
Chapter 6

Conclusions

This thesis has focused on using nonstationary prediction-error filters in multidimen-

sional interpolation. Where it innovates is in how the prediction-error filters are

generated, the domain in which they operate, and the sampling of the data being

interpolated. I developed three distinct approaches that are catered to irregularly-

sampled data, data with large near-offset gaps, and the large amount of multidimen-

sional interpolation required for 3D prestack marine data.

Most approaches to interpolating irregularly-sampled seismic data are transform,

moveout, or migration-based approaches. I addressed the problem of irregularly-

sampled data with prediction-error filters by using multiple regridded copies of the

data to estimate a PEF. This method performed reasonably well on stationary syn-

thetic data, and also on the spatially-variable quarter-dome data. Both of these

datasets are relatively low-frequency and were randomly sampled. When this method

was applied to field 2D land data, the performance was acceptable, but the acquisition

of these data was far from random. One obvious improvement to this method would

be to automatically choose optimal scales on which to estimate the PEF and to weigh

data in the estimation based on how well they are characterized at each scale.
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I conclude from these experiments that while theoretically pleasing, randomly-

sampled synthetic data do not serve as a particularly useful analogue for most irregularly-

sampled field data. Field data are typically sampled along tracks with deviations

therefrom, be it the source lines and receiver cables for a 3D land survey or the

smoothly varying sail lines and receiver cables of a marine survey. Both land and

marine data are plagued by large gaps and undersampled axes, not random sampling

along all spatial axes.

One such large gap in marine seismic data is a near-offset gap between the towed

source and the nearest receiver, a problem usually addressed by normal-moveout or a

Radon-transform-based interpolation. Instead of using information from the nearby

primaries as in a Radon or an RMS-velocity-based method, I generated pseudopri-

maries by using active-source interferometry, in which all receivers are crosscorrelated

for each shot so that the correlation of primaries with free-surface multiples creates

pseudoprimaries with a virtual source location at one of the receivers. These data

are generated at a wider range of offsets than the original recorded data, including

the near-offset information absent from the original recording. I used these pseudo-

primaries as training data for nonstationary PEFs, both in time and space and in

frequency and space.

This method of interpolating the large near-offset gap using a PEF estimated on

pseudoprimaries works well on synthetic data, where I introduce a large gap, for the

most part correctly reconstruct the missing data. The benefit of using PEFs in this

process is that spurious events that do not correspond to a correlation between a

multiple and a primary are often removed from the result, the squared wavelet of the

pseudoprimaries is ignored, and the signal-to-noise ratio of these near offsets consider-

ably improves. While the method works well on synthetic data, it had somewhat less

success with the field data. Illumination issues with the multiple reflections also ap-

pear in the pseudoprimaries, causing steeply-dipping reflections to be comparatively

weak in amplitude. Many of the methods used in signal/noise separation could be

helpful here, as the training data used contain both coherent signal and coherent and

incoherent noise.
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While this method works well in 2D scenarios, the prospects for 3D are limited

by the limited source distribution in the crossline. Much as with both 3D SRME

and passive interferometric methods, pseudoprimary generation is highly dependent

upon adequate source coverage. With the advent of wider-azimuth marine data, the

prospects for keeping this method strictly data-driven improve, although the need for

it may decrease.

The last chapter of this thesis is the most practical. The jump from 2D to 3D

SRME methods requires a large amount of data to be created, both extrapolated an

interpolated. Most 3D SRME implementations rely upon moveout or partial prestack

migration operators to generate these data along the inline source, crossline source,

and crossline receiver axes. I introduce nonstationary frequency-space interpolation,

where the assumption in Spitz interpolation is used with nonstationary multidimen-

sional prediction-error filters to interpolate data in anywhere from two to five di-

mensions. I first compare a nonstationary PEF-based methods applied frequency-by-

frequency in different domains with different dimensionalities for a synthetic dataset,

and conclude that for inline source interpolation, a strictly inline approach produces

the best result. Meanwhile, a source-by-source 3D interpolation of receiver cables

gives slightly better results than does a full 4D approach.

With this nonstationary frequency domain approach to field data with only four

cables, the inline source interpolation is again best solved as a strictly inline problem,

while the crossline receiver interpolation produces mixed results. A 4D interpolation

produces a more robust result while a 3D shot-by-shot interpolation produces a more

detailed result that is more easily compromised by noise.

Finally, iterating inline source interpolation with crossline receiver interpolation

is able to produce data at densities required for 3D SRME. The drop in quality of

the data is not so much caused by the assumption of previously interpolated data as

known data, but more the jump in difficulty from inline-source to crossline-receiver

interpolation. I conclude that interpolating many of the large factors of data required

for full prestack interpolation is possible using prediction-error filters, in part because

the interpolation takes place along multiple axes, so the assumptions behind the
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interpolation are less stretched.

This thesis has been based upon the idea of using a nonstationary PEF as a

container for useful information from training data that are not good enough to

directly substitute for missing data. I have made three choices of training data,

all that approximate the data differently. The choice of training data should be

considered specific to the task at hand, both in terms of the character of the data in

question and the sampling of that data, and is an open framework for use in many

other situations.


