Many-core and PSPI: Mixing fine-grain and
coarse-grain parallelism

Ching-Bih Liaw and Robert G. Clapp

ABSTRACT

Many of today’s computer architectures are supported for fine-grain, rather than
coarse-grain, parallelism. Conversely, many seismic imaging algorithms have been
implemented using coarse-grain parallelization techniques. Sun’s Niagara2 uses
several processing threads per computational core, therefore the amount of mem-
ory per thread makes a strict coarse-grain approach to problems impractical. A
strictly fine-grain parallelism approach can be problematic in algorithms that
require frequent synchronization. We use a combination of fine-gain and coarse-
grain parallelism in implementing a downward continuation based migration al-
gorithm on the Niagara2. We show the best performance can be achieved by
mixing these two programing styles.

INTRODUCTION

Seismic imaging problems lend themselves well to coarse-grain parallelism. Kirchoff
migration can be parallelized by splitting the image space (and/or data space) over
many processing units. Downward continuation based migration can be parallelized
over frequency. Flavors of downward continuation and reverse time migration can
be further parallelized over shot or plane wave. All of these parallelism methods
can be described as ‘coarse-gained’. Coarse-grained parallelism fits well the cluster
computing of the last decade. Several exciting new architectures including Nvidia’s
Grahic’s Precision Unit (GPU), IBM’s cell, Field Programable Gate Arrays (FPGA),
and Sun’s Niagara platform are more aimed at a fine-grained parallelism model. These
platforms can have threads in the 10s-100s often making coarse-grain parallelism
impractical because of memory constraints. Early results (Pell et al., 2008) on these
architecture’s are promising but implementation can be challenging.

Downward-continuation based migration (Claerbout, 1995) is a more challenging
imaging algorithm to implement on a fine-grained parallel machine. The challenge
in the implementation comes from the 2-D (shot-profile, plane-wave) 3-D (common-
azimuth), or 4-D (narrow-azimuth, full-azimuth) FFT. The implicit-transpose and the
non-uniform data access pattern does not easily port to FPGA and GPU solutions.
The multi-thread per core approach of the Sun Niagara2 offers an easier parallelism
route.

SEP-136

Liaw and Clapp 2 Niagara?2

In this paper we demonstrate that the optimal solution for PSPI migration on the
Niagara2 is by mixing the coarse-grained and fine-grained parallelism models. We
begin by presenting an overview of the Niagara2 architecture and the PSPI algorithm.
We show how some portions of the PSPI algorithm benefit from Niagara’s multiple
threads per core while others show only minimal improvement. We conclude by
discussing the bottlenecks to further efficiency improvements.

NIAGARA2 OVERVIEW

Niagara2 is the second generation innovative CMT, Chip Multi-Threading, CPU de-
sign from Sun Microsystems, Inc. It has eight computation cores with 4 Megabytes
of shared L2 cache and 4 dual channel FBDIMM memory controller. It also contains
integrated networking units, PCI-Express unit, embedded wire-speed cryptography
coprocessor, and built-in virtualization supports. Each core has two integer execu-
tion pipes and one floating point execution pipe shared by eight fine-grained hardware
threads. In all, Niagara2 sports 64 hardware threads and combines all major server
and network functions on a single chip and is well suited for power efficient secure
data-center and thread level parallel computing applications.

The idea behind the chip design is that most applications are memory bound, most
of the time is waiting to retrieve memory from the either cache or main memory. By
having several (in this case eight) simultaneous tasks attached to each processing unit
you can hide the memory latency. Figure 1 illustrates this concept. The "M’ shows a
thread waiting for a memory request while the 'C’ shows computation. At each clock
cycle computation is being performed and the time associated with memory requests
are hidden.

Thread ||C|/M|M|M|[M|M|M|M|C|M|M|M|M|M
Figure 1: The idea behind the Ni- Thread 2|M|Cc|M[M|M|MIMIM|M|CIMIMIMIM
agara architecture. The "M’ shows Thread 3IM|M|c[MIMIMIMIMIMIMIcIMIM|M
a thread waiting for a memory re- Thread 4lMIMIMIcIMIMIMIMIMIMIMIcIMIM
quest while the 'C’ shows compu- Thread 5/MIMIMIMIcIMIMIMIMIMIMIMICIM
tation. At each clock cycle com- Thread 6/MIMIMIMIMICIMIMIMIMIMIMIMIC
putat'lon is be}ng per.formed and Thread 7IMIMIM MM MTC MMM M MM
the time assoglated with memory Thread 8IM MM MM MM M v o v
requests are hidden. [NR] Cyele

The Niagara2 platform performs well on an application when two requirements are
met. First, that the problem is truly memory bound. This is a function of memory
access speed, memory hierarchy, and the compute engines of a given core. Second,
the parallelism granularity of the application cannot require a siginificant level of
synchronization.

SEP-136

Liaw and Clapp 3 Niagara?2

PSPI MIGRATION

Downward continued migration comes in various flavors including Common Azimuth
Migration (Biondi and Palacharla, 1996), shot profile migration, source-receiver mi-
gration, plane-wave or delayed shot migration, and narrow azimuth migrations. For
downward continued based migration there are four potential computational bottle-
necks that vary depending on the flavor of the downward continuation algorithm.
The Phase-Shift Plus Interpolation (PSPI) method is one of the easier methods to
implement. The computational cost is dominated by the cost of downward propa-
gating a wavefield at a given frequency w, a given depth step z. Within this loop
the wavefield is Fourier transformed, a correction term in the FX domain is applied,
and the wavefield is downward continued in the FK domain. Pseudo code for the
algorithm takes the following form,

Loop over w{ !CORASE
Loop over z{
Loop over source/receiver{
Loop over v{

FX IFINE
IFFT !FINE
FK IFINE
+
FFT IFINE
+
X
i

In many cases the dominant cost is the FFT step. The dimensionality of the FFT
varies from 1-D (tilted plane-wave migration (Shan and Biondi, 2007)) to 4-D (narrow
azimuth migration (Biondi, 2003)). The FFT cost is often dominant due its nlog(n)
cost ratio, n being the number of points in the transform, and the non-cache friendly
nature of multi-dimensional FFTs. The FK step, which involves evaluating a square
root function and performing complex exponential is a second potential bottleneck.
The high operational count per sample can eat up significant cycles. The FX step,
which involves a complex exponential, or sine/cosine multiplication, has a similar,
but computationally less demanding, profile.

RESULTS

For this test we used a Common Azimuth Migration (CAM) variant of the PSPI
algorithm discussed above. The FK, FX, and FF'T are all performed on a 3-D field.
We began from a code that used coarse-grain parallelization over frequency. We used
a relatively small domain size (574x256x52) which is well beyond the L2 cache of the
system but still allowed a large series of tests to be run in a reasonable amount of time.

SEP-136

Liaw and Clapp 4 Niagara?2

Figure 2 shows the normalized performance of the entire algorithm as a function of
coarse-grain threads. Note how we achieve linear speed up all the way to 9 threads.
Going beyond 9 coarse threads was not possible given the machine’s memory.

Figure 2: Performance as a func-
tion of the number of coarse-
grained threads. [NR]

SouURWUOJdDd

[av)
w
S
(o))
D
-3
@
w4

Coarse threads

We then parallelized the FX, FK, and FFT routines. The FK and FX routines are
sample by sample operations well suited to fine-grain parallelism and generally trivial
to parallelize using the pthreads library. For the FFT, we used Sun’s prime factor FFT
rather than FFTW. The single-thread performance of the Sun’s library was nearly
double FFTW’s performance. Figure 3 shows the normalized performance as the
number of fine-grain threads increase. Note how we achieve nearly no performance
gain after 32 threads. Figure 4 explains the lack of improvement. It shows the
performance of the FFTW, FK, and FX steps portion of the algorithm. After 20-25
threads the FFT shows no performance improvements. This is not surprising due to
the synchronization inherent in the FFT algorithm.

91

Figure 3: Normalized perfor-
mance as a function of the number
of fine-grained threads. Note that
little performance gain is achieved
after 32 fine-grain threads. [NR]

21

QoURWUO IS d
8
L

g

0 5 10 15 20 25 30 35 40 45 50 55

Fine threads

As a final test we combined the coarse-grained and fine-grained approaches. Fig-
ure 5 shows the maximum performance as a function of coarse-grain threads n.. For
each coarse-grain thread we used n fine-grain threads where n = floor(63/n.), max-
imizing the available threads on the machine. Note that the graph is normalized

SEP-136

Liaw and Clapp) Niagara?2

Ge

o€

Figure 4: Performance as a func- .
tion of the number of fine-grained
threads for different parts of the
algorithms. Not the nearly linear
speed up of the FK and FX steps
while performance peaks for the
FFT at 20 threads. [NR] o

Gz

02
L

SouURWUOJdDd
GT

T T T T T T T T T T
Q 5 10 15 20 25 30 35 40 45 50 565
Fine threads

by the single thread performance. Peak performance was achieved using 6 or more
coarse-grain threads. Figure 6 shows the break down by function. Not surprisingly,
the FK and FX step show nearly constant performance independent of the number
coarse-grain vs. fine-grain threads. On the other hand the FFT benefits from less
fine-grained parallelism bringing up the overall total performance of the algorithm.

0e
L

82
L

Figure 5: Performance as a func-
tion of number of coarse-grain
threads. The number of fine-
grain ny threads per coarse-grain
n. threads is ny = floor(63/n.).
[NR]

92
L

2oURWUOJID Y
Ve

22

02
L

81

1 2 3 4 5 6 7 8

Coarse threads

As a comparison we run the same code on 4-core 1.8GHz, dual processor intel ma-
chine. Running 8 coarse-grain threads and normalizing in terms of the the Niagara2
single thread results we found:

’ Segment \ Relative speed ‘

FET 23.9
FX 10.9
FK 61.8
Total 23.9

In general the code scaled linearly with number of processors.The FX ratio was low
compared to the Niagara because of the significant memory requests (due to the

SEP-136

Liaw and Clapp 6 Niagara?2

Ge

Figure 6: Performance of dif-
ferent routines with the PSPI
algorithm as a function of the
number of coarse-grain threads.
Note how the FFT benefits the
most from more coarse-grain par-

allelism. [NR]

G2 [0
L L

SouURWUOJdDd

02
L

Gl

1 2 3 4 5 6 7 8

Coarse threads

velocity correction), something that the Niagara2 archetecture is well designed for.
The FK number was large due to the vector nature of the computation and its high
floating point operation count.

Improving the floating point and vector potential of the Niagara architecture could
have a large impact on these results. Both the FFT and the FK steps involve sig-
nificant floating point computations. The synchronization requirements of the FFT
algorithm limits effective scaling to approximately 16 threads even for large volumes.

CONCLUSIONS

We implemented PSPI migration on the Sun Niagara2 by combining coarse-grained
and fine-grained prallelism. We showed that the multi-thread per core model leads
to significant uplift in performance over a single thread approach. Compared to a
strictly fine grain parallelism we achieved a 60% uplift. Compared to a coarse grain
approach the improvement was 5X. Improved floating point/vector performance could
lead to signficant uplift for this aglorithm.

REFERENCES

Biondi, B., 2003, Narrow azimuth migration of marine streamer data: SEG, Expanded
Abstracts, 22, 897-900.

Biondi, B. and G. Palacharla, 1996, 3-d prestack migration of common-azimuth data:
Geophysics, 1822-1832, Soc. of Expl. Geophys.

Claerbout, J. F., 1995, Basic Earth Imaging: Stanford Exploration Project.

Pell, O., T. Nemeth, J. Stefani, and R. Ergas, 2008, Design space analysis for the
acoustic wave equation implementation on fpga circuits: European Association of
Geoscientists and Engineers, Expanded Abstracts, 1406-1409.

Shan, G. and B. Biondi, 2007, Angle domain common image gathers for steep reflec-
tors: 2007, 131, 33-46.

SEP-136

