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ABSTRACT

Analyzing the focusing and defocusing of migrated images provides valuable ve-
locity information that can supplement the velocity information routinely ex-
tracted from migrated common-image gathers. However, whereas qualitative fo-
cusing analysis is readily performed on ensemble of images generated by prestack
residual migration, quantitative focusing analysis remains a challenge. I use two
simple synthetic-data examples to show that the maximization of a minimum-
entropy norm, a commonly-used measure of image focusing, yields accurate esti-
mates for diffracted events, but it can be misleading in the presence of continuous
but curved reflectors.
I propose to measure image focusing by computing coherency across structural
dips, in addition to coherency across aperture/azimuth angles. Images can be
efficiently decomposed according to structural dips during residual migration.
I introduce a semblance functional to measure image coherency simultaneously
across the aperture/azimuth angles and the dip angles. Using 2D synthetic data
examples, I show that the simultaneous evaluation of semblance across aperture-
angles and dips can be effective in quantitatively measuring image focusing and
also avoiding the biases induced by reflectors’ curvature.

INTRODUCTION

Even a superficial analysis of depth migrated seismic images obtained with different
migration velocities clearly shows that velocity information could be extracted by
measuring image focusing along the spatial dimensions (i.e. horizontal axes and
depth). This information is particularly abundant in areas where complex structure
and discontinuous reflectors reveal lack of focusing caused by velocity errors; such
as in presence of faults, point diffractors, buried channels, uncomformities or rough
salt/sediment interfaces.

If we were able to extract this focusing-velocity information reliably from migrated
images it could supplement the velocity information that we routinely extract by an-
alyzing residual moveout along the offsets or aperture-angles axes, and thus enhance
velocity estimation by increasing resolution and decrease uncertainties. It would be
particularly useful to improve the interpretability of the final image and the accuracy
of time-to-depth conversion in areas where the reflection aperture range is narrow
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either because of unfavorable depth/offset ratio or because of the presence of fast
body in the overburden (e.g. salt bodies) that deflect the propagating waves. Today,
the most common application of image focusing is to migration-velocity scans for
subsalt imaging (Wang et al., 2006). However, current practical applications exploit
the image-focusing information by using subjective interpretation criteria instead of
quantitative measurements (Sava et al., 2005). This limitation makes almost impos-
sible to automate the process and potentially reduces its reliability, and thus it is a
serious obstacle to its extensive application.

Minimum entropy has been often proposed as a quantitative measure of image
focusing, starting with Harlan et al. (1984), De Vries and Berkhout (1984), and more
recently by Stinson et al. (2005) and Fomel et al. (2007). Minimizing the “spa-
tial entropy” measured on image windows privileges images that consist of isolated
spikes. If the reflectivity function consists of isolated diffractors, minimum entropy is
a good indicator of image focusing. However, field data are usually a combination of
diffracted events, specular reflections from planar reflectors, and reflections for high-
curvature reflectors. In these cases minimum entropy may yield bias estimates unless
the diffractions are successfully separated from the other events before performing the
analysis (Fomel et al., 2007). In complex geology, this separation can be unreliable
when performed in the data space, and even more challenging when performed in
the image space because it is biased by the initial migration velocity. In the follow-
ing section I show that in presence of reflector curvature (e.g. a sinusoidal reflector)
measuring focusing by minimum entropy leads to under-migrated images of convex
reflectors (e.g. an anticline,) and over-migrated images of concave reflectors (e.g. a
syncline.)

I aim to overcome these shortcomings by generalizing the conventional concept of
semblance commonly used in velocity analysis. In addition to measuring semblance
along the reflection-aperture angle (or offset for Kirchhoff migration,) as is routinely
done, I propose to measure semblance along the structural-dip axes. In this paper I
work with 2D data, and thus I compute semblance on 2D patches (structural dip and
aperture angle.) With 3D full-azimuth data, semblance would be computed on 4D
patches (indexed by two structural dips, reflection aperture and reflection azimuth.)

The proposed method can be applied to locally select the best-focused image
among an ensemble of images obtained with different migration velocities. I use
residual prestack depth migration in the angle domain (Biondi, 2008) to generate
this ensemble of images starting from prestack depth-migrated image in the angle
domain. Stolt prestack depth migration could be used as well to perform residual
prestack migration (Sava, 2003). With either choice of residual migration, the im-
age decomposition according to structural dip is easily performed within the residual
prestack migration process, since both migrations require the image to be transformed
into the spatial Fourier domain. The final goal, not addressed by this paper, is to use
the image focusing information to enhance interval-velocity estimation for depth mi-
gration. In particular, I plan to update the interval-velocity model by using the wave-
equation migration velocity analysis method starting from a spatially-varying field of
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Figure 1: (a) Reflectivity function assumed to compute a synthetic prestack data set,
and (b) the stacked section obtained by migrating the data set with a low velocity.
[CR]

optimal-focusing parameters (Biondi and Sava, 1999; Sava and Biondi, 2004a,b; Sava,
2004).

THE CHALLENGE OF QUANTIFYING IMAGE
FOCUSING

In this section, I introduce two simple synthetic data sets that illustrate the oppor-
tunities and challenges of measuring image focusing for velocity analysis. I start by
showing how the application of a minimum entropy functional can help to determine
the correct migration velocity, but also it can mislead the estimation.

Figure 1a and Figure 2a show the reflectivity functions assumed to generate the
two data sets. The first one contains a strong diffractor and two dipping planar
reflectors broken by a fault. Focusing analysis of the diffractor and the reflectors’
truncations provides velocity information additional to the one available by conven-
tional analysis of the reflections from the planar interfaces. The second model consists
of a continuous sinusoidal reflector. It shows the potential pitfalls of measuring image
focusing in presence of curvature in the structure. Figure 1b and Figure 2b show the
result of migrating with a low velocity the modeled data corresponding to the reflec-
tivity functions shown in Figure 1a and Figure 2a, respectively. In Figure 1b both
the image of the point diffractor and the image of the reflectors’ truncations show the
typical signs of undermigration; that is, not fully collapsed diffracted events. In Fig-
ure 2b the bottom of the syncline shows triplication that are signs of undermigration,
whereas the top of the anticline does not show any clear defocusing problems.
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Figure 2: (a) Reflectivity function assumed to compute a synthetic prestack data set,
and (b) the stacked section obtained by migrating the data set with a low velocity.
[CR]

Pitfalls of Minimum Entropy functional

Minimizing the image entropy measured on moving spatial windows is a well-known
approach to measuring image focusing. The varimax norm (Wiggins, 1985) is com-
monly used to measure the ”entropy” of an image instead of the conventional entropy
functional. The varimax norm is cheaper to evaluate than the conventional entropy
functional because it does not require the evaluation of a logarithmic function. A
peak in the varimax corresponds to a point of minimum entropy. I computed the
varimax for local windows extracted from image ensembles computed by applying
residual prestack migration to an initial prestack migration performed with a low
velocity.

I define R (x, γ, ρ) as an ensemble of prestack images obtained by residual prestack
migration where the parameter ρ is the ratio between the new migration velocity and
the migration velocity used for the initial migration. The aperture angle is γ and
x = {z, x} is the vector of spatial coordinates, where z is depth and x is the horizontal
location.

I define the image window x̄ as:

x̄ : {z̄ −∆z ≤ z ≤ z̄ + ∆z, x̄−∆x ≤ x ≤ x̄ + ∆x} , (1)

where 2∆z is the height of the window and 2∆x is its width, and z̄ and x̄ are the
coordinates of the window’s center.
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Figure 3: (a) Graph of the varimax norm as a function of ρ, (b) stacked section for
ρ = 1, (c) stacked section for ρ = 1.025, and (d) angle-domain common image gather
for ρ = 1.025 at x = 4, 700 meters. [CR]

Figure 4: (a) Graph of the varimax norm as a function of ρ, (b) stacked section for
ρ = 1, (c) stacked section for ρ = 1.04, and (d) angle-domain common image gather
for ρ = 1.04 at x = 4, 700 meters. [CR]

The varimax norm computed for x̄ is defined as:

Ex (ρ) =
Nx̄

∑
x̄

[∑
γ R (x, γ, ρ)

]4

{∑
x̄

[∑
γ R (x, γ, ρ)

]2
}2 , (2)

where
∑

x signifies summation over all the image points in x̄ and Nx̄ is the number of
points in x̄. Notice that the varimax in equation 2 includes stacking over the aperture
angle γ.

For the first data set (Figure 1,) I computed the varimax in equation 2 as a
function of ρ in two windows: the first centered on the point diffractor, the second
centered on the reflector truncation. Figure 3 shows the following four plots for the
point-diffractor window: a) the graph of the varimax norm as a function of ρ, b) the
stacked section for ρ = 1; that is, the window of the initial undermigrated section
in Figure 1b, c) the stacked section for ρ = 1.025; that is; for the peak of the curve
shown in Figure 3a, and d) the angle-domain common image gather for the same
value of ρ = 1.025 and extracted from the prestack cube at the horizontal location of
the point diffractor.

Figure 4 shows analogous plots as the ones shown in the previous figure, but
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Figure 5: (a) Graph of the varimax norm as a function of ρ, (b) stacked section for
ρ = 1.06, (c) stacked section for ρ = .995, and (d) angle-domain common image
gather for ρ = .995 at x = 4, 250 meters. [CR]

for the reflector-truncation window. Figure 4a shows the graph of the varimax as a
function of ρ. Figure 4b shows the stacked section for ρ = 1. Figure 4c shows the
stacked section for ρ = 1.04; that is, for the peak of the curve shown in Figure 4a,
whereas Figure 4d shows the angle-domain common image gather for the same value
of ρ = 1.04 and extracted from the prestack cube at the horizontal location of the
reflector’s truncation.

For both windows, the maximum of the varimax norm corresponds to the value
of ρ that best focuses the prestack image and best flattens the angle-domain com-
mon image gathers. The semblance peak for the point diffractor is sharper than for
the reflector truncation, suggesting that point diffractors provide higher-resolution
information on migration velocity than reflectors’ truncations.

I also computed the varimax in equation 2 as a function of ρ in two windows of
the prestack migrated image corresponding to the sinusoidal reflector (Figure 2.) The
first window is centered on the bottom of the syncline and the second centered on
the top of the anticline. Figure 5 and Figure 6 show: a) graphs of the varimax as
function of ρ, b) the stacked sections corresponding the correct values of ρ (ρ = 1.06
for Figure 5b and ρ = 1.045 for Figure 6b,) c) the stacked sections corresponding the
the varimax peaks (ρ = .995 for Figure 5c and ρ = 1.105 for Figure 6c,) and d) the
angle-domain common image gathers extracted at the very bottom of the syncline in
Figure 5d and top of the anticline in Figure 6d.

For the first window, the peak of the varimax corresponds to a value of ρ that is too
low, whereas for the second window the peak of the varimax corresponds to a value of
ρ that is too high. The cause of these errors is that the image of concave reflectors can
be made more spiky (i.e. lower entropy) by undermigration than by migration with
the correct velocity. Similarly, the image of a convex reflector can be made more spiky
by overmigration than by migration with the correct velocity. If the varimax norm
were used to determine the residual-migration parameter ρ it would lead to images
with wrong structure and non-flat common-image gathers. However, the secondary
peaks of the varimax norm in both Figure 5 and Figure 6 are approximately located
at the correct value of ρ. This secondary peaks indicate that there is potentially
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Figure 6: (a) Graph of the varimax norm as a function of ρ, (b) stacked section for
ρ = 1.045, (c) stacked section for ρ = 1.105, and (d) angle-domain common image
gather for ρ = 1.105 at x = 4, 750 meters. [CR]

useful focusing information in the images, but to be practically useful we must devise
a method that is not biased by the reflectors’ curvature.

Measuring image coherency across structural dips

As an alternative to minimizing entropy, in this paper I propose to measure image
focusing by maximizing coherency along both the structural-dip axes and the aper-
ture/azimuth axes. The simultaneous use of dips and aperture angles is discussed in
the next section. In this section, I show that measuring coherency along the struc-
tural dips does provide information on image focusing and I illustrate the concept by
using the same two 2D synthetic data sets shown above. I will also demonstrate that
maximizing coherency only along the structural dips may lead us to similar problems
as the minimization of entropy.

To measure coherency along the structural dip α, I first create the dip-decomposed
prestack image R (x, γ, α, ρ) by residual prestack migration, and then I compute the
following semblance functional:

Sα (x, ρ) =

[∑
α

∑
γ R (x, γ, α, ρ)

]2

Nα

∑
α

[∑
γ R (x, γ, α, ρ)

]2 , (3)

where Nα is the number of dips to be included in the computation. Notice that, as for
the varimax in equation 2, semblance along structural dips is computed after stacking
over the aperture angle γ.

The determination of the dip summation range at each image location and for
each value of the parameter ρ is a practical problem of the proposed method. For
the examples shown in this paper I determined the summation ranges for both α and
γ by applying an amplitude thresholding criterion based on both local and global
amplitude maxima measured from the images. To improve the smoothness of the
semblance spectra, I averaged the evaluation of equation 3, and of all the other
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Figure 7: a) Dip-decomposed
stack image of the diffractor-point
window as a function of the dip
angle extracted at x = 4, 700 me-
ters and ρ = 1.025), and (b) sem-
blance ρ-spectrum computed at
x = 4, 700 meters. [CR]

Figure 8: a) Dip-decomposed
stack image of the reflector-
truncation window as a function
of the dip angle extracted at x =
4, 700 meters and ρ = 1.04), and
(b) semblance ρ-spectrum com-
puted at x = 4, 700 meters. [CR]

semblance functionals introduced in this paper, over spatial windows extending along
both the z and x directions.

Figure 7a shows the dip-decomposed stack image of the diffractor-point window
as a function of the dip angle α extracted from R (x, α, ρ) at the point-diffractor’s
horizontal position and for ρ = 1.025; that is, the correct value of ρ. The image
is consistent as a function of dips, with the exception of an image artifact caused
by interference with the image from the planar reflectors below the point diffractor.
Figure 7b shows the semblance computed by applying equation 3 at the horizontal
position of the point diffractor. It has a sharp peak for ρ = 1.025. The dip-coherency
analysis has thus the potential to provide accurate velocity information.

Figure 8a shows the dip-decomposed stack image of the reflector-truncation win-
dow as a function of the dip angle α at extracted from R (x, α, ρ) at the horizontal
position of the reflector’s truncation for ρ = 1.04; that is, the correct value of ρ. The
dip-decomposed image is strongly peaked at α = −15o; that is the dip of the reflector.
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The event is weak away from α = −15o; and much weaker than the point-diffractor
event shown in Figure 7a. Furthermore, polarity of the event switches at α = −15o.
At the transition corresponding to the reflector dip, the image is actually rotated
by 45 degrees. To compute a higher-quality semblance spectrum, I zeroed the im-
age at α = −15o and split the computation of the numerator in equation 3 between
dips larger than 15 degrees and dips smaller than 15 degrees; that is I computed the
following modified semblance functional:

Sᾱ (x, ρ) =

[∑
α<ᾱ

∑
γ R (x, γ, α, ρ)

]2

+
[∑

α>ᾱ

∑
γ R (x, γ, α, ρ)

]2

(Nα − 1)
∑

α 6=ᾱ

[∑
γ R (x, γ, α, ρ)

]2 , (4)

where ᾱ is the structural dip of the truncated reflector. The need to identify a reflector
truncation and to estimate the local dip of the reflector is potentially a practical
problem with using dip coherency to extract velocity information from reflector’s
truncations.

The semblance spectrum shown in Figure 8b was computed by applying equation 4
with ᾱ = −15o. The semblance peak is at the correct value of ρ = 1.04 but it is much
broader than the peak corresponding to the point diffractor shown in Figure 7b. As
noted when comparing Figure 3a with Figure 4a, the velocity information provided
by focusing analysis of reflectors’ truncations seems to be more difficult to use than
the one provided by point diffractors.

The computation of the dip spectra for the data set with sinusoidal reflector
illustrates the limitations and potential dangers of relying on dip-only spectra when
continuous reflectors have a strong curvature. Figures 9a and 9b show the image
decomposed according to structural dips for the bottom of the syncline window for
two different values of ρ: ρ = .995 for Figure 9a, and ρ = 1.06 for Figure 9b (same
values of ρ as for Figure 5c and Figure 5b, respectively.) The image is flat as a
function of the dip angle for the wrong value of ρ and is frowning for the correct value
of ρ. Consequently the dip spectrum shown in Figure 9c peaks at a low value of ρ
and would mislead velocity estimation.

The analysis of Figure 10 leads to similar conclusions. In this case the image is
flat for a higher value of ρ (ρ = 1.105) than the correct one (ρ = 1.045), for which
the image is actually smiling. The semblance spectrum is also biased toward higher
values of ρ.

IMAGE-FOCUSING SEMBLANCE

In the previous section, I showed that we can measure image coherency across the
structural dip axes to extract focusing information from stacked images. I also showed
the shortcomings of this procedure in presence of reflector’s curvature. In this sec-
tion, I introduce a generalization of the semblance functional that measures coherency
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Figure 9: a) Dip-decomposed
stack image of the bottom of the
syncline window as a function of
the dip angle extracted at x =
4, 250 meters and ρ = .995), (b)
dip-decomposed stack image for
ρ = 1.06), and (c) semblance ρ-
spectrum computed at x = 4, 250
meters. [CR]

Figure 10: a) Dip-decomposed
stack image of the top of the an-
ticline window as a function of
the dip angle extracted at x =
4, 750 meters and ρ = 1.105), (b)
dip-decomposed stack image for
ρ = 1.045), and (c) semblance ρ-
spectrum computed at x = 4, 750
meters. [CR]

simultaneously along the dip axes and the aperture/azimuth axes. I name this sem-
blance functional the Image-focusing semblance. In 2D it is defined as:

S(γ,α) (x, ρ) =

[∑
γ

∑
α R (x, γ, α, ρ)

]2

NγNα

∑
γ

∑
α R (x, γ, α, ρ)2 , (5)

where Nγ is the number of aperture angles to be included in the computation.

As discussed in the previous section, the polarity of reflectors’ truncation reverses
at the reflectors’ dip (Figure 8.) The semblance functional introduced in equation 5
can be modified to better measure image focusing of reflectors’ truncation in a way
analogous to the way I modified equation 3 to become equation 4. For reflector
truncations, the image-focusing semblance can thus be computed as:

S(γ,ᾱ) (x, ρ) =

[∑
γ

∑
α<ᾱ R (x, γ, α, ρ)

]2

+
[∑

γ

∑
α>ᾱ R (x, γ, α, ρ)

]2

Nγ (Nα − 1)
∑

γ

∑
α 6=ᾱ R (x, γ, α, ρ)2 . (6)

To better evaluate the amount of additional information provided by measur-
ing coherency along the structural dips, I also computed a conventional semblance
functional that measured coherency only along the aperture angle from the residual
prestack migration results. I computed this conventional semblance function accord-
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ing to the following expression:

Sγ (x, ρ) =

[∑
γ R (x, γ, ρ)

]2

Nγ

∑
γ R (x, γ, ρ)2 . (7)

The ρ spectrum shown in Figure 11a was computed by applying equation 7. To
compute the ρ spectrum shown in Figure 11b I used a combination of the semblance
functional expressed in equation 5 for the two shallower events, and of the sem-
blance functional expressed in equation 6 for the deepest event, which corresponds to
the reflector’s truncation. The semblance peak corresponding to the point diffractor
(the top event) is much sharper in Figure 11b than in Figure 11a. This result con-
firms that the use of image-focusing semblance instead of conventional semblance has
the potential of enhancing velocity estimation. In Figure 11b the semblance peaks
corresponding to the planar dipping event (second from the top) and the reflector’s
truncation (first from the bottom) are substantially smaller than the one for the point
diffractor, but are still located at the correct value of ρ. The relative scaling between
the semblance peaks could be improved.

Figure 12 compares conventional aperture-angle ρ spectrum with the proposed
image-focusing spectrum evaluated at the horizontal location of the bottom of the
syncline in the model shown in Figure 2a. Both spectra peak for the correct value
of ρ; that is ρ = 1.06. The spectrum computed using the proposed method has a
small secondary peak for low ρs, but not as strong as the one for only-dip spectrum
(Figure 9c) or the varimax norm (Figure 5a.) Similarly, the spectra computed at the
horizontal location of the top of the anticline in the same model peak for the correct
value of ρ, as shown in Figure 13.

CONCLUSIONS

Image-focusing analysis can provide useful velocity information, in particular in ar-
eas where conventional velocity analysis lacks resolution. Measuring image coherency
across the structural-dip axes provides quantitative information on image focusing.
However, in the presence of curved reflectors coherency across dips suffers similar
shortcomings as conventional minimum entropy functional. To overcome these diffi-
culties, I propose to perform image-focusing analysis by measuring image coherency
simultaneously across structural dips and reflection aperture/azimuth angles. The
application of the proposed image-focusing semblance to two synthetic data sets
demonstrates its potential as a tool to extract quantitative velocity information from
image-focusing analysis.
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Figure 11: Semblance ρ spec-
tra computed from the first data
set (point diffractor and reflector
truncations) at x = 4, 700 meters
with: (a) conventional aperture-
angle semblance (equation 7,) and
(b) aperture-angle and dip-angle
semblance (equations 5 and 6.)
[CR]

Figure 12: Semblance ρ spectra
computed from the second data
set (sinusoidal reflector) at x =
4, 250 meters with: (a) conven-
tional aperture-angle semblance
(equation 7,) and (b) aperture-
angle and dip-angle semblance
(equation 5.) [CR]

Figure 13: Semblance ρ spectra
computed from the second data
set (sinusoidal reflector) at x =
4, 750 meters with: (a) conven-
tional aperture-angle semblance
(equation 7,) and (b) aperture-
angle and dip-angle semblance
(equation 5.) [CR]
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