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ABSTRACT

The need to save or regenerate the source or receiver wavefield is one of the
computational challenges of Reverse Time Migration (RTM). The wavefield at
each time step can be saved at the edge of the damping/boundary condition
zone. The wave equation can be run in reverse, re-injecting these saved points
to regenerate the wavefield. I show that this a better choice than checkpoint
schemes as the domain grows larger and if the computation is performed on a
streaming architecture.

INTRODUCTION

Reverse time migration (Baysal et al., 1983; Etgen, 1986) is quickly becoming the
high-end imaging method of choice in complex geology. One of the computational
challenges of RTM is that the source wavefield is propagated forward in time (0 to
tmax) while the receiver wavefield is propagated backwards in time (tmax to 0), yet the
imaging step requires these two fields to be correlated at each time t. Storing one of
the wavefields in memory is impractical for 3-D problems. The most obvious solution
is to store the wavefield at each imaging step on disk. This requires significant disk
storage on each node and can cause the problem to quickly become Input/Output
(IO) bound. Symes (2007) proposed a checkpointing scheme where a smaller number
of snapshots are stored to disk and intermediate wavefield are regenerated. Another
approach, alluded to in Dussaud et al. (2008), is to save the wavefield at boundaries
of the computational domain and to re-inject them.

In this paper, I demonstrate how to implement a boundary re-injection scheme. I
discuss the computational tradeoffs of boundary re-injection vs. a checkpoint scheme
and conclude that, as the computational domain increases in size, the boundary
method proves superior.

REVERSE TIME MIGRATION REVIEW

Reverse time migration is an attractive imaging method because it does not suffer
from the limitations of the Kirchhoff and downward continuation based imaging ap-
proaches. A single, or even multiple, travel-time can not accurately describe wave
propagation in complex media, making Kirchhoff methods ineffective under salt. The
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angle limitation, and difficulty/inability to handle multiple bounces limits the effec-
tiveness of downward continuation based methods with complex structures.

Algorithm

The basic idea behind RTM is fairly simple: we are reversing the propagation exper-
iment. Given data d recorded from 1...nt with sampling dt, we begin by re-injecting
into our earth model that data recorded at nt. We then propagate this data back
into the earth a length in time dt. We can imagine storing the current status of the
receiver wavefield Wr into the last elements of 4-D volume in terms of x, y, z, t. We
then re-inject at the surface data recorded at nt− 1. We follow this procedure until
we have re-injected to the first time sample.

We also need to simulate the source portion of the experiment. We input at the
source location of the earth model the first sample of the source pulse. We then
propagate the wavefield dt, insert the next sample of the source pulse and continue
until we have reached dt ∗ nt time. At each dt we store in a second wavefield array
Ws the wavefield at each time sample. The zero offset migrated image I is formed at
each iz, ix, iy location by

I(ix, iy, iz) =
nt∑

it=0

Ws(ix, iy, iz, it)Wr(ix, iy, iz, it). (1)

.

Cost

The major disadvantage of RTM is that the cost is generally thought to be an order
of magnitude more expensive than wave equation or Kirchoff alternative. Calculating
the cost of the various imaging methods is a tricky proposition. In general people
use two different metrics for comparing cost. The first is to simply count operations;
the second counts the number of memory access requests. Which method is appro-
priate depends on whether you are saturating the memory bus or computation units.
Kirchhoff migration is more likely to be limited by memory access, while downward
continuation is usually limited by the computational units.

In today’s world of multi-core, many-core, streaming architectures a third metric
needs to be applied: how parallelizable is the method? This is in many ways a
more difficult assessment because it strongly depends on the type of hardware and
the type of parallelization. Many-core and streaming architectures are most effective
with problems that are compute-bound and can have a high level of fine-grained
parallelism. ? showed how downward-continuation based methods can be limited by
the data-dependency of the FFT.

The main cost of RTM is advancing the wavefield in time. This is usually done
by solving the wave-equation using finite-differences. The basic idea is to start from
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some version of the wave equation, for example the acoustic version where u is the
wavefield,

∂2u

∂t2
= v2(

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
). (2)

Each second derivative is approximated by doing a Taylor (or similar method) ex-
pansion. The difference approximation affects the accuracy of the propagation along
with the required sampling of the wavefield in time and space to maintain stability
and avoid dispersion. In general, a much higher order accuracy approximation is used
in the space domain than the time domain, often from 6th to 14th order. The filter
implied by this approximation can be quite large, from 19 to 43 points in size, and
is the dominant computational cost. On the other hand, the structure of the com-
putation is quite simple with virtually no data-dependency, and amenable to a very
high level of fine-gain parallelism. As a result it is ideal for many-core and streaming
architectures. The speed advantage of FFT and sparse matrix (Kirchoff) approaches
diminishes significantly with these platforms.

As the speed of the wavefield propagation increases, a new bottleneck appears
in a standard RTM implementation. First, the size of Wr and Ws are well beyond
a conventional system’s memory. In addition, note how Wr and Ws are filled in
reverse order. The receiver wavefield stores nt, nt − 1, ...1 while the source is filled
1, 2, ...nt− 1, nt. The obvious solution is to store one of the two fields (from now on I
will choose the receiver wavefield) to disk. This requires a large but feasible amount
of storage. The problem is that writing to disk is orders of magnitude slower than
accessing memory. With an optimized implementation of the propagator, reading
and writing the wavefield becomes the bottleneck.

The most common solution to this problem is to save a subset of the receiver
wavefields. ? describes an ‘optimal’ checkpointing scheme which minimizes the total
number of imaging wavefields that need to be recomputed by storing a series of check-
points either in main memory or on disk. A similar approach is linear checkpointing
which stores every jt imaging steps where jt is a function of the amount of memory
on the system.

SAVING THE BOUNDARY

Another approach is regenerating the wavefield, taking advantage of the reversibility
of the wave equation. For example, imagine using a second order in time finite-
difference scheme. Given the wavefield at the current time wt and previous time
wt−∆t we can find the wavefield at the next time wt+∆t through

wt+∆t = wt−∆t + wt + Lwt, (3)

where L calculates the second derivative. We can reverse wt−∆t and wt in equation 4
to find thew wavefield at wt−2∆t,

wt−2∆t = wt + wt−∆t + Lwt−∆t. (4)
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Figure 1: Panel ‘A’ shows a wavefield at time t, panel ‘B’ shows the wavefield after
2t at which stage the calculation is reversed. Panel ‘C’ shows the regenerated data,
again at time t. Panel ‘D’ shows the difference between the regenerated wavefield and
the original wavefield. [ER]

Figure 1 demonstrates this property. Panel ‘A’ shows a wavefield at time t, panel
‘B’ shows the wavefield after 2t at which stage the calculation is reversed. Panel ‘C’
shows the regenerated data, again at time t. Panel ‘D’ shows the difference between
the regenerated wavefield and the original wavefield (with the clip at 1/10th panels
‘A’,‘B’, and ‘C’. Note that even energy that has hit the boundary has been handled
correctly.

The problem comes when we attempt to kill energy entering the boundary. No
longer is our time reversal scheme valid, as equation 4 does not fully describe what
is being applied to the wavefield. Figure 2 demonstrates this concept. In this figure
a damping boundary condition has been applied. Note how the wavefield and the
reconstructed wavefield vary significantly.

Figure 3 demonstrates a way to solve this problem. Imagine our first time reversal
step. The grey area represents cells where a boundary condition is being applied. Any
locations where the filter implied by L touches a grey region will lead to incorrect
reverse propagation. The area in black in Figure 3 show regions which uses cells
where the boundary condition has been applied. If we save the wavefield from the
forward propagation in the black region, we can substitute them in when doing the
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Figure 2: Panel ‘A’ shows a wavefield at time t, panel ‘B’ shows the wavefield after
2t at which stage the calculation is reversed. Panel ‘C’ shows the regenerated data,
again at time t. Panel; ‘D’ shows the difference between the regenerated wavefield and
the original wavefield. In this case a damping boundary condition has been applied
around the edges of the domain. [ER]

reverse propagation. Figure 4 shows the result of this save and replace scheme. Note
how we achieve a perfect result everywhere except the damping zone.

Note how the size of the black region is a single sample, while as previously noted,
we tend to use a high order approximation in the space domain (which would make
the black area larger). For this example I reduced the derivative approximation as
I approached starting from 10th order solution and going to a second order at the
boundary between the damped and undamped region. As a result only a single point
along the boundary sees the damped region.

BOUNDARY VS. CHECK-POINTING

There are several metrics in comparing the ‘cost’ of using checkpointing vs. bound-
ary saving approach. These are the amount of disk IO, IO throughput required, the
amount of main memory needed for an optimal solution, and the ease of implemen-
tation. I will compare the linear checkpointing vs. boundary saving approach, but
the optimal approach would behave similarly.
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Figure 3: Computational grid for
propagation. Grey area is cells ef-
fected by applying boundary con-
ditions. Black area is cells that are
saved and re-injected. [ER]

To setup the comparison let’s assume that n is the length of the domain in x, y, and
z. We have nt propagation steps, ji is the the number of propagation steps between
imaging steps, and for the checkpointing scheme we will save every jc imaging time.
Each approach does the same amount of propagation step nt ∗ 3. The amount of disk
required for the checkpointing mc scheme is

mc =
2 ∗ nt ∗ n3

ji ∗ jc
. (5)

For saving the boundaries we need to save slices around the edge of the cube rather
than the entire cube, but we need to save at every time step. The memory requirement
mb is then

mb = 6nt ∗ n2. (6)

Checkpointing requires less disk when we save less than every n
3∗jt∗jc steps. Put

another way, the larger the migration aperture the more advantageous saving the
boundaries.

Checkpointing requires larger volumes, but less frequent reads; buffering read
requests are a necessity with a checkpoint approach, but add to memory requirements.
For true streaming hardware this can still be problematic because the entire buffer
must be re-passed to the streaming engine. The boundary approach requires a much
smaller volume to be passed continuously.

The memory requirement of the two systems is significantly different. The check-
pointing scheme must redo the propagation in the same direction or suffer problems
at the boundaries. This means that we must save jc copies of wavefield volume in
memory, exchanging disk space for memory space. Again, this can be problematic if
the imaging step is done with a hardware accelerator. It requires the volume to be
read from disk and passed to the accelerator and each imaging step to be passed back
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Figure 4: Panel ‘A’ shows a wavefield at time t, panel ‘B’ shows the wavefield after
2t at which stage the calculation is reversed. Panel ‘C’ shows the regenerated data,
again at time t. Panel ‘D’ shows the difference between the regenerated wavefield
and the original wavefield. In this case a damping boundary condition has been
applied around the edges of the domain and the wavefield within this region has been
re-injected. [ER]

to main memory, then sent back to that accelerator for producing the image. In the
boundary saving approach the computations are done in the same directions, greatly
reducing communication requirements.

Neither scheme is difficult to implement on a conventional CPU. Checkpointing
benefits more from smart overlapping IO and compute but this doesn’t add significant
complexity. On accelerators the checkpointing scheme, with its significant additional
data movement, is significantly more difficult to implement and optimize.

CONCLUSIONS

RTM lends itself well to fine grain parallelism and hardware acceleration technologies.
Disk IO becomes the bottleneck with faster wavefield propagation. Checkpointing and
saving boundary regions can reduce the IO cost while increasing the compute cost.
For large problem saving the boundary is the more efficient mechanism.
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