applications.

The idea behind the chip design is that most applications are memory bound, most of
the time is waiting to retrieve memory from the either cache or main memory. By having
several (in this case eight) simultaneous tasks attached to each processing unit you can hide
the memory latency. Figure 1 illustrates this concept. The ’M’ shows a thread waiting for
a memory request while the ’C’ shows computation. At each clock cycle computation is
being performed and the time associated with memory requests are hidden.

Figure 1: The idea behind the Nia-
gara architecture. The ’M’ shows a
thread waiting for a memory request
while the ’C’ shows computation. At
each clock cycle computation is be-
ing performed and the time associ-
ated with memory requests are hid-
den. [NR] bob2/. niagara2
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The Niagara2 platform performs well on an application when two requirements are
met. First, that the problem is truly memory bound. This is a function of memory access
speed, memory hierarchy, and the compute engines of a given core. Second, the parallelism
granularity of the application cannot require a siginificant level of synchronization.

PSPI MIGRATION

Downward continued migration comes in various flavors including Common Azimuth Mi-
gration (Biondi and Palacharla, 1996), shot profile migration, source-receiver migration,
plane-wave or delayed shot migration, and narrow azimuth migrations. For downward
continued based migration there are four potential computational bottlenecks that vary
depending on the flavor of the downward continuation algorithm. The Phase-Shift Plus In-
terpolation (PSPI) method is one of the easier methods to implement. The computational
cost is dominated by the cost of downward propagating a wavefield at a given frequency w,
a given depth step z. Within this loop the wavefield is Fourier transformed, a correction
term in the FX domain is applied, and the wavefield is downward continued in the FK
domain. Pseudo code for the algorithm takes the following form,
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Loop over w{ !CORASE
Loop over z{

Loop over source/receiver{
Loop over v{
FX !FINE
IFFT !FINE
FK !FINE

}
FFT !FINE

}
}

}

In many cases the dominant cost is the FFT step. The dimensionality of the FFT varies
from 1-D (tilted plane-wave migration (Shan and Biondi, 2007)) to 4-D (narrow azimuth
migration (Biondi, 2003)). The FFT cost is often dominant due its nlog(n) cost ratio, n
being the number of points in the transform, and the non-cache friendly nature of multi-
dimensional FFTs. The FK step, which involves evaluating a square root function and
performing complex exponential is a second potential bottleneck. The high operational
count per sample can eat up significant cycles. The FX step, which involves a complex ex-
ponential, or sine/cosine multiplication, has a similar, but computationally less demanding,
profile.

RESULTS

For this test we used a Common Azimuth Migration (CAM) variant of the PSPI algorithm
discussed above. The FK, FX, and FFT are all performed on a 3-D field. We began
from a code that used coarse-grain parallelization over frequency. We used a relatively
small domain size (574x256x52) which is well beyond the L2 cache of the system but still
allowed a large series of tests to be run in a reasonable amount of time. Figure 2 shows the
normalized performance of the entire algorithm as a function of coarse-grain threads. Note
how we achieve linear speed up all the way to 9 threads. Going beyond 9 coarse threads
was not possible given the machine’s memory.

Figure 2: Performance as a func-
tion of the number of coarse-grained
threads. [NR] bob2/. coarse
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We then parallelized the FX, FK, and FFT routines. The FK and FX routines are sample
by sample operations well suited to fine-grain parallelism and generally trivial to parallelize
using the pthreads library. For the FFT, we used Sun’s prime factor FFT rather than FFTW.
The single-thread performance of the Sun’s library was nearly double FFTW’s performance.
Figure 3 shows the normalized performance as the number of fine-grain threads increase.
Note how we achieve nearly no performance gain after 32 threads. Figure 4 explains the
lack of improvement. It shows the performance of the FFTW, FK, and FX steps portion
of the algorithm. After 20-25 threads the FFT shows no performance improvements. This
is not surprising due to the synchronization inherent in the FFT algorithm.

Figure 3: Normalized performance
as a function of the number of fine-
grained threads. Note that lit-
tle performance gain is achieved af-
ter 32 fine-grain threads. [NR]
bob2/. fine

Figure 4: Performance as a function
of the number of fine-grained threads
for different parts of the algorithms.
Not the nearly linear speed up of the
FK and FX steps while performance
peaks for the FFT at 20 threads.
[NR] bob2/. part

As a final test we combined the coarse-grained and fine-grained approaches. Figure 5
shows the maximum performance as a function of coarse-grain threads nc. For each coarse-
grain thread we used n fine-grain threads where n = floor(63/nc), maximizing the available
threads on the machine. Note that the graph is normalized by the single thread performance.
Peak performance was achieved using 6 or more coarse-grain threads. Figure 6 shows the
break down by function. Not surprisingly, the FK and FX step show nearly constant per-
formance independent of the number coarse-grain vs. fine-grain threads. On the other hand
the FFT benefits from less fine-grained parallelism bringing up the overall total performance
of the algorithm.

As a comparison we run the same code on 4-core 1.8GHz, dual processor intel machine.
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Figure 5: Performance as a function
of number of coarse-grain threads.
The number of fine-grain nf threads
per coarse-grain nc threads is nf =
floor(63/nc). [NR] bob2/. best

Figure 6: Performance of differ-
ent routines with the PSPI algo-
rithm as a function of the num-
ber of coarse-grain threads. Note
how the FFT benefits the most from
more coarse-grain parallelism. [NR]
bob2/. partb
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Running 8 coarse-grain threads and normalizing in terms of the the Niagara2 single thread
results we found:

Segment Relative speed
FFT 23.9
FX 10.9
FK 61.8
Total 23.9

In general the code scaled linearly with number of processors.The FX ratio was low compared
to the Niagara because of the significant memory requests (due to the velocity correction),
something that the Niagara2 archetecture is well designed for. The FK number was large
due to the vector nature of the computation and its high floating point operation count.

Improving the floating point and vector potential of the Niagara architecture could have
a large impact on these results. Both the FFT and the FK steps involve significant floating
point computations. The synchronization requirements of the FFT algorithm limits effective
scaling to approximately 16 threads even for large volumes.

CONCLUSIONS

We implemented PSPI migration on the Sun Niagara2 by combining coarse-grained and fine-
grained prallelism. We showed that the multi-thread per core model leads to significant
uplift in performance over a single thread approach. Compared to a strictly fine grain
parallelism we achieved a 60% uplift. Compared to a coarse grain approach the improvement
was 5X. Improved floating point/vector performance could lead to signficant uplift for this
aglorithm.
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Reverse time migration: Saving the boundaries

Robert G. Clapp

ABSTRACT

The need to save or regenerate the source or receiver wavefield is one of the computa-
tional challenges of Reverse Time Migration (RTM). The wavefield at each time step
can be saved at the edge of the damping/boundary condition zone. The wave equation
can be run in reverse, re-injecting these saved points to regenerate the wavefield. I
show that this a better choice than checkpoint schemes as the domain grows larger and
if the computation is performed on a streaming architecture.

INTRODUCTION

Reverse time migration (Baysal et al., 1983; Etgen, 1986) is quickly becoming the high-end
imaging method of choice in complex geology. One of the computational challenges of RTM
is that the source wavefield is propagated forward in time (0 to tmax) while the receiver
wavefield is propagated backwards in time (tmax to 0), yet the imaging step requires these
two fields to be correlated at each time t. Storing one of the wavefields in memory is im-
practical for 3-D problems. The most obvious solution is to store the wavefield at each
imaging step on disk. This requires significant disk storage on each node and can cause
the problem to quickly become Input/Output (IO) bound. Symes (2007) proposed a check-
pointing scheme where a smaller number of snapshots are stored to disk and intermediate
wavefield are regenerated. Another approach, alluded to in Dussaud et al. (2008), is to save
the wavefield at boundaries of the computational domain and to re-inject them.

In this paper, I demonstrate how to implement a boundary re-injection scheme. I discuss
the computational tradeoffs of boundary re-injection vs. a checkpoint scheme and conclude
that, as the computational domain increases in size, the boundary method proves superior.

REVERSE TIME MIGRATION REVIEW

Reverse time migration is an attractive imaging method because it does not suffer from
the limitations of the Kirchhoff and downward continuation based imaging approaches.
A single, or even multiple, travel-time can not accurately describe wave propagation in
complex media, making Kirchhoff methods ineffective under salt. The angle limitation,
and difficulty/inability to handle multiple bounces limits the effectiveness of downward
continuation based methods with complex structures.

Algorithm

The basic idea behind RTM is fairly simple: we are reversing the propagation experiment.
Given data d recorded from 1...nt with sampling dt, we begin by re-injecting into our earth
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model that data recorded at nt. We then propagate this data back into the earth a length in
time dt. We can imagine storing the current status of the receiver wavefield Wr into the last
elements of 4-D volume in terms of x, y, z, t. We then re-inject at the surface data recorded
at nt− 1. We follow this procedure until we have re-injected to the first time sample.

We also need to simulate the source portion of the experiment. We input at the source
location of the earth model the first sample of the source pulse. We then propagate the
wavefield dt, insert the next sample of the source pulse and continue until we have reached
dt ∗ nt time. At each dt we store in a second wavefield array Ws the wavefield at each time
sample. The zero offset migrated image I is formed at each iz, ix, iy location by

I(ix, iy, iz) =
nt∑

it=0

Ws(ix, iy, iz, it)Wr(ix, iy, iz, it). (1)

.

Cost

The major disadvantage of RTM is that the cost is generally thought to be an order of
magnitude more expensive than wave equation or Kirchoff alternative. Calculating the cost
of the various imaging methods is a tricky proposition. In general people use two different
metrics for comparing cost. The first is to simply count operations; the second counts the
number of memory access requests. Which method is appropriate depends on whether you
are saturating the memory bus or computation units. Kirchhoff migration is more likely
to be limited by memory access, while downward continuation is usually limited by the
computational units.

In today’s world of multi-core, many-core, streaming architectures a third metric needs
to be applied: how parallelizable is the method? This is in many ways a more difficult
assessment because it strongly depends on the type of hardware and the type of paral-
lelization. Many-core and streaming architectures are most effective with problems that
are compute-bound and can have a high level of fine-grained parallelism. ? showed how
downward-continuation based methods can be limited by the data-dependency of the FFT.

The main cost of RTM is advancing the wavefield in time. This is usually done by solving
the wave-equation using finite-differences. The basic idea is to start from some version of
the wave equation, for example the acoustic version where u is the wavefield,

∂2u

∂t2
= v2(

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
). (2)

Each second derivative is approximated by doing a Taylor (or similar method) expansion.
The difference approximation affects the accuracy of the propagation along with the required
sampling of the wavefield in time and space to maintain stability and avoid dispersion. In
general, a much higher order accuracy approximation is used in the space domain than the
time domain, often from 6th to 14th order. The filter implied by this approximation can
be quite large, from 19 to 43 points in size, and is the dominant computational cost. On
the other hand, the structure of the computation is quite simple with virtually no data-
dependency, and amenable to a very high level of fine-gain parallelism. As a result it is
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ideal for many-core and streaming architectures. The speed advantage of FFT and sparse
matrix (Kirchoff) approaches diminishes significantly with these platforms.

As the speed of the wavefield propagation increases, a new bottleneck appears in a
standard RTM implementation. First, the size of Wr and Ws are well beyond a conventional
system’s memory. In addition, note how Wr and Ws are filled in reverse order. The receiver
wavefield stores nt, nt−1, ...1 while the source is filled 1, 2, ...nt−1, nt. The obvious solution
is to store one of the two fields (from now on I will choose the receiver wavefield) to disk.
This requires a large but feasible amount of storage. The problem is that writing to disk is
orders of magnitude slower than accessing memory. With an optimized implementation of
the propagator, reading and writing the wavefield becomes the bottleneck.

The most common solution to this problem is to save a subset of the receiver wavefields.
? describes an ‘optimal’ checkpointing scheme which minimizes the total number of imaging
wavefields that need to be recomputed by storing a series of checkpoints either in main
memory or on disk. A similar approach is linear checkpointing which stores every jt imaging
steps where jt is a function of the amount of memory on the system.

SAVING THE BOUNDARY

Another approach is regenerating the wavefield, taking advantage of the reversibility of the
wave equation. For example, imagine using a second order in time finite-difference scheme.
Given the wavefield at the current time wt and previous time wt−∆t we can find the wavefield
at the next time wt+∆t through

wt+∆t = wt−∆t + wt + Lwt, (3)

where L calculates the second derivative. We can reverse wt−∆t and wt in equation 4 to
find thew wavefield at wt−2∆t,

wt−2∆t = wt + wt−∆t + Lwt−∆t. (4)

Figure 1 demonstrates this property. Panel ‘A’ shows a wavefield at time t, panel ‘B’
shows the wavefield after 2t at which stage the calculation is reversed. Panel ‘C’ shows the
regenerated data, again at time t. Panel ‘D’ shows the difference between the regenerated
wavefield and the original wavefield (with the clip at 1/10th panels ‘A’,‘B’, and ‘C’. Note
that even energy that has hit the boundary has been handled correctly.

The problem comes when we attempt to kill energy entering the boundary. No longer is
our time reversal scheme valid, as equation 4 does not fully describe what is being applied
to the wavefield. Figure 2 demonstrates this concept. In this figure a damping boundary
condition has been applied. Note how the wavefield and the reconstructed wavefield vary
significantly.

Figure 3 demonstrates a way to solve this problem. Imagine our first time reversal step.
The grey area represents cells where a boundary condition is being applied. Any locations
where the filter implied by L touches a grey region will lead to incorrect reverse propagation.
The area in black in Figure 3 show regions which uses cells where the boundary condition
has been applied. If we save the wavefield from the forward propagation in the black region,
we can substitute them in when doing the reverse propagation. Figure 4 shows the result
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Figure 1: Panel ‘A’ shows a wavefield at time t, panel ‘B’ shows the wavefield after 2t at
which stage the calculation is reversed. Panel ‘C’ shows the regenerated data, again at
time t. Panel ‘D’ shows the difference between the regenerated wavefield and the original
wavefield. [ER] bob4/. nobound

of this save and replace scheme. Note how we achieve a perfect result everywhere except
the damping zone.

Note how the size of the black region is a single sample, while as previously noted, we
tend to use a high order approximation in the space domain (which would make the black
area larger). For this example I reduced the derivative approximation as I approached
starting from 10th order solution and going to a second order at the boundary between the
damped and undamped region. As a result only a single point along the boundary sees the
damped region.

BOUNDARY VS. CHECK-POINTING

There are several metrics in comparing the ‘cost’ of using checkpointing vs. boundary saving
approach. These are the amount of disk IO, IO throughput required, the amount of main
memory needed for an optimal solution, and the ease of implementation. I will compare
the linear checkpointing vs. boundary saving approach, but the optimal approach would
behave similarly.

To setup the comparison let’s assume that n is the length of the domain in x, y, and z.
We have nt propagation steps, ji is the the number of propagation steps between imaging
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Figure 2: Panel ‘A’ shows a wavefield at time t, panel ‘B’ shows the wavefield after 2t at
which stage the calculation is reversed. Panel ‘C’ shows the regenerated data, again at
time t. Panel; ‘D’ shows the difference between the regenerated wavefield and the original
wavefield. In this case a damping boundary condition has been applied around the edges
of the domain. [ER] bob4/. bound

steps, and for the checkpointing scheme we will save every jc imaging time. Each approach
does the same amount of propagation step nt ∗ 3. The amount of disk required for the
checkpointing mc scheme is

mc =
2 ∗ nt ∗ n3

ji ∗ jc
. (5)

For saving the boundaries we need to save slices around the edge of the cube rather than
the entire cube, but we need to save at every time step. The memory requirement mb is
then

mb = 6nt ∗ n2. (6)

Checkpointing requires less disk when we save less than every n
3∗jt∗jc steps. Put another

way, the larger the migration aperture the more advantageous saving the boundaries.

Checkpointing requires larger volumes, but less frequent reads; buffering read requests
are a necessity with a checkpoint approach, but add to memory requirements. For true
streaming hardware this can still be problematic because the entire buffer must be re-
passed to the streaming engine. The boundary approach requires a much smaller volume
to be passed continuously.

The memory requirement of the two systems is significantly different. The checkpointing
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Figure 3: Computational grid for
propagation. Grey area is cells ef-
fected by applying boundary con-
ditions. Black area is cells that
are saved and re-injected. [ER]
bob4/. box

scheme must redo the propagation in the same direction or suffer problems at the bound-
aries. This means that we must save jc copies of wavefield volume in memory, exchanging
disk space for memory space. Again, this can be problematic if the imaging step is done
with a hardware accelerator. It requires the volume to be read from disk and passed to the
accelerator and each imaging step to be passed back to main memory, then sent back to that
accelerator for producing the image. In the boundary saving approach the computations
are done in the same directions, greatly reducing communication requirements.

Neither scheme is difficult to implement on a conventional CPU. Checkpointing benefits
more from smart overlapping IO and compute but this doesn’t add significant complexity.
On accelerators the checkpointing scheme, with its significant additional data movement, is
significantly more difficult to implement and optimize.

CONCLUSIONS

RTM lends itself well to fine grain parallelism and hardware acceleration technologies. Disk
IO becomes the bottleneck with faster wavefield propagation. Checkpointing and saving
boundary regions can reduce the IO cost while increasing the compute cost. For large
problem saving the boundary is the more efficient mechanism.
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Figure 4: Panel ‘A’ shows a wavefield at time t, panel ‘B’ shows the wavefield after 2t at
which stage the calculation is reversed. Panel ‘C’ shows the regenerated data, again at
time t. Panel ‘D’ shows the difference between the regenerated wavefield and the original
wavefield. In this case a damping boundary condition has been applied around the edges of
the domain and the wavefield within this region has been re-injected. [ER] bob4/. inject
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Angle-domain common-image gathers in generalized
coordinates

Jeff Shragge

ABSTRACT

The theory of angle-domain common-image gathers (ADCIGs) is extended to migra-
tions performed in generalized 2D coordinate systems. I develop an expression link-
ing the definition of reflection opening angle to various generalized geometric factors.
I demonstrate that generalized coordinate ADCIGs can be calculated directly using
Fourier-based offset-to-angle approaches for coordinate systems satisfying the Cauchy-
Riemann differentiability criteria. The canonical examples of tilted Cartesian, polar,
and elliptic coordinates are used to illustrate the ADCIG theory. I compare analyti-
cally and numerically generated image volumes for a set of elliptically shaped reflec-
tors. Experiments with a synthetic data set illustrate that elliptic-coordinate ADCIGs
better-resolve the reflection opening angles of steeply dipping structure, relative to
conventional Cartesian image volumes, due to improved large-angle propagation and
enhanced sensitivity to steep structural dips afforded by coordinate system transfor-
mations.

INTRODUCTION

Angle-domain common-image gathers (ADCIGs) are used increasingly in seismic imaging
to examine migration velocity model accuracy (?). The key idea is that migrating with the
correct velocity model leads to flat angle gathers that shift neither vertically nor horizontally
as a function of reflection opening angle. Migrating with an incorrect velocity, though, leads
to inconsistent angle-domain reflectivity and generates residual curvature in the ADCIG
volume. ADCIGs are thus an effective velocity analysis tool and have been incorporated in
wave-equation-based inversion schemes to update velocity profiles (??).

Wave-equation imaging techniques generate ADCIGs in straightforward manners for
both shot-profile (???) and shot-geophone (??) migration approaches. In shot-profile
migration, one first generates a subsurface-offset axis at each depth step by correlating
the source and receiver wavefields at a number of subsurface shifts. The second step in-
volves computing an offset-to-angle domain transformation using, for example, post-imaging
Fourier-based operators (?).

Conventional ADCIG theory usually assumes horizontal wavefield shifts, largely be-
cause wavefield extrapolation and imaging are most commonly performed in Cartesian co-
ordinates. However, a number of studies have noted that these ADCIG results degrade
for steeply dipping structures, such as salt flanks (??). Although this is partially due to
problems associated with inaccurate large-angle extrapolation, ADCIGs calculated using
horizontal wavefield shifts become decreasingly sensitive for increasingly steep structural
dips. ? demonstrate that this problem can be addressed by generating ADCIGs with ver-
tical subsurface-offset-domain common-image gathers (VODCIGs); however, this approach
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is less desirable computationally because it requires storing the larger wavefield volumes
required to calculate the VODCIGs in memory.

The introduction of shot-profile migration in more general coordinate systems [e.g. tilted
Cartesian (?) and elliptic meshes (?)] presents an opportunity to circumvent problems as-
sociated with generating ADCIGs for steeply dipping structure. In particular, migration
domains can be oriented such that geologic structures with steep dips in Cartesian meshes
have relatively gentle dip in generalized coordinate systems, thus improving the robustness
of the ADCIG calculation. Developing an ADCIG theory capable of handling more arbi-
trary coordinate meshes, though, requires proper treatment of the effects of non-Cartesian
geometries. For example, wavefield extrapolation in non-Cartesian coordinate systems in-
duces local wavenumber stretches, rotations and/or shearing (?). Similarly, non-uniform
wavefield sampling can lead to anisotropic angle-domain stretching. These effects can be
corrected using Jacobian change-of-variable transformations.

The goal of this paper is to extend ADCIG theory to non-Cartesian geometries. I
demonstrate that ADCIG theory, as developed in a differential sense (?), remains valid
for arbitrary geometries provided that the corresponding derivative operators are properly
specified. Non-Cartesian coordinates do, however, introduce space-domain geometric fac-
tors that can render Fourier-based offset-to-angle methods unsuitable. However, I show
that ADCIGs can be calculated directly in the Fourier domain for all coordinate systems
satisfying the Cauchy-Riemann differentiability criteria (?). Moreover, ADCIGs can be
calculated in all situations using the slant-stack approaches discussed in ?.

I begin by discussing how to generate subsurface offsets and ADCIGs in Cartesian coor-
dinates. I then provide an extension to generalized coordinate systems based on Jacobian
change-of-variable arguments. I examine two canonical coordinate systems, tilted Cartesian
and elliptic meshes, where the reflection angle can be explicitly calculated using Fourier-
based methods, and a third, polar coordinates, where it cannot. I test the generalized
ADCIG theory analytically and numerically using a set of elliptic reflectors, and demon-
strate how computing angle gathers in elliptic coordinates can lead to improvements relative
to Cartesian coordinates, especially for steeply dipping structure.

ADCIG THEORY

The ADCIG theory presented in this section draws from that presented in ?. In the ensuing
development, x = [x1, x3] denotes the Cartesian variables and ξ = [ξ1, ξ3] represents a
generalized Riemannian coordinate system. I also use a convention where the extrapolation
axis is oriented in the x3 (ξ3) direction for Cartesian (Riemannian) coordinates. Coordinates
x2 = ξ2 = 0 are assumed throughout.

Generating subsurface offsets axes

Shot-profile migration in Cartesian coordinates consists of completing a recursive two-step
procedure. The first step involves propagating the source and receiver wavefields, S and R,
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from depth level x3 −∆x3 to x3 using an extrapolation operator Ex3 [·]

Ex3 [S(x3 −∆x3, x1|ω)] = S(x3, x1|ω),
E∗

x3
[R(x3 −∆x3, x1|ω)] = R(x3, x1|ω), (1)

where ∗ denotes the conjugate operator, ω is angular frequency, and ∆x3 is the depth step.
A subsurface image, I, is subsequently computed at each extrapolation step by evaluating
an imaging condition

I(x3, x1, hx1) =
∑
ω

S∗(x3, x1 − hx1 |ω)R(x3, x1 + hx1 |ω), (2)

where the subsurface-offset axis, hx1 , is generated by correlating the source and receiver
wavefields at various relative shifts in the x1 direction. Finally, the ADCIG volume is
computed using an offset-to-angle transformation operator, Thx1→γ

I(x3, x1, γ) = Thx1→γI(x3, x1, hx1), (3)

where γ is the reflection opening angle shown in Figure 1.
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Figure 1: Cartoon illustrating the geometry of the ADCIG calculation. Parameter γ is
the reflection opening angle, α is geologic dip. a) Cartesian geometry using coordinates
x1, x3 andhx1 . b) Generalized geometry using coordinates ξ1, ξ3 and hξ1 . Adapted from ?.
jeff1/. rays

Imaging in generalized coordinate systems follows the same two-step procedure. How-
ever, because of the different migration geometry in the ξ-coordinate system, new extrap-
olation operators, Eξ3 [·], must be used to propagate wavefields. I specify these operators
using Riemannian wavefield extrapolation (RWE). I do not discuss RWE herein, and refer
readers interested in additional information to ? and ?.

The first generalized coordinate imaging step is performing wavefield extrapolation

Eξ3 [S(ξ3 −∆ξ3, ξ1|ω)] = S(ξ3, ξ1|ω),
E∗

ξ3 [R(ξ3 −∆ξ3, ξ1|ω)] = R(ξ3, ξ1|ω), (4)



148 Shragge SEP–136

where ∆ξ3 is the extrapolation step increment. Generalized coordinate images are then
constructed by evaluating an imaging condition

I(ξ3, ξ1, hξ1) =
∑
ω

S∗(ξ3, ξ1 + hξ1 |ω)R(ξ3, ξ1 − hξ1 |ω), (5)

where hξ1 is the ξ-coordinate equivalent of Cartesian subsurface offset axis hξ1 . The gener-
alized coordinate ADCIG volume is generated by applying an offset-to-angle transformation
Thξ→γ

I(ξ3, ξ1, γ) = Thξ1
→γI(ξ3, ξ1, hξ1). (6)

Conventional ADCIG volumes can be recovered by sinc interpolating each I(ξ3, ξ1, γ) image
computed via equation 6 to the final Cartesian coordinate volume.

Figure 2 illustrates this process using the elliptic coordinate system. Panel 2a shows the
BP synthetic velocity model (?) with an elliptic mesh overlain. Note that the salt flanks
to the right-side of the model are nearly vertical in Cartesian coordinates. Panel 2b shows
the velocity model in panel 2a interpolated to the elliptic coordinate system. Importantly,
the aforementioned salt flanks in the elliptic coordinate system are nearly horizontal, which
should lead to ADCIG calculations more robust than in Cartesian coordinates. However,
proving this assertion requires understanding the differences, if any, between the Carte-
sian and generalized coordinate offset-to-angle operators, Thx1→γ and Thξ1

→γ , in equa-
tions 3 and 6, respectively.

Cartesian coordinate ADCIGs

For constant velocity media in conventional Cartesian geometry, a straightforward link exists
between differential changes in the travel time, t, of rays connecting the source-reflector and
reflector-receiver paths to changes in the subsurface offset, hx1 , and depth, x3, coordinates.
Figure 1a shows the geometry of these variables.

Mathematically, these relationships are[
∂t

∂hx1
∂t

∂x3

]
= 2 s cos α

[
sin γ
cos γ

]
, (7)

where s is slowness, α is reflector dip, and γ is the reflection opening angle. The right-
hand-side of equations 7 are derived by ?. Equations 7 can be rewritten as

− ∂x3

∂hx1

∣∣∣∣
x1,t

=
∂t

∂hx1

/
∂t

∂x3
= tan γ, (8)

where the negative sign derives from use of the implicit functions theory (?). ? note that
Cartesian ADCIGs become pathogenically degenerate in situations where ∂t

∂x3
→ 0 (i.e.

for steeply dipping structures where α → 90◦ in Figure 1). However, vertically oriented
structures are, generally, not well imaged in Cartesian coordinates because of limited steep-
angle propagation in downward extrapolation.

Finally, because equation 7 has no explicit geometric-dependence, Fourier-based meth-
ods can calculate the reflection opening angle directly in the wavenumber domain

tanγ = −
khx1

kx3

, (9)
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Figure 2: Prestack migration test in elliptic coordinates. a) Benchmark synthetic velocity
model with an overlying elliptic coordinate system. b) Effective slowness model in the
transformed elliptic coordinate system in a). c) Benchmark synthetic velocity model with
a different overlying elliptic coordinate system. d) Effective elliptic coordinate slowness
model for the coordinate system in c). jeff1/. RC2
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where khx1
and kx3 are the wavenumbers in the hx1 and x3 directions, respectively.

Generalized coordinate ADCIGs

Figure 1b illustrates a scenario similar to that in Figure 1a, but for a more general coor-
dinate system. The reflection opening angle, γ, and the reflector dip, α, obviously remain
unchanged in the subsurface; however, the orientations of the hξ1 and ξ3 axes used to es-
timate γ now differ. The key question is, which quantities in the ADCIG calculation are
affected by this change of variables?

Answering this question requires properly formulating the derivative operators, ∂
∂x3

and
∂

∂hx1
, in equations 7 in the generalized coordinate system variables ξ = [ξ1, ξ3] and hξ =

[hξ1 , hξ3 ]. Appendix A shows how these derivatives can be specified using Jacobian change-
of-variable arguments. Assuming that the subsurface-offset axes are formed by uniform
wavefield shifts, Appendix A derives the following expression for generalized coordinate
ADCIGs:

− ∂ξ3

∂hξ1

∣∣∣∣
ξ1,t

=
∂t

∂hξ1

/
∂t

∂ξ3
= tan γ

(
∂x1
∂ξ1

cos α− ∂x3
∂ξ1

sinα
)

(
∂x3
∂ξ3

cos α + ∂x1
∂ξ3

sinα
) . (10)

Note that if the ξ-coordinate system satisfies the Cauchy-Riemann differentiability criteria
(?)

∂x1

∂ξ1
=

∂x3

∂ξ3
and

∂x3

∂ξ1
= −∂x1

∂ξ3
, (11)

equation 10 then reduces to

− ∂ξ3

∂hξ1

∣∣∣∣
ξ1,t

= tan γ. (12)

This is the generalized coordinate equivalent of the Cartesian expression in equation 7. A
physical meaning of the criteria in equations 11 is that the coordinate system must behave
isotropically (i.e. dilatationally and rotationally) in the neighborhood of every grid point.
Three canonical examples, two of which satisfy equations 11, are discussed in the following
section.

Similar to Cartesian coordinates, elliptic coordinate ADCIGs become insensitive where
structural dips cause ∂t

∂ξ3
→ 0. However, this insensitivity can be minimized when using

generalized coordinate systems, because structural dips appear at different angles in differ-
ent translated elliptic meshes. Figures 2c-d illustrate this by showing a different coordinate
shift for a different shot-location than that presented in panels 2a-b. Note the changes in
structural dip in the right-hand-side of the elliptic coordinate panels. Thus, while ADCIGs
calculated on one elliptic grid may be insensitive to certain structure locally, mesh transla-
tion ensures that ADCIGs are sensitive globally. Imaging steep dips in elliptic coordinates,
though, is limited by the accuracy of wide-angle one-way wavefield extrapolation.

Finally, one may calculate reflection opening angles in the wavenumber domain for
coordinate systems satisfying equations 11

tan γ = −
khξ1

kξ3

, (13)
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where khξ1
and kξ3 are the wavenumbers in the hξ1 and ξ3 directions, respectively. While

some non-orthogonal coordinate systems might satisfy equations 11, most practical appli-
cations will have orthogonal khξ1

and kξ3 .

CANONICAL EXAMPLES

This section presents three canonical examples that illustrate the generalized ADCIG the-
ory: tilted Cartesian, polar, and elliptic coordinate systems. Figure 3 presents schematic
examples of these three coordinate systems.

a) b) c)

Figure 3: Canonical coordinate system examples. a) Tilted Cartesian coordinates. b) Polar
coordinates. c) Elliptic coordinates. jeff1/. COORDS

Tilted Cartesian coordinates

Tilted Cartesian coordinates are a useful generalized migration coordinate system (see Fig-
ure 3a). ? use this mesh in a plane-wave migration scheme where the coordinate system is
oriented toward the plane-wave take-off angle to improve large-angle propagation accuracy.
A tilted Cartesian mesh is defined by[

x1

x3

]
=
[

cos θ −sin θ
sin θ cos θ

] [
ξ1

ξ3

]
, (14)

where θ is the tilt angle. The partial derivative transform matrix is[
∂x1
∂ξ1

∂x1
∂ξ3

∂x3
∂ξ1

∂x3
∂ξ3

]
=
[

cos θ −sin θ
sin θ cos θ

]
, (15)

which leads to the following ADCIG equation:

− ∂ξ3

∂hξ1

∣∣∣∣
ξ1,t

= tan γ
(cos θ cos α + sin θ sinα)
(cos θ cos α + sin θ sinα)

= tan γ. (16)

Thus, calculating ADCIGs in tilted Cartesian coordinates directly recovers the correct re-
flection opening angle. Note that setting θ = 0◦ recovers the Cartesian expression in
equation 8.
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Polar coordinates

The polar coordinate system (see Figure 3b), where the extrapolation direction is oriented
along the radial direction, is appropriate for generating 2D Green’s function estimates. The
polar coordinate system is defined by[

x1

x3

]
=
[

a ξ3 cos ξ1

a ξ3 sin ξ1

]
. (17)

The partial derivative transformation matrix is[
∂x1
∂ξ1

∂x1
∂ξ3

∂x3
∂ξ1

∂x3
∂ξ3

]
=
[
−a ξ3 sin ξ1 a cos ξ1

a ξ3 cos ξ1 a sin ξ1

]
, (18)

which leads to the following ADCIG equation:

− ∂ξ3

∂hξ1

∣∣∣∣
ξ1,t

= ξ3 tan γ
(−sin ξ1 cos α− cos ξ1 sinα)
(sin ξ1cos α + cos ξ1 sin, α)

= −ξ3 tan γ. (19)

Thus, one cannot calculate ADCIGs directly with Fourier-based methods in polar coor-
dinates because of the spatial geometric dependence on ξ3. However, polar-coordinate
ADCIGs can be calculated using slant-stack operators (?), because the geometric factor ξ3

is no more than a local weight applied to the velocity model used to calculate the angle
gathers.

Elliptic coordinates

Elliptic coordinates (see Figure 3c) are a useful coordinate system for performing 2D shot-
profile migration (?). An elliptic mesh is defined by[

x1

x3

]
=
[

a cosh ξ3 cos ξ1

a sinh ξ3 sin ξ1

]
. (20)

The partial derivative transformation matrix is[
∂x1
∂ξ1

∂x1
∂ξ3

∂x3
∂ξ1

∂x3
∂ξ3

]
= a

[
cosh ξ3 sin ξ1 sinh ξ3 cos ξ1

−sinh ξ3 cos ξ1 cosh ξ3 sin ξ1

]
, (21)

which leads to the following ADCIG equation:

− ∂ξ3

∂hξ1

∣∣∣∣
ξ1,t

= tan γ
(cosh ξ3 sin ξ1 cos α− sinh ξ3 cos ξ1 sinα)
(cosh ξ3 sin ξ1 cos α− sinh ξ3 cos ξ1 sinα)

= tan γ. (22)

Thus, calculating ADCIGs in elliptic coordinates with Fourier-based methods will di-
rectly recover the true reflection opening angle.
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NUMERICAL EXAMPLES

This section presents numerical tests of the generalized theory by comparing the ADCIG
volumes for elliptic and Cartesian coordinate systems. I generated the results using a
shot-profile migration algorithm altered to account for elliptic geometry by replacing the
Cartesian extrapolator, Ex3 [·], with an elliptic coordinate operator, Eξ3 [·]. In both coordi-
nate systems, the implemented extrapolation operators were accurate to roughly 80◦ (Lee
and Suh, 1985) with respect to the extrapolation axis. The reader is referred to ? for
further implementation details on shot-profile migration in elliptic coordinates.

I calculated ADCIG image volumes for each shot-profile by following a three-step pro-
cedure: 1) generate image volume I(ξ1, ξ3, hξ1) by computing the image for 64 subsurface
shifts in hξ1 at each point in every extrapolation step; 2) calculate ADCIG volume I(ξ1, ξ3, γ)
using the procedure described in ?; and 3) output the image I(x1, x3, γ) by sinc-based in-
terpolation of single-shot ADCIGs to the global volume. Steps 1-3 were repeated for all
shot-profile sections contributing to the final image.

Test 1: Elliptic Isochrons

The first test demonstrates the impulse response of the ADCIG imaging operator. I do
this by imaging the elliptic isochronal responses of two offset point sources in a constant
velocity medium (see Figure 4). The source wavefield impulse is at time t = 0 s and at
x = −1.12 km, while the receiver wavefield impulses are at t = 2.0, 2.5, 3.0, and 3.5 s
and x = 1.12 km for a total source-receiver offset of 2h = 2.24 km. Correlating these two
wavefield volumes leads to four elliptic isochrons specified by

x1(t, h) =
vt

4
(cos θ1 + cos θ2) (23)

x3(t, h) =
vt

4

(
1− h2

v2t2

)
(sin θ1 + sin θ2) , (24)

where, given the source take-off angle θ1, the receiver take-off angle θ2 is obtained by

θ2 = cos−1

 vt

2h

 1
2

1− 4h2

v2t2

− 1

1− 2hcos θ1
vt

− 1


 . (25)

The reflection opening angle, given by γ = 90 − (θ1+θ2)
2 , is shown color-coded on the scat-

terplot in Figure 4.

Figure 5 shows the ADCIG volumes calculated in both (a single) elliptic and Cartesian
coordinate system. To generate this image, I first calculated an elliptic coordinate (EC)
volume I(ξ1, ξ3, hξ1) by correlating the source and receiver wavefields at 64 subsurface shifts
in hξ1 at each point in every extrapolation step. I then input the ODCIG volume to a
Fourier-based offset-to-angle transformation operator to generate the EC ADCIG volume,
I(ξ1, ξ3, γ), which I interpolated to Cartesian coordinates to generate the desired image
volume, I(x1, x3, γ). For the ADCIG transformation, I choose to limit the maximum open-
ing angle to γ = ±60◦. Thus, the 64 image shifts lead to ADCIGs with an angular range
between −60◦ < γ < 60◦ with a sampling increment of ∆γ = 1.875◦.
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θ1 θ2

γ

2h

Figure 4: Theoretical results for an elliptic isochron for four travel times in a constant
velocity medium. The elliptic surfaces are color-coded according to reflection opening angle.
jeff1/. Theory

Panel 5a presents the elliptic coordinate image extracted at γ = −24◦ from the ADCIG
volume I(x1, x3, γ). The ADCIG volumes consist of elliptically shaped reflectors (panels 5a)
that are ideally localized in the angle domain (panels 5b-c and f-h). The analytical ADCIG
locations are represented by black dots. The analytically and numerically generated results
are well matched. Figure 5a also shows three vertical lines indicating the locations from left
to right of the three ADCIGs in panels 5b-d. Again, the analytic and numerical ADCIGs
are well matched, though less so at shallower depths due to the increased smearing about
the image point in the I(ξ1, ξ3, hξ1) domain (?).

The Cartesian coordinate (CC) ADCIGs are presented in panels 5e-h. Panel 5e shows
the Cartesian image again extracted at γ = −24◦ in the angle domain. Panels 5f-h present
three ADCIGs at the same locations as in panels 5b-d. The Cartesian image volumes
are well-matched to the elliptic coordinate examples, and good agreement between the
theoretical results and the wavefield volume is observed in both images. Energy is focused
in the neighborhood of the correct locations. The angle gathers are not always centered
relative to the true location, though, which is more noticeable at shallower depths where
the Cartesian and elliptic ADCIG volumes both overestimate the reflection opening angle.

Figure 6 presents the results of a test similar to that shown in Figure 5, but with the
velocity model rescaled by 0.98. Again, the black dots show the location of the true image
point (assuming a true velocity model). Note that the image points in each ADCIG remain
well-focused, but shift nearer to the surface and to wider angles. Thus, imaging with
an overly slow velocity model will generate, as expected, reflectors that exhibit upward
curvature at wider angles.
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Figure 5: Elliptic reflector comparison tests between analytically (black bullets) and nu-
merically generated ADCIG volumes. Panels a-d are computed in elliptic coordinates (EC),
while panels e-h are in Cartesian coordinates (CC). a) EC image extracted at the -24◦ re-
flection angle. b) EC angle gather at -1.5 km. c) EC gather at 0.75 km. d) EC gather at
0.0 km. e) CC image extracted at the -24◦ reflection angle. f) CC angle gather at -1.5 km.
g) CC gather at 0.75 km. h) CC gather at 0.0 km. jeff1/. EllipticTest
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Figure 6: Elliptic reflector comparison tests between analytically (black bullets) and nu-
merically generated ADCIG volumes using a velocity scaled by factor 0.98. Panels a-d are
computed in elliptic coordinates (EC), while panels e-h are in Cartesian coordinates (CC).
a) EC image extracted at the -24◦ reflection angle. b) EC angle gather at -1.5 km. c) EC
gather at 0.75 km. d) EC gather at 0.0 km. e) CC image extracted at the -24◦ reflection
angle. f) CC angle gather at -1.5 km. g) CC gather at 0.75 km. h) CC gather at 0.0 km.
jeff1/. WrongEllipticTest
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Test 2: BP velocity model

The second test compares elliptic and Cartesian coordinate ADCIG volumes computed for
the BP synthetic velocity model. Images computed in elliptic coordinates used only one
coordinate system per shot. For the one-sided data set, I used a (surface) migration aperture
of 12km and located the source and farthest offset receiver (at 8km) points 2km in from the
edges of the computational mesh. (Note that the migration aperture effectively expands
during wavefield extrapolation because the coordinate mesh expands outward.) I found this
initial migration geometry to produce the best results for the BP synthetic model through
iterative testing. Generally, the optimal elliptic coordinate migration geometry is controlled
by the velocity model.

Figure 7 shows slices all clipped at the 99th percentile from the corresponding elliptic
and Cartesian ADCIG image volumes. Panel 7a shows an elliptic coordinate image with

e)

De
pth

 (k
m)

Distance (km)
20 25 30 35

3

4

5

De
pth

 (k
m)

Angle (°)

f)

−40−20 0 2040

3

4

5

De
pth

 (k
m)

Angle (°)

g)

−40−20 0 2040

3

4

5

De
pth

 (k
m)

Angle (°)

h)

−40−20 0 2040

3

4

5

a)

De
pth

 (k
m)

Distance (km)
20 25 30 35

3

4

5

De
pth

 (k
m)

Angle (°)

b)

−40−20 0 2040

3

4

5

De
pth

 (k
m)

Angle (°)

c)

−40−20 0 2040

3

4

5

De
pth

 (k
m)

Angle (°)

d)

−40−20 0 2040

3

4

5

Figure 7: Vertical elliptic and Cartesian ADCIGs slices using the correct migration velocity
model. a) Elliptic coordinate image with three vertical lines showing the locations of ADCIG
gathers from left to right in panels b-d. e) Cartesian coordinate image with three vertical
lines showing the locations of ADCIG gathers from left to right in panels f-h. jeff1/. GOOD

three vertical lines indicating the angle-gather locations from left to right in Figures 7b-d.
The three panels show predominantly one-sided reflectivity, which is to be expected because
the input migration data were not in a split-spread geometry. (This statement holds for
all subsequent images calculated using this data set.) The only significant exceptions occur
in panel 7b within salt where energy is exhibited for both positive and negative reflection
angles. I attribute this to the reversal of source and receiver wavefield orientations within
the salt.

The image in panel 7d has a wide reflection zone between 3.75-4.25 km in depth, which
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occurs because the shown angle gather is a vertical slice through the nearly vertical salt
flank. This creates the appears of low-frequency noise, which is the appropriate response
for a near-vertical reflector. Panel 7e shows the Cartesian image for the same location
as panel 7a, while panels 7f-h are extracted from the same locations as panels 7b-d. The
Cartesian angle gathers look similar to those in elliptic coordinates, except for the salt flanks
to the right-hand-side of panel 7h.

A final observation from Figure 7 is that ADCIGs calculated via subsurface correlations
will generate artifacts at locations near salt-sediment interfaces - whether in an elliptic or
a Cartesian coordinate system. This geologic setting leads to situations where a wavefield
sample inside a salt body is correlated with another sample located in the sediment with a
significantly different velocity. This velocity difference violates one of the theoretical ADCIG
assumptions, namely that the velocity remains constant across the correlation window.
Hence, one must be careful not to interpret ADCIG artifacts as signal useful for migration
velocity analysis.

Figure 8 shows horizontal slices that better resolve the vertical salt flank. Panel 8a
presents the elliptic coordinate image, with three horizontal lines showing the ADCIG slice
locations from top to bottom. The right-hand sides of panels 8b-d display the well-focused
vertical salt-flank reflector. This demonstrates the robustness of the ADCIG calculation
in elliptic coordinates. Panel 8e shows the Cartesian coordinate image with three hori-
zontal lines showing the locations of the ADCIG slices. The right-hand salt-flank reflector
in panel 8f is similarly well-resolved, largely because the structural dip is relatively low.
However, the salt-flank images in panels 8g-h are somewhat blurred out. I attribute this to
the combined effects of inaccurate large-angle extrapolation and insensitivity of the ADCIG
calculation to steep structural dip.

An additional test examines how the ADCIG volumes change when introducing an in-
correct migration velocity profile. Figure 9 presents ADCIG volumes similar to those shown
in Figure 7 after using a migration velocity profile rescaled by 98%. Both images are poorly
focused and have residual curvature indicating an incorrect migration velocity. Because the
reflectors are near vertical, though, the sensitivity of horizontal gathers is weak. This low
sensitivity is greatly improved when examining the horizontal slices in Figure 10 taken at
the same locations as in Figure 8. The elliptic angle gathers in panels 10b-d, and especially
to the right-hand side in panel 10d, show much greater residual curvature. This indicates
that the elliptic coordinate horizontal ADCIGs have greater sensitivity to velocity error
for near-vertical structures than Cartesian coordinate horizontal ADCIGs. The imaging
enhancements afforded by elliptic coordinates should improve any migration velocity anal-
ysis approach that uses residual curvature in steeply dipping reflectors to compute velocity
model updates.

Discussion

Extending the above theory of generalized coordinate ADCIGs to 3D coordinate systems is
fairly straightforward, though more difficult to implement numerically. ? presents a theory
for 3D Cartesian coordinates that specifies the differential travel-time expressions required
to express the reflection opening angle, γ, in 3D Cartesian ADCIGs [see equation 16 in ?].
Applying Jacobian change-of-variable transformations to these equations should yield a 3D
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Figure 8: Horizontal elliptic and Cartesian ADCIGs slices using the correct migration ve-
locity model. a) Elliptic coordinate image with three horizontal lines showing the locations
of horizontal ADCIG gathers from top to bottom in panels b-d. e) Cartesian coordinate
image with three horizontal lines showing the locations of horizontal ADCIG gathers from
top to bottom in panels f-h. jeff1/. GOODZ
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Figure 9: Vertical elliptic and Cartesian ADCIGs slices using an incorrect migration velocity
model. a) Elliptic coordinate image with three vertical lines showing the locations of vertical
ADCIG gathers from left to right in panels b-d. e) Cartesian coordinate image with three
vertical lines showing the locations of vertical ADCIG gathers from left to right in panels
f-h. jeff1/. BAD
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Figure 10: Horizontal elliptic and Cartesian ADCIGs slices using an incorrect migration
velocity model. a) Elliptic coordinate image with three horizontal lines showing the locations
of horizontal ADCIG gathers from top to bottom in panels b-d. e) Cartesian coordinate
image with three horizontal lines showing the locations of horizontal ADCIG gathers from
top to bottom in panels f-h. jeff1/. BADZ
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expression for reflection angle. Similar to 3D Cartesian coordinates, though, this quantity
will depend on geologic dips and need to be computed by one of the two algorithms suggested
by ?.

Given that a 3D expression can be formulated, there are a number of coordinate systems
well-suited to imaging steep geologic dips where 3D ADCIG volumes could be a good
diagnostic tool for velocity analysis. ? discusses how a judicious choice of 3D coordinate
system depends greatly on the acquisition geometry and the desired migration geometry. For
example, the migration geometries employed in shot-profile migration of wide-azimuth data
sets are well-matched with 3D ellipsoidal meshes that enable high-angle and turning-wave
propagation in all directions. Evaluating ADCIG image focussing in such a 3D coordinate
geometry would then provide information on velocity model accuracy for steeply dipping
reflectors - such as salt flanks. These somewhat speculative extensions, though, are beyond
the scope of this paper and remain an active area of research.

CONCLUSIONS

I extend the Cartesian ADCIG theory to 2D generalized coordinate systems. The gen-
eralized ADCIG expressions related the reflection opening angle to differential traveltime
operators and spatially varying weights derived from the non-Cartesian geometry. I show
that these geometric expressions cancel out for coordinate systems satisfying the Cauchy-
Riemann differentiability criteria, which include tilted Cartesian and elliptic meshes. The
procedure for calculating ADCIGs in elliptic coordinates is very similar to that in Cartesian
coordinates. I validate the approach by comparing analytically and numerically generated
ADCIG volumes, and with tests on the BP synthetic data set. ADCIGs calculations are
more robust where computed in elliptic coordinates than in Cartesian coordinate. I as-
sert that this result is due to improved large-angle propagation and enhanced sensitivity to
steep structural dips afforded by the coordinate transforms. Finally, the imaging advantages
afforded by elliptic coordinates should improve the procedure of any migration velocity anal-
ysis approach that uses residual ADCIG curvature on steeply dipping reflectors to compute
velocity model updates.
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APPENDIX A

ADCIG COORDINATE TRANSFORM

This appendix addresses how to express operators ∂
∂x3

and ∂
∂hx1

in generalized coordinate
systems to derive equation 10. I first assume that generalized coordinate systems are related
to the Cartesian variables through a bijection (i.e., one-to-one mapping)

x1 = f(ξ1, ξ3) and x3 = g(ξ1, ξ3) (A-1)

with a non-vanishing Jacobian of coordinate transformation, Jξ. The bijection between
a generalized and Cartesian coordinate system allows us to rewrite the left-hand-sides of
equations 7 as (?)

∂t

∂x1
=

1
Jξ

∂(t, x3)
∂(ξ1, ξ3)

and
∂t

∂x3
=

1
Jξ

∂(x1, t)
∂(ξ1, ξ3)

. (A-2)

Expanding the Jacobian notation leads to[
∂t
∂ξ1

∂x3
∂ξ3
− ∂t

∂ξ3
∂x3
∂ξ1

∂t
∂ξ3

∂x1
∂ξ1
− ∂t

∂ξ1
∂x1
∂ξ3

]
= 2Jξ s cos γ

[
sinα
cos α

]
. (A-3)

The right-hand-sides of equations A-3 are analogous to those derived by ?. Cross-multiplying
the expressions by factors ∂x1

∂ξ3
and ∂x3

∂ξ3 ∂x1
∂ξ3

(
∂t
∂ξ1

∂x3
∂ξ3
− ∂t

∂ξ3
∂x3
∂ξ1

)
∂x3
∂ξ3

(
∂t
∂ξ3

∂x1
∂ξ1
− ∂t

∂ξ1
∂x1
∂ξ3

)  = 2Jξ s cos γ

[
∂x1
∂ξ3

sinα
∂x3
∂ξ3

cos α

]
(A-4)

and adding the two expressions results in

∂t

∂ξ3

(
∂x3

∂ξ3

∂x1

∂ξ1
− ∂x1

∂ξ3

∂x3

∂ξ1

)
= 2Jξ s cos γ

(
∂x1

∂ξ3
sinα +

∂x3

∂ξ3
cos α

)
. (A-5)

A similar argument can be used to construct the equations for the subsurface-offset
axis. The bijection between the generalized coordinate and Cartesian subsurface-offset axes
allows for the left-hand-side of equations 7 to be rewritten as

∂t

∂hx1

=
1
Jh

∂(t, hx3)
∂(hξ1 , hξ3)

and
∂t

∂hx3

=
1
Jh

∂(hx1 , t)
∂(hξ1 , hξ3)

, (A-6)

where Jh is the subsurface-offset Jacobian of transformation. Expanding the Jacobian
notation leads to  ∂t

∂hξ1

∂hx3
∂hξ3

− ∂t
∂hξ3

∂hx3
∂hξ1

∂t
∂hξ3

∂hx1
∂hξ1

− ∂t
∂hξ1

∂hx1
∂hξ3

 = 2Jh s sin γ

[
cos α
sinα

]
. (A-7)

The right-hand-side of equations A-7 are again analogous to those given by ?. Cross-
multiplying the expressions by factors ∂hx1

∂hξ1
and ∂hx3

∂hξ1 ∂hx1
∂hξ1

(
∂t

∂hξ1

∂hx3
∂hξ3

− ∂t
∂hξ3

∂hx3
∂hξ1

)
∂hx3
∂hξ1

(
∂t

∂hξ3

∂hx1
∂hξ1

− ∂t
∂hξ1

∂hx1
∂hξ3

)  = 2Jh s sin γ

 ∂hx1
∂hξ1

cos α
∂hx3
∂hξ1

sinα

 , (A-8)
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and subtracting the two expressions above yields

∂t

∂hξ1

(
∂hx1

∂hξ1

∂hx3

∂hξ3

− ∂hx1

∂hξ3

∂hx3

∂hξ1

)
= 2Jh s sin γ

(
∂hx1

∂hξ1

cosα− ∂hx3

∂hξ1

sinα

)
. (A-9)

An expression for ADCIGs can be obtained by dividing equation A-9 by equation A-5

∂t
∂hξ1

∂t
∂ξ3

(
∂hx1
∂hξ1

∂hx3
∂hξ3

− ∂hx1
∂hξ3

∂hx3
∂hξ1

)
(

∂x3
∂ξ3

∂x1
∂ξ1
− ∂x1

∂ξ3
∂x3
∂ξ1

) = tan γ
Jh

Jξ

(
∂hx1
∂hξ1

cos α− ∂hx3
∂hξ1

sinα
)

(
∂x3
∂ξ3

cos α + ∂x1
∂ξ3

sinα
) . (A-10)

One question arising from the geometric factors in equation A-10 is what do the terms
∂hx1
∂hξ1

, ∂hx3
∂hξ1

, ∂hx1
∂hξ3

and ∂hx3
∂hξ3

represent? I assume that the subsurface offset axes are generated
by uniform wavefield shifting such that the following equations are valid:


hx1

hx3

hξ1

hξ1

 =


x1

x3

ξ1

ξ3

 such that


∂hx1
∂hξ1
∂hx3
∂hξ1
∂hx1
∂hξ3
∂hx3
∂hξ3

 =


∂x1
∂ξ1
∂x3
∂ξ1
∂x1
∂ξ3
∂x3
∂ξ3

 . (A-11)

If the subsurface offset axes were generated by anything other than uniform shifting (e.g.
hx1 = x2

1), then the assumptions behind equations A-11 would not be honored.

Using these identities in equation A-5 reduces equation A-10 to

− ∂ξ3

∂hξ1

∣∣∣∣
ξ1,t

=
∂t

∂hξ1

/
∂t

∂ξ3
= tan γ

(
∂x1
∂ξ1

cos α− ∂x3
∂ξ1

sinα
)

(
∂x3
∂ξ3

cos α + ∂x1
∂ξ3

sinα
) , (A-12)

where the two Jacobian transformations are equivalent (i.e. Jξ = Jh). This completes the
derivation of equation 10.
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Seismic interferometry versus spatial auto-correlation
method on the regional coda of the NPE

Sjoerd de Ridder

ABSTRACT

A seismic recording of the non-proliferation experiment (NPE) contains the first break
of the regional P phases followed by a three minute long coda. The frequency-domain
result of seismic interferometry is studied. This procedure is analogous to the spatial
auto-correlation (SPAC) method, devised for studying microtremors by Aki (1957).
Cross-correlating two receiver stations retrieves, under favorable circumstances, an ap-
proximation of the Green’s function between these two stations. To first order, this
Green’s function consists of a direct event traveling between the receivers. In the
frequency-domain, the lowest mode in the Green’s function is a weighted and scaled
zero-order Bessel function of the first kind, J0. The cross-spectrum from the coda of
the NPE is estimated using multitaper spectral analysis. The retrieved Green’s func-
tions are fitted to damped J0 functions to recover phase velocity and estimates of the
attenuation coefficients. Only energy between 1-4 Hz can be fitted unambiguously with
J0 functions, because higher frequencies contain too much spurious energy. This result
shows the equivalence of the SPAC method and seismic interferometry for the lowest
mode in the Green’s function. This study also demonstrates that the coda of a re-
gional event, seemingly unfavorably positioned, can contain energy useful for seismic
interferometry.

INTRODUCTION

In an efort to ban all nuclear tests, a large majority at the United Nations General Assembly
in New York passed the comprehensive test ban treaty (CTBT) in September, 1996. Al-
though 180 states signed the treaty, only 145 ratified it, prohibiting the treaty from entering
into force (CTBTO, 2008). The US Department of Energy detonated a 1.5 kiloton chemical
explosive charge at the Nevada test site on September 22nd, 1993. The experiment, named
the non-proliferation experiment (NPE), was conducted in anticipation of the CTBT. The
explosion was recorded by over 50 broadband seismic stations in the western United States
(Tinker and Wallace, 1997). Scientists used these recordings and other measurements to
learn to distinguish between nuclear and chemical explosions (Carr, 1994).

A less well known recording was made by the Subsurface Exploration Company of
Pasadena, CA, which operated a 610-channel petroleum-exploration seismic array approxi-
mately 200 km distant. The array was oriented east-west in Railroad Valley, Nevada, which
is located north of the Nevada Test Site, see Figure 1. This sign-bit equipment was ac-
tivated at midnight and recorded an extraordinary coda over 5 minutes in length. The
incoming waves are spatially coherent at early times, when all energy comes in as a single
plane wave (see Figure 2a). Very rapidly after the first break, the wavefield becomes more
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chaotic, and at later arrivals the higher frequencies are lost, as observed in Figures 2b - 2d.
At later times, recorded arrivals are incident for a large range of apparent slownesses. This
phenomenon was studied by de Ridder (2008), who concluded that all admissible slownesses
define a cone in the frequency-wavenumber domain, as seen in Figure 3. The slope of the
cone is determined by the event with the slowest possible apparent velocity; a surface-wave
traveling purely along the array.

Figure 1: Map showing the location
of the Nevada Test Site (arrow) and
Railroad Valley (shaded area). [NR]
sjoerd1/. map

In this report, the coda of the NPE is studied using cross-correlation techniques. Two ap-
proaches are contrasted: the seismic interferometry (SI) method which potentially retrieves
the full impulse response of the earth from the recorded background field (Wapenaar, 2004)
and the spatial auto-correlation (SPAC) method, which retrieves dispersion curves of the
fundamental mode of the surface-waves in a horizontally layered medium (Aki, 1957).

SEISMIC INTERFEROMETRY AND THE SPATIAL
AUTO-CORRELATION METHOD

Seismic interferometry refers to the principle of generating new seismic responses through
cross-correlations of recorded seismic wavefields at receivers (Schuster, 2001). The first
to derive this principle for deterministic wavefields in 1D media was Claerbout (1968),
who showed that the reflection response of a 1D medium could be synthesized from the
auto-correlation of the transmission response. Later derivations include many different
approaches based upon: diffusivity of the wavefields (Weaver and Lobkis, 2001; Roux
et al., 2005; Sánchez-Sesma et al., 2006; Sánchez-Sesma and Campillo, 2006), stationary
phase analysis (Schuster et al., 2004; Snieder, 2004) and propagation invariants and reci-
procity theorems (Claerbout, 1976; Weaver and Lobkis, 2004; Wapenaar, 2004; Wapenaar
and Fokkema, 2006; van Manen et al., 2005).
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Figure 2: Four segments of the first NPE recording; a) segment containing the first arrival;
b) segment 30 seconds after the first arrival; c) segment 60 seconds after the first arrival;
d) segment 90 seconds after the first arrival. [ER] sjoerd1/. shot1frames

Figure 3: Frequency-wavenumber spectra of the NPE recording, subfigures a, b, c and d
display each the frequency-wavenumber spectra for the corresponding subfigures in Figure 2.
[ER] sjoerd1/. shot1WKframes
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Wapenaar and Fokkema (2006) derives an interferometric representation of the Green’s
function from energy principles. Under certain conditions, this representation can be sim-
plified to a direct cross-correlation between two receiver stations. Consider a domain D
in an arbitrary, inhomogeneous medium enclosing two points xA and xB, bounded by an
arbitrarily shaped surface ∂D with outward pointing normal vector n. The interferometric
representation of the Green’s function for the vertical component of particle velocity mea-
sured at xA in response to a vertical force-impulse point-source acting at xB is given in the
frequency-domain as follows (Wapenaar and Fokkema, 2006):

2<{Ĝυ,f
3,3 (xA,xB, ω)} = (1)

−
∮

∂D

[
Ĝυ,h

3,ij(xB,x, ω)
{

Ĝυ,f
3,i (xA,x, ω)

}∗
+ Ĝυ,f

3,i (xB,x, ω)
{

Ĝυ,h
3,ij(xA,x, ω)

}∗]
njd2x,

where the asterisk denotes complex conjugation, and ω denotes angular frequency. The
notation convention for Green’s functions is that superscripts denote the receiver (first) and
source type (second), and subscripts denote the components of the source (first) and receiver
(second) fields. The fields and sources in the elastodynamic system are particle velocity υ,
stress tensor τ (used below), external volume force density f , and external deformation rate
density h. Einstein’s summation convention is applied on all repeated subscripts.

The interferometric integral in equation 1 represents the real part of the elastodynamic
Green’s function between two receiver stations located at A and B, as a summation of
cross-correlations of independent measurements at the two receiver stations. (Independent
measurements of responses of various source components and types located on a surface
enclosing both receivers are required to evaluate this integral.) The integral can be modi-
fied to reflect the field configuration of the NPE, where the receivers are located just below
the traction-free surface, that has n = (0, 0, 1). The domain integral is split into two seg-
ments, ∂D0 and ∂D1, which are the parts of the domain boundary that coincide with the
traction-free surface and the remainder, respectively. Thus the interferometric representa-
tion, equation 1, can be split into two parts:

2<{Ĝυ,f
3,3 (xA,xB, ω)} = (2)

−
∮

∂D1

[
Ĝυ,h

3,ij(xB,x, ω)
{

Ĝυ,f
3,i (xA,x, ω)

}∗
+ Ĝυ,f

3,i (xB,x, ω)
{

Ĝυ,h
3,ij(xA,x, ω)

}∗]
njd2x

−
∮

∂D0

[
Ĝυ,h

3,i3(xB,x, ω)
{

Ĝυ,f
3,i (xA,x, ω)

}∗
+ Ĝυ,f

3,i (xB,x, ω)
{

Ĝυ,h
3,i3(xA,x, ω)

}∗]
d2x ,

where n = (0, 0, 1) has been substituted into the integral segment over the traction-free
surface, ∂D0. According to source-receiver reciprocity, the required response Ĝυ,h

3,i3 at the

traction-free surface satisfies Ĝυ,h
3,i3(xb,x, ω) = Ĝτ,f

i3,3(x,xB, ω) = 0. Thus the second integral
on the right hand side of equation 2 is equal to zero.

Following Wapenaar and Fokkema (2006), consider the situation when the medium out-
side D is homogeneous and when the wavefield is generated by many mutually uncorrelated
sources located on ∂D1, acting simultaneously with a weighted power spectrum, w(x)Ŝ(ω).
The integral over ∂D1 in equation 2, can be evaluated by a direct cross-correlation between
recordings of particle velocity at receiver stations A and B:

2<{Ĝυ,f
3,3 (xA,xB, ω)}Ŝ(ω) ≈ 2

ρcp

〈
υ̂3(xA, ω)υ̂∗3(xB, ω)

〉
x
, (3)
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where cp is the P-wave velocity. Note that the weighting factor w(ω) has disappeared.
The weighting factor depends on the local medium parameters and source types, as is
discussed at length by Wapenaar and Fokkema (2006). The wavefield required to make
this simplification is named equipartitioned or diffuse (Hennino et al., 2001; Sánchez-Sesma
and Campillo, 2006). The spatial ensemble average 〈·〉x over sources is usually evaluated
using a sufficiently long recording. Secondary scattering can render the coda of the NPE
sufficiently equipartitioned. But in the coda of the NPE, most of the coherent energy
between the receivers resides in the surface-wave mode (de Ridder, 2008) and does not
provide significant energy for imaging.

A similar situation occurs for earthquake tremor. Aki Aki (1957) developed a technique
named the spatial auto-correlation method. The close relationship between SI and SPAC
was reported by Yokoi and Margaryan (2008). Their steps are briefly repeated here to
derive from equation 3 a relationship used in the SPAC method. For a wavefield dominated
by the surface modes, the frequency-domain Green’s function for the vertical component of
particle velocity measured at xA in response to a vertical force-impulse point-source acting
at xB is

Ĝυ,f
3,3 (xA,xB, ω) ≈ −ω

∞∑
n=0

m̂2(kn, x3,A)m̂2(kn, x3,B)J0(kn |xA − xB|), (4)

where m̂2 is a normalized eigenfunction, and J0 is a zero-order Bessel function of the first
kind (Yokoi and Margaryan (2008) from Aki and Richards (2002)). Substituting this Green’s
function into the left side of equation 3 expands it to

2<

{
−ω

∞∑
n=0

m̂2(kn, x3,A)m̂2(kn, x3,B)J0(kn |xA − xB|)

}
Ŝ(ω) ≈ 2

ρcp

〈
υ̂3(xA, ω)υ̂∗3(xB, ω)

〉
x
.

(5)
Normalizing by the auto-correlation of the recording at station A gives

2<{−ω
∑∞

n=0 m̂2(kn, x3,A)m̂2(kn, x3,B)J0(kn |xA − xB|)}

2<
{
−ω

∑∞
n=0 {m̂2(kn, x3,A)}2 J0(0)

} ≈
2

ρcp
〈 υ̂3(xA, ω)υ̂∗3(xB, ω) 〉x

2
ρcp
〈 υ̂3(xA, ω)υ̂∗3(xA, ω) 〉x

.

(6)
When the fundamental surface-wave dominates, and both receivers are located at equal
depth (x3,A = x3,B), the higher-order terms can be neglected, and equation 6 simplifies to

J0(k0 |xA − xB|) ≈
〈 υ̂3(xA, ω)υ̂∗3(xB, ω) 〉x
〈 υ̂3(xA, ω)υ̂∗3(xA, ω) 〉x

≈ φ(xA,xB, ω), (7)

where φ(xA,xB, ω) is defined as the azimuthally averaged auto-correlation coefficient. The
wavenumber of the fundamental surface-wave mode is given by a specific dispersion curve,
k0 = ω

c(ω) , where c(ω) is phase velocity.

Notice from equation 7 how the cross-spectra in frequency and space are predicted
to obey Bessel functions, with oscillations determined by the phase velocity. The Bessel
function of the first kind is real-valued. The cross-spectrum on the right hand-side is
complex-valued, but if the conditions that lead to equation 7 are fulfilled, the imaginary
component vanishes (Asten, 2006), (υ̂3(xA, ω)υ̂∗3(xA, ω) is always real). The real part of the
cross-spectrum is retrieved as the zero-lag temporal cross-correlation, i.e., a spatial auto-
correlation coefficient. It should be noted that the close relationship between SI and SPAC
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seems to hold only for surface-waves in horizontally stratified media. The SPAC method as
commonly applied involves fitting Bessel functions to the computed auto-correlation coef-
ficient with frequency, with explicit directional averaging of the wavefield in all directions.
In the case of isotropic wavefields, this averaging is unnecessary (Aki, 1957; Okada, 2003).
The coda of the NPE quickly becomes isotropic after the first break, thus this relationship
seems suitable for the cross-spectra calculated from NPE data. To introduce an estimation
of attenuation, the Green’s function, equation 4, is supplemented with an exponential at-
tenuation factor Q(ω), (Aki and Richards, 2002). The final model for the frequency-domain
spatial auto-correlation coefficient φ(xA,xB, ω) becomes

φ(xA,xB, ω) = J0

(
ω

c(ω)
|xA − xB|

)
exp

{
− ω

c(ω)
1

2Q(ω)
|xA − xB|

}
. (8)

DATA ANALYSIS

The two records analyzed are of approximately 131 seconds duration (214 samples at a 125
Hz sampling frequency) at 610 stations with a 45-foot spacing. The second recording starts
a few seconds after the first recording ends. Although the exact location of the NPE array
is unknown, the data shows that the first 66 stations were located at an angle with respect
to the other stations. Starting from station 67 located at 0 m in Figure 2, 512 stations are
analyzed. The first arrivals were muted from the first record. All records were filtered in
the frequency-wavenumber domain with a high-cut cosine filter centered around an angle
corresponding to a velocity of 770 m/s, determined from Figure 3. This removes noise from
the coda and interpolates the missing traces. For velocities smaller and equal to 770 m/s
this did not affect the estimation of the surface wave velocity as described below.

The spectrum at each station was estimated using a multitaper spectral-estimation
technique. This provides several statistically independent estimates of the spectrum and
decreases spectral leakage (Prieto et al., 2007, 2008b). In this procedure, a time record with
N samples is first multiplied with a set of K orthogonal Slepian tapers (Thomson, 1982).
Second, the discrete Fourier transformation is computed for each tapered trace as follows:

xk(ω) =
N−1∑
t=0

x(t)νk(t)exp {−iωt} , (9)

where the kth Slepian taper is denoted by νk(t). The cross-spectrum ρ(ω) between two
traces x and y is calculated from the spectral estimations xk(ω) and yk(ω) according to

ρ(ω) =
K∑

k=1

xk(ω)
{

yk(ω)
}∗

. (10)

Interferometric gathers in the frequency-domain are computed by consecutively selecting
each station in the array as a master station and computing the cross-spectra between all
other stations and this master station. The collection of interferometric gathers is further
analyzed in the midpoint-offset domain (m,h). To enhance the signal-to-noise ratio, the
retrieved gathers are smoothed over 50 midpoints, corresponding to a length of 680 m.

We first study the result from processing the records in the time domain, as is common
in seismic interferometry practices. A common-midpoint section at m = 5144 m is given in
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Figure 4, and a common-offset section for h = 261 m is given in Figure 5. de Ridder (2008)
did not observe any event, besides the surface-wave events intersecting each other at (h, t) =
(0, 0) that is coherent across different midpoints. When we study the common-offset section
in Figure 5, we can see the arrival time of the surface wave event at ∼ 0.5 s slightly varying
with offset. If we neglect this and assume the earth is horizontally layered, the recovered
gathers can be stacked over common-offsets as shown in Figure 6. Estimating the slope of
the event visible in Figures 4 and 6, de Ridder (2008) found a velocity of cr = 770 m/s. The
subscript r refers to a Rayleigh wave, which is the dominant surface-wave type recorded
in the vertical component of particle velocity in groundroll. It is difficult to extract more
information from the time-domain images. Additional analysis of the retrieved gathers
can be performed in the frequency-domain, by inverting for phase velocity and attenuation
factors. The frequency-domain equivalents of the time-domain gathers in Figures 4 and 6
are shown respectively in Figures 7 and 9.

Figure 4: Interferometric common-midpoint gather gather, at m = 5144 m; a) retrieved
from recording 1, b) retrieved from recording 2. [ER] sjoerd1/. si375m

Figure 5: Interferometric common-offset gather, for h = 261 m; a) retrieved from recording
1, b) retrieved from recording 2. [ER] sjoerd1/. si375o
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Figure 6: Common-offset stack for the interferometric gathers; a) retrieved from recording
1, b) retrieved from recording 2. [ER] sjoerd1/. SIHS

Figure 7: Frequency-domain common-offset stack; a) retrieved from recording 1, b) retrieved
from recording 2. [ER] sjoerd1/. SPACHS

INVERSION FOR DISPERSION CURVES

In Figures 7 and 9, Bessel functions are clearly observed at different oscillation periods
for different frequencies. Moreover, from Figure 5 it can be concluded that the period
of oscillation of the Bessel functions should not remain constant for all gathers along the
array. We use our model stated in equation 8 to estimate phase velocity and attenuation
from retrieved frequency-domain common-midpoint gathers. This analysis can be repeated
for all gathers at all midpoints, thereby detecting variation in dispersion curves along the
array.

The optimization procedure is done by a grid-search for the two dimensions in the model
space for each frequency. The inversion for phase velocity c(ω) is fairly well posed because
of the zero crossings of the Bessel function; in a second step the decay rate observed in
the gathers is inverted for an attenuation factor Q(ω). The division of the cross-spectrum
by the auto-correlation of the recording at station A is very unstable, and is avoided by
multiplication of equation 8 with the auto-correlation of the recording at station A.

An example in which theory matches the data reasonably well is at midpoint m =
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5144 m. In Figure 8, the cross-spectrum for this midpoint and at 2.4 Hz calculated from
recording 1 and 2 are shown together with the fitted Bessel and damped Bessel functions.
The estimated phase velocities and attenuation factors are c(4.8π) = 560 m/s from recording
1, and Q(4.8π) = 22.3 and c(ω) = 562 m/s, Q = 17.8 from recording 2.

Figure 8: Cross-spectrum at 2.4 Hz at midpoint m = 5144 m; a) retrieved from recording 1,
b) retrieved from recording 2. Included are the fitted Bessel and damped Bessel functions,
from recording 1; c(4.8π) = 560 m/s, Q(4.8π) = 22.3, from recording 2; c(4.8π) = 562 m/s,
Q(4.8π) = 17.8. [ER] sjoerd1/. bessels

This analysis is performed for all frequencies and on both recordings. The cross-spectrum
calculated at midpoint m = 5144 m for all frequencies from recording 1 and 2 are shown in
Figure 9. The best fit of Bessel functions to the midpoint-gathers in Figure 9 are shown in
Figure 10 and the best fit of damped Bessel functions to the midpoint gathers in Figure 10
are shown in Figure 11. The estimated dispersion curves and attenuation factors for the
midpoint gather at m = 5144 m are shown in Figure 12. The dispersion curves estimated
for all midpoints from recording 1 and 2 are shown together in Figure 13. The dispersion
curves range from values twice as large as the estimated group velocity of 770 m/s to
velocities slightly smaller than the estimated group velocity. Although there are some
spurious estimated phase velocities, a clear trend can be seen towards the right side of the
array for generally higher phase velocities. The estimated attenuation coefficients vary much
more strongly and become seemingly more incoherent with frequency. For the midpoint
gather at m = 5144 m and the frequency band of 1 to 3 Hz, the attenuation factor seems
to be in the range of Q = 5 to Q = 30.

DISCUSSION AND CONCLUSIONS

Consistent with the observation of de Ridder (2008), we have observed that the cross-
spectra of the NPE coda contain coherent energy that corresponds to the surface-wave. This
observation shows that for the coda of the NPE, the SI approach is analogous to the SPAC
approach. Both methods provide different information; in addition to an estimate of group
velocity for the surface wave from SI, we have also estimated phase velocity from the cross-
spectra. Only the energy between 1 and 4 Hz can be fitted unambiguously with J0 functions,
because higher frequencies contain too much spurious energy that is not equipartitioned, and
lower frequencies do not contain sufficient energy. We also show that by analysing common-
midpoint gathers, we can begin to see spatial variation of phase velocities along the array.
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Figure 9: Cross-spectra calculated from recording 1, in a) and 2 in b) at m = 5144 m. [ER]
sjoerd1/. spacm375o

Figure 10: Bessel functions fitted to the cross-spectra calculated from recording 1, in a) and
2 in b), at m = 5144 m. The estimated phase velocity curves are shown in Figure 12. [ER]
sjoerd1/. spacm375f

This suggest the possibility to study 3D structure using cross-correlation techniques, as has
also been proposed by Harmon et al. (2008) and Prieto et al. (2008a).

The relatively accurate fit of the damped Bessel function for Figure 8 suggests that most
of the energy is part of the fundamental mode of the surface wave. Small discrepancies
can be explained by many factors; the energy might not be completely equipartitioned,
there could be some energy in higher modes, and very likely there are heterogeneities on a
scale smaller than the smoothing length that invalidate our assumptions of a horizontally
layered earth. Another effect of scattering is attenuation (Hong et al., 2005). The effects of
scattering attenuation and intrinsic attenuation are not easily distinguishable at this point
and further research is needed.

The source position of the NPE, transversely oriented to the direction of the array, seems
very unfavorable for SI or SPAC. But small-scale heterogeneities in the earth rendered the
coda wavefield equipartitioned to first order. Since the recording is sign-bit, this property
is fully exploited, because amplitude changes with azimuth are suppressed. Moreover, the
energy is relatively well distributed in both directions along the array, since the array is
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Figure 11: Damped Bessel functions fitted to the cross-spectra calculated from recording 1,
in a) and 2 in b), at m = 5144 m. The estimated attenuation factors are shown in Figure 12.
[ER] sjoerd1/. spacm375df

Figure 12: Dispersion curve and attenuation factors estimated from the cross-spectra at
m = 5144 m calculated from recordings 1 and 2. [ER] sjoerd1/. VQcurve

nearly transverse with respect to NTS.

Although the wavefield does not contain sufficient energy for imaging, subsurface infor-
mation can still be extracted by inverting the dispersion curves for a subsurface velocity
profile. The recording of the NPE and geometry of the array in Railroad Valley provided the
rare opportunity to study the properties of a small earthquake-like event in the transverse
direction, with high spatial resolution.
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Figure 13: Estimated phase velocity from the cross-spectra calculated along the array.
A clear trend of increasing phase velocities to the right-side can be observed. [CR]
sjoerd1/. SPACV2d
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3D pyramid interpolation

Xukai Shen

ABSTRACT

Seismic data geometries are not always as nice and regular as we want due to various
acquisition constraints. In such cases, data interpolation becomes necessary. Usually
high-frequency data are aliased, while low-frequency data are not, so information in
low frequencies can help us interpolate aliased high-frequency data. In this paper, I
present a 3D data interpolation scheme in pyramid domain, in which I use information
in low-frequency data to interpolate aliased high-frequency data. This is possible since
in pyramid domain, only one prediction error filter (PEF) is needed to represent any
stationary event (plane-wave) across all offsets and frequencies. However, if we need
to estimate both the missing data and PEF, the problem becomes nonlinear. By
alternately estimating the missing data and PEF, we can linearize the problem and
solve it using a conventional least-squares solver.

INTRODUCTION

Data interpolation is an important step in seismic data processing that can greatly affect
the results of later processing steps, such as multiple removal, migration and inversion.
There are many ways to interpolate data, including Fourier-transform-based approaches
(e.g., Xu et al., 2005) and PEF-based approaches (e.g., Spitz, 1991; Crawley, 2000). A PEF
is a filter that predicts one data sample from n previous samples, where n is the length
of the PEF. One important feature of a PEF is that it has the inverse spectrum of the
known data, so when it is convolved with known data, it minimizes the convolution result
in the least-square sense. PEF estimation can be done in either time-space (t-x) domain or
frequency-space (f -x) domain (e.g. Claerbout, 1999; Crawley, 2000; Curry, 2007), however,
if PEF estimation is done in the f -x domain, every frequency needs one distinct PEF.

The pyramid domain was introduced by Ronen (Hung et al., 2005), and is a resampled
representation of an ordinary f -x domain. Although it has frequency and space axes, the
spatial sampling is different for different frequencies. This is attractive because we can use
sparser sampling to adequately sample the data at lower frequencies, which makes uniform
sampling for all frequencies unnecessary. Therefore in the pyramid domain, coarser grid
spacing is used for lower frequencies, while finer spacing is used for higher frequencies. This
makes it possible to capture the character of all frequency components of stationary events
with only one PEF. So the information in the low frequency data can be better used to
interpolate higher frequency data.

In this paper, I present a 3D version of data interpolation in the pyramid domain based
on PEF estimation, which is based on Shen (2008). The paper is organized as follows: I
first show the 3D pyramid transform and corresponding missing-data interpolation and PEF
estimation. I then show synthetic data examples. Finally, I conclude with the advantages
and disadvantages of this interpolation method.
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METHODOLOGY

There are two important parts of the pyramid-based interpolation algorithm, the first of
which is the selection of the pyramid transforms between pyramid domain and f -x domain.
The more accurately these transforms are performed, the better the result we can get
for missing data interpolation. The second step combines data interpolation and PEF
estimation in the pyramid domain, which are done alternately in an iterative way.

3D pyramid Transform between pyramid domain and f-x domain

I discussed the 2D pyramid transform in Shen (2008), and the 3D version is almost the
same, except that some scalars become vectors. In the 3D pyramid transform, spatial grid
spacing is calculated for each frequency f using the equation

∆x(f) =
∆x0v
fnsf

, (1)

where ∆x(f), ∆x0, v and nsf are all 2D vectors. ∆x0 is the uniform spatial grid spacing in
the original f -x data, v is the velocity that controls the slope of the pyramid and nsf is the
sampling factor in pyramid domain. By changing this factor we can control how densely the
pyramid domain is sampled. In situations where events to be interpolated are not perfectly
stationary, dense sampling is preferrable since the information in the low frequencies cannot
be represented well by only a few points. In 3D, the inversion scheme that transforms data
in f -x space to the pyramid domain is as follows:

Lm− d ≈ 0, (2)

where m is the data in the pyramid domain, d is the known data in f -x space, and L is
the 2D linear interpolation operator in 3D pyramid transform. The 3D pyramid transform
from pyramid domain to f -x domina uses the following equation :

d = Lm. (3)

Where now m is known and d is unknown data in f -x space.

PEF estimation and Missing data estimation

The missing data estimation algorithm presented here is different from what I presented
in the previous paper (Shen, 2008). Missing data are fitted in the f -x domain to ensure
better fitting of known data. Also, the 3D version of these algorithms use helical coordinates
(Claerbout, 1999) to perform the convolution.

For PEF estimation, I try to solve the following problem assuming known pyramid data
m. Denoting convolution with m as operator M, with W being a diagonal masking matrix
that is 1 where pyramid data can be used for PEF estimation and 0 elsewhere, I try to solve
for the unknown PEF a using the following fitting goal(Claerbout, 1999):

WMa ≈ 0, (4)
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For missing-data estimation, I start with a known PEF A, and try to solve the following
least-squares problem (Claerbout, 1999):

K (Lm− d) ≈ 0
εWAm≈ 0,

(5)

where K is a diagonal masking matrix that is 1 where data is known and 0 elsewhere, ε is a
weight coefficient that reflects our confidence in the PEF, and W is the same as explained
above.

Linearized nonlinear problem

To estimate both missing data and the PEF, the problem becomes nonlinear. To avoid
directly solving nonlinear problem, I linearize it by alternately estimate missing data and
PEF, and use them to update each other. Corresponding pseudo code is as follows:

for each iteration i{
estimate missing data m_i from PEF a_(i-1) using equation 5
estimate PEF a_i from missing data m_i using equation 4
}

I start with my guess of the PEF, a0. First, I make an operator A0 that is convolution
with a0, and I use it to estimate the missing data m0. From m0, I make an operator M0

that is a convolution with m0. Then I update a0 using M0, calling the updated a0 as a1.
This process makes one iteration of the linearized problem. Then I repeat this process,
making A1 from a1, updating m0 to m1 using A1, making M1 from m1, updating a1 to
a2 using M1, and so on... Finally the algorithm will converge to some m and a; hopefully,
by careful choosing of a0, I will converge to the correct m and a.

EXAMPLE

Here I show two examples of missing-data interpolation using the linearized iterations de-
scribed above. Both are 3D synthetic examples. The first example interpolates 3D plane-
waves. The second dataset is a patch from the qdome data set Claerbout (1999).

Synthetic plane-waves

In this example, there are three plane-waves with different frequency components and dips
(Figure 1a). I sub-sampled the data cube by a factor of three along both the x and y
axes. This causes aliasing in two of the three plane-waves (Figure 1b), which can also be
seen from their f -k spectrum( Figure 2). Then with the initial guess of the PEF being a
2D Laplacian operator, the above algorithms converged to a decent result at most places,
except for data points close to the edges (Figure 3a). More specifically, the remaining data,
after being transformed into the pyramid domain, looks like Figure 4a. There are a lot of
holes, which are caused by missing data and big sampling factors (nsf in equation 1) used
in pyramid domain. In this example, a sampling factor of 6 along the inline direction and
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a factor of 8 along crossline direction are used to make sure we have enough sample to
represent all the frequencies, especially low frequencies. With the initial guess of the PEF
being a 2D Laplacian operator, these holes in the pyramid domain will be filled; however,
since this is just a guess of the PEF, the filled information is not necessarily correct (Figure
5b). Actually, the t-x domain data of interpolation with this PEF are step-like functions for
aliased plane-waves (Figure 3b). However, for the unaliased low-frequency plane-wave, the
missing data is already correctly interpolated. After five iterations of the algorithm, using
the information from low-frequency data, the interpolated data finally have the correct dips
for all the frequency components (Figure 5a).

Figure 1: a) Original data, consisting of three plane waves with different dips and frequency
contents. b) Sub-sampling by a factor of three along both x and y axes. [ER] xukai1/. 3pw

Patch from the qdome data set

In this example, I windowed out one fourth of the qdome data set, in which the reflectors
are almost stationary (Figure 6 a). I then sub-sampled the data cube by a factor of four
along both the x and y axes (Figure 6 b). This caused aliasing of some reflectors, especially
in the cross line direction, as the f -k spectrum of Figure 7 shows. Since this data set is
more complicated then the previous one, and not all the reflectors are ideally stationary,
in the pyramid domain, I use ten as the sampling factor along both x and y directions to
make sure low frequency data are well represented. Then with the initial guess of the PEF
also being 2D Laplacian operator, the above algorithms converged to a satisfactory result
for most of the reflectors (Figure 8b ). Notice that for reflectors with small amplitude, the
interpolation works not so well, and tuning the PEF size may help solving this problem.
By looking at the the depth slice in Figure 8b , zeros can be observed for data at small x
and y values, this is due to insufficient number of data points for PEF estimation at these
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Figure 2: a) The f -k spectrum of the original data. b) The f -k spectrum of the sub-sampled
data. [ER] xukai1/. wk3pw

Figure 3: a) Interpolated data. b) Data interpolated with the Laplacian operator in the
pyramid domain. [CR] xukai1/. 3pwi0
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Figure 4: a) Remaining data in the pyramid domain. b) Data interpolated with the Lapla-
cian operator in pyramid domain. [CR] xukai1/. py3pw0

Figure 5: a) Interpolated data (final version) in pyramid domain. b) Data interpolated with
the Laplacian operator in pyramid domain. [CR] xukai1/. py3pw
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locations. On the other hand, the other two edges have much stronger amplitude artifacts,
which requires further investigation.

Figure 6: a) Original patch of qdome data, where all the reflectors are almost stationary.
b) Sub-sampling by a factor of four along both the x and y axes. [ER] xukai1/. qd

FUTURE WORKS

So far, for stationary events, this algorithm works quite well. For real data, the assumption
of stationarity holds if we break the data into small patches and look at each individual
patch. So the next step will be to looking at more complex data and try to apply this
algorithm with patching technique.

CONCLUSIONS

The pyramid domain is a very promising domain for missing-data interpolation. The syn-
thetic examples demonstrate that, with a good initial PEF estimate, we can use the infor-
mation in the low frequency to interpolate the aliased missing data relatively accurately
and interpolate the unaliased missing data fairly well.

One disadvantage of this interpolation scheme is computation cost. First, to get a decent
result, the data samples in pyramid domain is an order more than that in f -x domain along
each spatial axis; in 3D, that amounts to a factor of 100 or more. In addition, the linearized
nonlinear iteration adds a factor of about five in the synthetic test. In other words, we have
to do both PEF estimation and data interpolation five times in total. Altogether, we first
increase the data size by a factor of 100, then run about 5 rounds of data estimation. So
the overall computational cost is about 500 times greater than a conventional PEF based
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Figure 7: a) The f -k spectrum of the original data. b) The f -k spectrum of the sub-sampled
data. [ER] xukai1/. wkqd

Figure 8: a) Original patch of qdome data. b) Interpolated data. [CR] xukai1/. qdi
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interpolation scheme (e.g. Spitz, 1991). However, with a patching technique, many patches
of data can be interpolated simutaneously using parallelized version of this algorithm.

ACKNOWLEDGMENTS

I would like to thank Jon Claerbout for ideas about data interpolation in the pyramid
domain, Bob Clapp for synthetic example suggestions, and Antoine Guitton and William
Curry for numerous debugging suggestions.

REFERENCES

Claerbout, J., 1999, Geophysical estimation by example: Environmental soundings image
enhancement: Stanford Exploration Project.

Crawley, S., 2000, Seismic trace interpolation with nonstationary prediction-error filters:
PhD thesis, Stanford University.

Curry, W., 2007, f-x domain non-stationary interpolation in patches: SEP-Report, 131.
Hung, B., C. Notfors, and S. Ronen, 2005, Seismic data reconstruction using the pyramid

transform: 67th Meeting, EAGE, Expanded Abstracts, A039.
Shen, X., 2008, Data interpolation in pyramid domain: SEP-134, 225–230.
Spitz, S., 1991, Seismic trace interpolation in the F-X domain: Geophysics, 56, 785–794.
Xu, S., Y. Zhang, D. Pham, and G. Lambare, 2005, Antileakage Fourier transform for

seismic data regularization: Geophysics, 70, V87–V95.



188 Shen SEP–136



Stanford Exploration Project, Report SEP136, April 14, 2009

Anti-crosstalk

Jon Claerbout

ABSTRACT

Inverse theory can never be wrong because it’s just theory. Where problems arise
and opportunities are overlooked is where practitioners grab and use inverse theory
without recognizing that alternate assumptions might be better. Here I formulate
anti-crosstalk operators to supplement (or replace) familiar regularizations in image
estimation. Applications appear abundant.

Theoretical example

First let us consider an extremely simple theoretical example with an issue of “cross talk”.
Notice that word itself is absent from linear inverse theory. (Anyway, it’s absent from the
index of Tarantola’s book.) Normally we think of “high frequencies” as being orthogonal
to “low frequencies”. In this example that will be true from a theoretical viewpoint, but no
practical person would consider it to be true.

Consider a signal that is an impulse which is to be split into its low and high frequencies.
We might write this as 0 = l + h − d, namely, zero equals low plus high minus data. Let
us extract low frequencies from the data with a step function in the Fourier domain or
convolving with a sinc function in the time domain. Clearly the high frequency component
in the Fourier domain is the constant function minus the step. In the time domain it
is a delta function minus a sinc (since high plus low is a delta function). Theoretically
everything is fine. Usually a vanishing cross product means a sum of terms vanishes. Here
every term vanishes in the Fourier domain when we multiply the step times one minus
the step. That is powerful orthogonality! In the time domain the convolution of the two,
sinc ∗ (1− sinc) = sinc− sinc ∗ sinc = sinc− sinc = 0 vanishes not just at zero lag, but at
all lags. That is powerfully strong orthogonality too. Theoretically, high and low frequency
components of the data are orthogonal at every frequency and at every lag. What would
the experimentalist have to say? The experimentalist would look in the time domain at
the low frequency function and at the high frequency function and say, “Everywhere I look
at these two functions they are the same. They can’t be orthogonal. They have a massive
amount of crosstalk.” Of course the two functions are not exactly the same. They have
opposite polarities, and they are not the same at the origin point. But everywhere else they
look the same. We don’t like it. These signals should not be coherent but they are.

I first encountered this crosstalk issue in a serious geophysical application of a very
simple nature. The lack of a good place for crosstalk in the theoretical framework was
blatantly obvious.
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Lake example

A depth sounding survey was made of a lake. A boat with a depth sounder sailed a gridwork
of passes on the lake. Upon analysis the final image contained obvious evidence of the survey
grid. Oops! We should always hide our data acquisition footprint. The footprint is not the
geography or geology we wish to show. How did this happen? We guessed the water level
changed during the survey. Perhaps it rained or perhaps the water was used for agriculture.
Perhaps the wind caused the lake to “pendulum” (seiche). Perhaps the operator sat in
the front of the boat, or sometimes its back, or ran it at various speeds giving the depth
measurement a different bias. Our data measured the difference between the top and the
bottom of the lake; yet we had no idea how to model the top. Eventually we modeled
the top as an “arbitrary low frequency function” in data space (a one dimensional function
following the boat). This got rid of the tracks in the model space (map space) but led to
much embarrassment. It was embarrassing to discover that the geography (as seen in data
space) was correlated with the lake surface (rain and drain).

Let us express these ideas mathematically: d is the data, depth along the survey coordi-
nate d(s). Here s is a parameter like time. It increases steadily whether the boat is sailing
north-south or east-west or turning inbetween. The model space is the depth h(x, y). There
will be a regularization on the depth, perhaps 0 ≈ ∇h(x, y).

For the top of the lake with the ship we need some slowly variable function of location s.
It’s embarrassing for us to need to specify it because we have no good model for it. So, we
specify a slowly variable function u = u(s) by asking a random noise function n = n(s) to
run thru a low frequency filter, say L. We are not comfortable also about needing to choose
L. We call the function u = Ln the rain and drain function. We take the regularization
for the unknown n to be 0 ≈ n. (Least squares will tend to drive components of n to
similar values, and under some conditions likewise the spectrum of n will tend to white, so
we expect (and often find) the spectrum of u comes out that of L.)

The operator we do understand very clearly is the geography operator G. Given we
wish to make a theoretical data point (water depth), the geography operator G tells us
where to go on the map to get it. Of course each of the two regularizations 0 ≈ ∇h(x, y)
and 0 ≈ n has its own epsilon which is annoying because we need to specify those too.
With all these definitions our unknowns are the geography h and the noise n that builds
us a drift function. Our data fitting goal says the data should be the separation of the top
and bottom of the lake.

0 ≈ Gh + Ln− d (1)

In my free on-line textbook GEE all this seemed rather conventional and rather fine.
Our embarrassment came when we compared the geographically modeled part of the data
Gh to the drift (rain and drain) modeled part of the data Ln. They were visibly correlated.
This is crazy! The boat being in deep water should not correlate with rain (or drain). We
needed to add an ingredient to the formulation saying u = Ln should be orthogonal to Gh
(which is practically the same as d) in some generalized sense. Let us see how this might
be done.
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A regression to minimize crosstalk

Observing the geographically modeled data Gh correlating with the data drift u = Ln we
wish to articulate a regression that says they should not correlate. Since the drift u is a
small correction to the data d, in other words Gh ≈ d, we can simplify the goal by asking
that the dot product of d with u should vanish, vanish not necessarily over the entire data
set; but that it should vanish under many triangular weighed windows.

Let us define D as a diagonal matrix with d on the diagonal. This may be a little
unfamiliar. Often we see positive weighting functions on the diagonal. Here we see data
(possibly with both polarities) on the diagonal. Additionally, let us define a matrix T of
convolution with a triangle. Columns of T contain shifted triangle functions, likewise do
rows. Take t′ to be any row of T. Then t′D is a row vector of triangle weighted data. We
want the regression 0 ≈ t′Du for all shifts of the triangle function. The way to express this
is:

0 ≈ (TD)u (2)
0 ≈ (TD)Ln (3)

Hooray! Now we know what coding to do! But first, to better understand the regression
(2) imagine instead that T is a square matrix of all ones, say 1. That would be like super
wide triangular windows. Then every component of the vector 1Du contains the same dot
product d · u. Using T instead of 1 gives us those dot products under a triangle weight,
each final vector component having a shifted triangle.

What is a good name for TD? It measures the similarity of d and u. It might be
called the “data similarity” operator. What is a good name for its adjoint DT? Assuming
whatever comes out of T is a smooth positive function, then DT is a data gaining operator
(its input being a gain function). Do we have any geophysical problems where the unknown
is the gain?

Crosstalk in a more general context

We seemed to escape nonlinearity in the lake depth sounding example above, but that was
a lucky accident. Since the data there was mostly explained by geography with a small
perturbation by rain and drain, the crosstalk while fundamentally nonlinear was practically
linear. More generally anti-crosstalk strategies seem little (if ever!) developed because
they lead us directly into nonlinear regression. Let us work through the general case, the
nonlinear theory.

Consider data d a shot gather or CMP gather. We might choose to model it as reflections
(hyperbolas) d1 plus linear events d2 (noises or head waves). We might thus set up the
regression

0 ≈ d1 + d2 − d (4)
0 ≈ F1m1 + F2m2 − d (5)

Of course we need some damping regularization on m1 and m2 which for simplicity of ex-
position I will take to be 0 ≈ m1 and 0 ≈ m2. Is that all there is to this problem? Not
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necessarily. We’ll be annoyed if we discover a lot of cross talk between d1 and d2. Two
different physical mechanisms are supposed to have created our data. We’ll be annoyed to
discover they both make the same contribution or that they make opposite contributions.
The regularization should reduce (or prevent) the contributions from coming out opposite.
If they are opposites, it could represent our lack of analytic skills in formulating the regu-
larization, or it could represent our need for the anti-crosstalk methodology being proposed
here.

We’d like that the modeled data parts d1 and d2 do not ”look like” each other. It’s
not enough that the dot product d1 · d2 vanish. That dot product should be small under
all shifted (say triangular) weighting windows. Since d1 is a linear function of the model
m1 and likewise for d2, the orthogonality we seek involves the product of m1 with m2 so
our goals are a non-linear function of our unknowns. Never fear. We have done non-linear
problems before. They don’t turn out badly when we are able to define a good starting
location (which we do by solving the linearized non-linear problem first).

The full non-linear derivation

For warm up we linearize in the simplest possible way. Suppose we allow only m1 to vary
keeping m2 fixed. We put d2 on the diagonal of a matrix, say D2. The regression for
anti-crosstalk is now

0 ≈ TD2d1 (6)
0 ≈ TD2F1m1 (7)

Define the element-by-element cross product of d2 times d1 to be d1 × d2. Now let us
linearize the full non-linear anti-crosstalk regularization. Let a single element of d1×d2 be
decomposed as a base plus a perturbation d = d̄+d̃. A single component of the vector d1×d2

is (d̄1 + d̃1)(d̄2 + d̃2). Linearizing the product (neglecting the product of the perturbations)
gives

d̄2d̃1 + d̄1d̃2 + d̄2d̄1 (8)

This is one component. We seek an expression for all. It will be a vector which is a product
of a matrix with a vector. We want no unknowns in matrices; we want them all in vectors
so we will know how to solve for them.

D̄2d̃1 + D̄1d̃2 + D̄1d̄2 (9)

Express the perturbation parts of the vectors as functions of the model space

D̄2F1m̃1 + D̄1F2m̃2 + D̄1d̄2 (10)

This vector should be viewed under many windows (triangle shaped, for example). Under
each window we hope to see the product have a small value. The desired anti-crosstalk
regression is to minimize the length of the vector below by variation of the model parameters
m̃1 and m̃2.

0 ≈ T(D̄2F1m̃1 + D̄1F2m̃2 + D̄1d̄2) (11)

This regression augments our usual regularizations. Perhaps it partially or significantly
supplants them. Unfortunately, it requires yet another epsilon.

Upon finding m̃1 and m̃2 we update the base model m̄← m̄ + m̃ and iterate.
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Outlook

Many examples suggest themselves.

1. We might model reflection data as a superposition of primaries and multiples. We
might model it as a superposition of pressure waves and shear waves.

2. In tomography we might model event flatness as a superposition of shallow and deep
slownesses. The shallow and deep slownesses have wholly different causes separated
by millions of years. They should not show crosstalk.

3. The problem of segregating signal and noise offers many examples. We’d like to see
signal containing no evident noise and vice versa.

4. In time-lapse seismology we would like to see the the image change unpolluted by
the original image. Unfortunately, the methodology proposed here does not allow for
time-shifted crosstalk.

Getting started

As the concepts here are quite new to us, the first thing we should do is cook up some
super simple synthetic examples. With working synthetic codes in hand we should see if we
can go ahead and repair the Galilee survey. Hopefully we’ll recognize we have built some
reusable software to facilitate other projects.

Getting started will not be easy. Most commonly we have a simple synthetic example
under control and struggle to find an appropriate real data set. Here we have a suitable
beginners’ data set (Galilee) but we need to find a synthetic data set to provide examples
that give clarity to the whole process. Just one issue is dealing with the relative scaling
of the three regularizations. We’d like meaningful examples where only one or two of the
regularizations are actually required.

There are many paths to explore with anti-crosstalk technology. Besides the many
potential applications one can hope that the anti-crosstalk regularization eliminates (or
reduces) the need for the usual regularizations. That would be nice if true. The need to
specify a suitable regularization is often what makes it difficult to automate data analysis
based on inversion.

I’m worried about the job as I defined it for the first-year SEP students. Given the
linearization I suggested to them, did they know how to measure success?
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Seismic investigation of natural coal fires: A pre-fieldwork
synthetic feasibility study.

Sjoerd de Ridder and Seth S. Haines

ABSTRACT

Natural underground coal fires are a world-wide concern, emitting carbon dioxide and
other pollutant gasses into the atmosphere; one such coal fire is located at Durango,
Colorado. We carried out elastic modeling in order to investigate the potential of
applying P-wave seismic methods to the problem of differentiating between burned
and unburned coal in the upper ∼30 m of the subsurface at the site near Durango.
This is a challenging problem for any geophysical method, but preliminary modeling
results show that the problem is tractable under certain circumstances. Our highly
simplified model suggests that imaging the coal layer can potentially be accomplished
with adequately high frequencies (source center frequency > 125 Hz); imaging the
actual burned zone would be more difficult. The model neglects the major near-surface
heterogeneity known to exist at the site; features such as fissures would surely result
in diffractions and reflections that could obscure much of the desired signal.

INTRODUCTION

Ongoing research at a site outside Durango, Colorado, is focused on characterizing and
modeling a coal bed that has been burning underground for a number of years. The goal is
to develop an understanding of how coal fires burn for the purpose of designing optimum
solutions for extinguishing coal fires around the world. The unique aspect of this particular
fire is that it is small-scale and easily accessible. We were asked whether seismic methods
could potentially provide useful information at the site, ideally as a way to map the burned
and unburned coal. Any related information would be useful, such as mapping only the
unburned coal, and/or locating fissures and other subsidence features that might not reach
the surface.

We conducted elastic modeling to simulate a P-wave seismic survey at the site, to assess
the likelihood of successfully applying seismic methods to this problem, and to determine
optimal parameters for any field data acquisition. The model is highly simplified given that
it neglects the fissures and other overburden heterogeneity. The main target is the partially
burned coal layer.

The site is roughly 300m by 100m. Researchers of the Global Climate & Energy Project
at Stanford University (GCEP, 2008) have been studying the site using a number of different
approaches to understand the progression of the fire over time and try to predict its likely
future trends. One approach has been the mapping of surface anomalies across the site –
mainly fissures resulting from the compaction of the ash as the coal burns. Researchers
have also drilled a total of 14 wells across the site, in areas where they know the coal has
burned, where they think the burn front is located, and in unburned areas. A 100 ft core
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was recovered from one of these wells. Five wells have geophysical logs (caliper, gamma and
density), and rock cutting samples were taken at 5-ft intervals in all the wells.

The coal bed is approximately 5 m thick where it is unburned and closer to 2-4 m thick
where it has burned. It outcrops northwest of the site and dips to the southeast. In the
area of the site itself, the coal bed ranges from approximately 10 m depth to approximately
30 m. Wells showing ash are predominantly in the northwest (up-dip) end of the site, with
unburned coal located down-dip. The coal bed is embedded within a sandstone formation
that also includes some shale layers. A thin unconsolidated layer composed of rocky soil up
to approximately 1.5 m thick overlies parts of the site.

We present specifics of our elastic model, and then present the resulting synthetic data.
We examine the data in various domains, and show a brute stack of the data set. Finally,
we discuss our findings in relation to the original question, and consider the impacts of
neglected aspects of the modeling.

ELASTIC MODELING

We have used the code e3d, described by Larsen and Grieger (1998), to simulate a seismic
survey at the coal fire field site. E3d is an explicit 2D/3D elastic finite-difference wave-
propagation code that is widely used (e.g., Martin et al., 2006). It is accurate to fourth
order in space and second order accurate in time.

Figure 1: Subsurface structure; a dipping, partially burned (grey) coal (black) layer. P and
S wave velocities are given in Table 1. [NR] sjoerd2/. Vmodel

Figure 1 shows the layout of our 2D model space, with layer properties shown in Table
1. A 5m thick layer of coal, half burned, dips 10◦ across a background of sandstone. We
synthesized a seismic survey across the model with shots and receivers at 1-m spacings. The
source is a vertical force with the waveform of a 125-Hz Ricker wavelet. This is intended to
simulate a better-than-average sledgehammer impact. The frequency of a real sledgehammer
impact is likely to be considerably lower and the waveform completely dependant on the
local conditions. The receivers record both vertical, Vz, and horizontal, Vx, (in-plane)
components of particle velocity. In this report we focus on the vertical (PP) component
but include the horizontal component for interested readers. The model neglects the major
near-surface heterogeneity like soil layer, shale layers and fissures known to exist at the site.
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DATA

Figure 2 shows a pair of shot gathers for a shot at position 150 m, directly over the end of
the burn front. The reflection arriving at ∼0.03 s at zero offset is the reflection from the top
of the coal seam. The reflection from the base of the coal very closely follows the reflection
from the top, and the two interfere. Multiples dominate the remainder of the record. In
the common-offset domain (Figure 3) we see clear, though faint, diffractions from the end
of the coal and note that the reflection from the base of the coal/ash layer is difficult to
discern here as well. To the right of 150 m, the reflections from the top and bottom of the
coal combine to create the observed pattern of interfering surface and reflected waves. To
the left of 150 m, the basal reflection is obscured by the multiples. At 150 m, we can just
see the basal reflection diving away due to velocity pull-down. The jumbled patterns at the
left end of the shot gather and common-offset gather are observed where the ash layer crops
out at the surface.

A quick processing flow (f -k filter with high-cut of ω
kx

= 1250 m/s for surface waves,
and with NMO correction but no DMO or migration) yields the stacked section in Figure
4. The reflection from the top of the coal/ash layer is clearly observed. The slight lateral
change observed at position 150 m is due to the change from ash to coal, and represents
the velocity pull-down of the basal reflection where low-velocity ash exists. Left of 150 m
the observed reflection is due only to the top of the coal/ash layer. Right of 150 m the
reflection is due to both the top and bottom of the coal.

Figure 5 shows a stacked section low-pass filtered with 100 Hz, to show what we might
see for a lower source bandwidth. It is important to note that 100 Hz is still at the high
end of what can reliably be expected with a sledgehammer (e.g., Miller et al., 1992; Miller
et al., 1994). The reflections for the top and bottom of the coal are much more difficult to
resolve from each other, and would be very difficult to interpret.

DISCUSSION

Our modeling suggests that, with a suitably high-frequency source and optimal field condi-
tions, useful information can be gained from seismic surveys at the Durango coal fire site.
We could realistically hope to discern changes across the burn front such as diffractions;
these would be difficult to interpret because fissures would produce other, possibly stronger,
diffractions. Separately imaging the top and bottom of the coal would be much more useful
and would require frequencies at least as high as those used in the model. A lower source
bandwidth would be inadequate.

Attaining frequencies even as high as those in the model (125 Hz) is difficult in prac-

Table 1: Seismic P and S wave velocities and velocity gradients.
Unit Vp [m/s] ∂zVp[1/s] Vs [m/s] ∂zVs[1/s]
Sandstone 2000 .2 1200 .154
Coal 1200 0.0 800 0.0
Ash 300 0.0 200 0.0
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Figure 2: Shot gather for a shot at 150m. In the horizontal component, we can distinguish
both the S and P surface wave. In the vertical component, we can only distinguish the
Rayleigh wave. At t = 0.03 we see the reflections from the top of the coal layer. [CR]
sjoerd2/. 150sg

tice. With sandstone at the surface, coupling of sources and geophones should be good and
attenuation reasonably low. But in areas where dry rocky soil overlies the sandstone, cou-
pling issues and attenuation would almost certainly filter the higher frequencies in addition
to significantly impacting the propagating wavefront. A successful survey would require
working directly on bare rock (likely gluing geophones into drilled holes) and quite possibly
a high frequency source such as a small vibrator. The application of either of those, would
significantly increase the field-work effort. Attaining sufficiently high-frequency energy with
a hammer is not impossible at this site, but certainly challenging.

The model omits very important known heterogeneity at the site, a key problem that
would surely impact the quality of any acquired data. The fissures extending from the
burned zones to the surface would undoubtedly have a major impact on propagating wave
fields, quite possibly masking the reflections from subsurface features in the burned areas.
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Figure 3: Zero offset gather. Clearly visible is the reflection from the top of the coal/ash
layer. Less clearly and almost unseparated is the reflection from the bottom of the coal
layer, the bottom of the ash layer is not visible. Weak diffractions from the ash-edge are
visible. [CR] sjoerd2/. 0co

These fissures are less common (absent?) above the unburned coal, so we are more confident
in the validity of our results in that part of the model. But shale layers exist throughout
the sandstone in the field area, and could also cause reverberations and spurious reflections
in the data. Thus even under ideal circumstances, where source and receiver coupling are
optimal and source frequencies exceed 100 or even 200 Hz, the recorded waveforms might
be very difficult to interpret.

In addition to the missing fissures, other aspects of the model may be wrong. For
instance, we do not really know what parameters are reasonable for the burned coal; we
simply divided the coal properties by four. But the ash might be better modeled as a void,
which would make a major difference. We could expect stronger diffractions from the edge
of the burned zone. But because the reflection from the coal is already quite strong, not
much difference is expected between the reflections of the burned and not unburned parts
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Figure 4: Stacked section, after surface wave removal and NMO correction. The bottom
of the coal layer is visible, but clearly overlaps with the reflection from the top of the coal
layer. [CR] sjoerd2/. ZOsect

of the coal seam. In any case, the known subsidence and rock changes that exist above the
burned zone at this site and observed at other such sites (e.g., Wolf, 2006) would surely
impact both wave propagation above, and within, the burned zone. The absence of this
heterogeneity in the model is a major simplification of the real case.

We have not simulated an SH-wave survey at the site, an option that should be consid-
ered in any near-surface application. Being strongly sensitive to voids, shear waves might
prove useful in this case. Their lower propagation speed would lead to shorter wavelength
and better resolution for a given frequency, but generation of high frequency sources is even
harder for SH-wave sources than it is for P-wave sources. In addition, the jumbled nature
of the fissured sandstone would likely lead to many spurious S-P conversions that would
complicate interpretation of the observed wave field. Accurately simulating the complexities
of an SH-wave survey at the site would be difficult.
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Figure 5: Stacked section, after surface wave removal and NMO correction. Data are
bandpass-filtered to 100 Hz to more accurately represent possible data. The bottom
of the coal layer, and the difference between coal and ash, is no longer visible. [CR]
sjoerd2/. ZOsectF

CONCLUSIONS

Our modeling results provide important insights into the feasibility of conducting seismic
studies at the Durango coal fire site. The modeling results suggest that under ideal cir-
cumstances, P-wave reflection could successfully image the unburned coal and could help
to constrain the burned zone. Successful data acquisition would likley require thorough
planning and seismic source selection, very careful field procedures including working di-
rectly on the rock surface (not on any soil), and great care to ensure high frequencies. A
key unknown is the impact that fissures and other near-surface uncertainty would have on
the data; these features might completely corrupt the wavefield and render useless data
collected even under the most careful procedures.
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Hubbert math

Jon Claerbout and Francis Muir

ABSTRACT

Hubbert fits growth and decay of petroleum production to the logistic function. Hub-
bert’s relationship is commonly encountered in four different forms. They are all stated
here, then derived from one of them, thus showing they are equivalent.

PREFACE

This article was rejected by Wikipedia. They say an encyclopedia should not contain the
derivation of important equations so we prepared this article for that purpose. The many ref-
erences to this paper (missing here) are web links which may be found at http://sep.stanford.
edu/sep/jon/tarsand/

THE FOUR FORMS OF HUBBERT’S EQUATION

Over the long haul populations grow and decay. To describe the growth and decay of
civilization’s dependence on nuclear and fossil fuels, M. King Hubbert chose an equation
that describes many natural processes. Introduce bacteria to food and their population
will grow exponentially until there no longer is food. As we catch all the fish in the lake
our daily catch will be proportional to the number of remaining fish. Hubbert’s equation
models both exponential growth and decay with a single equation of three parameters to
be chosen from the data. He predicted 52 years ago that worldwide oil production would
be peaking about now (2008). It is.

Hubbert’s math has four different forms which we examine before showing they are
mathematically equivalent.

Basic definitions

We define:

• t is time in years

• Q(t) is cumulative production in billion barrels at year t.

• Q∞ is the ultimate recoverable resource.

• P (t) = dQ/dt is production in billion barrels/year at year t.

• τ is the year at which production peaks.
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• ω is an inverse decay time (imaginary frequency).

The Hubbert’s equation can be expressed in four forms. First, the differential form

dQ

dt
= P = ω Q

(
1− Q

Q∞

)
(1)

This equation is non-linear in Q but it reduces to familiar linear equations near the
beginning and Q ≈ 0 and near the end at Q ≈ Q∞. As production begins and Q/Q∞ is
small, equation (1) reduces to dQ/dt = ωQ which displays exponential growth at a rate ω.
As production ends near Q ≈ Q∞ the non-linear equation reduces to exponential decay. To
prove this fact change variables from Q to q by inserting Q = Q∞ − q. Then evaluate the
result at small q. The form (1) exhibits growth and decay as a dynamic process.

The second form of the Hubbert equation is found by dividing equation (1) by Q. It is
sometimes called the Hubbert Linearization.

P

Q
= ω

(
1− Q

Q∞

)
(2)

The important thing about this equation is that it is linear in the two variables Q and
P/Q. If you have historical measurements of Pi and Qi, you can plot these points in the
(Q,P/Q)-plane and hope for them to reasonably fit a straight line. Fitting the best line to
the scattered points we can read the axis intercepts. At Q = 0 with equation (2) we can read
off the value of the growth/decay parameter ω = (P/Q)intercept. For world oil, according
to Deffeyes (Remember! The references are links on the web version of this paper.) it is
5.3 percent/year. At the other intercept, P/Q = 0 we must have Q = Q∞. According to
Deffeyes, Q∞ is two trillion barrels.

The third form of Hubbert’s equation is the one best known. It looks like a Gaussian,
but it isn’t. (A Gaussian decays much faster.) The current production P = dQ/dt is

P (t) = Q∞ ω
1

(e−(ω/2)(τ−t) + e(ω/2)(τ−t))2
(3)

This is the equation of a blob, also known as “Hubbert’s pimple”, symmetric about the
point t = τ . Asymptotically it decreases (or increases) exponentially towards its maximum
value at the center at t = τ . The function resembles a Gaussian but exponential decay is
much weaker than Gaussian decay. Exponential growth is common in ecological systems
which may also decay exponentially as resources are depleted or predator numbers grow
exponentially.

All that remains is to figure out τ . The Hubbert curve is symmetrical and reaches
its maximum when half the oil is gone. That happens when Q = Q∞/2. In the case of
USA production which has passed its peak we can find the year that Q reached that value
(about 1973). There is some debate about what year world production peaks, but general
agreement is that it is about now (2008). Under Hubbert assumptions the decline curve
is a mirror of the rise curve. That means we start down gently over the next decade, but
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about 25 years from now we hit the inflection point and see a 5 percent/year decline every
year thereafter.

In real life there is no reason for the decay rate to match the growth rate. The decay
could be faster because of horizontal drilling. The decay could be slower because we tax to
conserve or successfully invest in technologies. As liquid oil depletes, society is switching to
mining tar sands.

The Hubbert equation, in all its forms, follows as a consequence of the definition of the
“logistic” function Q(t). It ranges from 0 in the past to Q∞ in the future.

Q(t) =
Q∞

1 + eω(τ−t)
(4)

VERIFICATION THE FOUR FORMS ARE EQUIVALENT

If you buy the idea that your data scatter in (Qi, Pi/Qi)-space is a straight line, then you
have bought equation (2). If you buy any one of equations (1),(2),(3), or (4), then you have
bought them all because they are mathematically equivalent. Starting from the definition
(4) using the rule from calculus that d(1/v)/dt = −(dv/dt)/v2 yields equation (3).

dQ

dt
= P (t) = Q∞ ω

eω(τ−t)

(1 + eω(τ−t))2
(5)

P (t) = Q∞ ω
1

(e−(ω/2)(τ−t) + e(ω/2)(τ−t))2
(6)

which is equation (3).

Equation (4) allows us to eliminate the denominator in equation (5) getting equation
(2)

P/Q = (Q/Q∞) ω eω(τ−t) (7)
P/Q = (Q/Q∞) ω ((1 + eω(τ−t))− 1) (8)
P/Q = (Q/Q∞) ω (Q∞/Q− 1) (9)
P/Q = ω (1−Q/Q∞) (10)

which is equation (2). Multiplying both sides by Q gives equation (1).
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POSTFACE

One day I learned that Firefox had a much better way of zooming web pages, zooming
the pictures too. Knowing that equations are pictures I went to Wikipedia, and looked up
“Fourier Analysis”. I was delighted. A table of equations looked beautiful and could be
zoomed up to a size suitable for public lectures! It was as if html had finally incorporated
math. In reality the math had been done via LaTeX and inserted as photos. Wanting to
have on-line lectures drawn exactly from my books I learned to contribute to Wikipedia
including equations.

At the same time I was reading Deffeyes book “Beyond Oil” (a play on the slogan
“Beyond Petroleum”). I wanted to play with Hubbert’s curve fitting of worldwide oil
production. Francis Muir gave me the algebraic tips I needed. I prepared my contribution
in my “sandbox” and then moved it to the main encyclopedia. One of their volunteer
managers soon found it and didn’t like it. Rather than quote his opinions, I paraphrase
saying “equation derivations do not belong in an encyclopedia.”

So, I gave up and prepared this PDF file instead. It’s not as seamlessly web viewable
as html, but I’m much happier with it – and I am able to include it in this report!

A goal I cannot meet today is to write a single LaTeX file that becomes two things:
(1) print media that is attractive, readable, and contains its web references (perhaps in
footnotes), and (2) a PDF file with references as web links that work. I would like to see
my books and all SEP report articles in this form. I’m not going to develop this myself.
Someone else will do it; and I’ll try to be an early adopter.
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Tar sands: Reprieve or apocalypse?

Jon Claerbout

ABSTRACT

Based on a Hubbert-type analysis two projections are made of tar sands production.
With tar sand production growing at 5%/year total petroleum production declines at
an annual rate of 1-2%. With tar sand production growing at 10%/year total petroleum
production continues rising at almost the historic rate until 2040 followed by a catas-
trophic rate of 50%/decade.

PREFACE

This paper with references as embedded web links may be found at http://sep.stanford
.edu/sep/jon/tarsand/

TAR SANDS

Tar Sands are an amazing resource, mostly in Canada. Already in 2007, 44% of Canadian
petroleum production came from tar sands. The total Canadian resource (not all prod-
ucable) is estimated to be 2.2 trillion barrels. That’s a lot! For comparison producible
world petroleum liquids are estimated at 2 trillion barrels, half of which have already been
consumed. Below are two scenarios for future tar-sands production. The plot on the left
(labeled Malthusian) shows tar sands growing and decaying at the same 5% annual rate that
liquid petroleum has done. The decay of the sum is not severe, roughly 15% per decade,
1-2% per year. The plot on the right (labeled Cornucopian) shows what might happen in
case of laissez-faire or perceived grave urgency, a 10% tar-sands growth rate for 30-35 years
followed by precipitous collapse about 50% per decade.

Unfortunately, of the Canadian 2.2 trillion barrels only 20% is estimated to be recover-
able by strip mining. Having myself seen that the residual output of a tar sand extraction
plant is clean white sand, we may take that resource to be 100% fully recoverable, 440 bil-
lion barrels. Hooray! Unfortunately, what is not reachable by strip mining is more difficult
to recover. I took this to be 25%, so that 80% adds 420 billion barrels.

You may hear, “Tar sands are profitably produced at $28-$44/barrel”. Yes, and there
may be oil in the Middle East that can be produced at $1-$2/barrel. That oil will be sold for
the “market clearing price”. Even if someone could rapidly produce great volumes from tar
sands it would only accelerate the subsequent decline (as the Cornucopian plot shows). Tar
sand production requires monsterous industrial machinery. “Obscene profits” are building
it now.

We neglect here many things. Natural gas is an important resource about the size
of oil with a peak trailing oil by a few decades. Tar sands will need to replace the
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Figure 1: Two scenarios for tar sands exploitation.[NR] jontarsand/. tarannotated

natural gas too! Venezuela has a reserve of heavy oil possibly comparable to Canada’s.
Past nationalization of investments has effectively stopped current investment, but the
oil in place has been quoted as 1.3 trillion barrels with a 20% recovery, netting 260 bil-
lion barrels – a bump a quarter the size of Canada occuring later in time. Shale oil
can be burned like coal. Unfortunately liquifaction of shale oil and world-wide gas hy-
drates are nice to dream about, but there are no functioning demonstration production
facilities anywhere. Recently USGS forecast 1/10 trillion barrels in the arctic, a pim-
ple on the graphs above. Nuclear is not a transportation fuel. Coal (with its own Hub-
bert curve) can be converted to the gaseous fuel dimethyl ether (DMD) particularly suit-
able as a replacement for diesel fuel. Ironically, nuclear, including the fast breeder reac-
tor, including thorium as well as uranium is more fully described by the old-time geolo-
gist Hubbert in 1956 than by today’s Cal Tech physicist and vice provost David Good-
stein in his 2004 book “Out of gas”. http://www.usgs.gov/newsroom/article.asp?ID=1980
http://www.hubbertpeak.com/hubbert/1956/1956.pdf

WILL THIS AFFECT YOU?

You may ask, “What makes you believe these predictions?” The classic paper of M.King
Hubbert, written in 1956 predicted a USA liquid oil peak in 1973. It did peak then. That pa-
per also predicted a world peak about the year 2000, a bit early, but not much. Most recent
predictions [1] [2] calculate twice as much oil as Hubbert predicted, but the peak has moved
only about a decade later, about now. Why does double the oil move the peak so little?
Because so much is depleted in the middle decades. http://www.amazon.com/Beyond-Oil-
View-Hubberts-Peak/dp/080902957X/

Didn’t you assume the total oil in place? Not for the liquids. When the production
peaks, half is gone; the other half is left. There is widespread agreement the production
will soon or has already peaked. For the tar sands resource size I refer to The Petroleum
Society of Canada. http://www.energy.gov.ab.ca/OilSands/pdfs/RPT Chops app3.pdf

The next question is, “Does it matter to me?” I suggest you print this page. Upon the
printed page draw a horizontal arrow from the day you were born to then plus 84 years.
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Then draw the arrows for your parents, your children, and grandchildren.

Poor people will be the first to conserve. After that people with long commutes. After
that comes you. You have some time prepare yourself before the crowds. Don’t waste it!
How much time do we have? If the choice is political between the Malthusian and the
Cornucopian which choice do you think will be made? I fear the disaster. (Sorry.) Would
that the Canadians learned the lesson of the East Texas Oil Field and the Texas Railroad
Commission.

CREDITS

Helpful comments were received from Roland Horne, David Lumley, Amos Nur, George
Sibbald, and Kevin Wolf.

CONFLICT OF INTEREST STATEMENT

The author is an emeritus (retired) professor specialized in the geophysical prospecting
industry, an industry dependent for customers on the oil industry (but little on its tar
sands sector).
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