Chapter 5

Interpolation in the
frequency-space domain with

nonstationary PEF's

Spitz (1991) demonstrates that data can be interpolated in the f-z domain using a
spatial prediction filter on each frequency. Unlike Fourier transform-based methods
that typically require unaliased data and dip-based methods that perform relatively
poorly when multiple events with highly differing dips are present, this method’s
ability to interpolate multiple aliased dips has been demonstrated successfully. The
original Spitz approach of interpolation has been extended from two to three dimen-
sions (Wang, 2002), but the method continues to be applied in a patch-based approach
with events assumed to be locally planar. In this chapter, I use the approximation
in the Spitz method to interpolate by integer factors, producing an output with two,
three, or four times the sampling density along each interpolated axis. I do this by
using nonstationary prediction-error filters on frequency slices in two, three, four, and

five dimensions.

Following the approach in Chapter 2, interpolating by an integer factor presents

the same problem for PEF estimation as does that of irregular sampling in Chapter

121



CHAPTER 5. NONSTATIONARY FREQUENCY-SPACE INTERPOLATION 122

3: the interleaved traces cause all rows of the convolutional matrix used in estimating
the PEF to contain unknown data and become unusable. When the data are in time
and space, the PEF coefficients can be spread out so that columns of the PEF are
spaced by the interpolation factor, and the filter coefficients are also spaced along
the time axis by the same factor (Claerbout, 1992). This method of spacing of the
filter, which can be thought of as subsampling in both space and time, treats the
lower frequencies as higher ones, so care must be taken to ensure that this does not

time-alias the data.

Once the t-r PEF has been estimated at this spacing, the spacing operation is
reversed and the PEF is used to interpolate the data. Because of this spacing the
spectral information captured along the time axis of a t-x PEF at this coarser sam-
pling is different from the finer sampling where the PEF is applied to interpolate the
data, so the frequencies appear to be doubled (or tripled in the case of a factor of three
interpolation). This potential pitfall of capturing incorrect or temporally aliased in-
formation is avoided in an f-x approach, since, in an f-x approach, the PEF operates
only over space and not time or frequency. Because of this, no characterization of
the frequency content is made in the f-x approach, only that obtained by the spatial

autocorrelation of the data at each frequency for each of the independent PEF's.

I apply the assumption behind Spitz interpolation, that the wavenumber spec-
trum of coarser-sampled lower frequencies is the same as that of the finer-sampled
higher frequencies, to estimate a non-stationary prediction-error filter. I use this filter
to interpolate regularly-sampled data on a frequency-by-frequency basis. By using a
nonstationary PEF, the more rapidly varying slopes are better interpolated than with
a spatial-patch-based approach, but patching is still required on the time axis. I use
multidimensional filters to interpolate in two, three, four, and five dimensions simul-
taneously, and test this method on synthetic plane-wave examples, the quarter-dome
synthetic, 3D prestack synthetic data, and finally 3D prestack field data. For the
prestack examples, a three-dimensional interpolation performs best for inline source

interpolation, a 4D interpolation being less desirable because of the small number
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of points along the fourth axis. This changes with crossline receiver cable interpo-
lation and field data, where the data are most robustly interpolated with a full 4D
approach. The 4D approach produces a larger improvement in the field-data example,
which I attribute to the presence of localized noise that dominates lower-dimensional
approaches. Finally, I iteratively interpolate the 3D prestack field data to the extent
necessary for 3D surface-related multiple prediction, and examine the deterioration

of the result as progressively more data need to be interpolated.

PLANE WAVES IN FREQUENCY AND SPACE

Seismic data are typically oversampled along the time axis but undersampled along
the other axes. Seismic data are also composed of a superposition of (locally) planar
events, such as that in Figure 5.1a. Applying a temporal Fourier transform to this
planar event results in a complex exponential in space that varies as a function of
frequency, with the real and imaginary parts of this event shown in Figures 5.1b
and 5.1c, respectively. Both higher frequencies and steeper slopes result in higher

wavenumbers.

This dependence of wavenumber on frequency and slope is predictable for a planar
event. Starting with a planar event Fourier transformed and sampled in frequency
and x, decimating for each frequency, f, in the xz-direction by a factor p will produce
a vector with the same wavenumber as that for the fully sampled plane wave at a
frequency pf. Figures 5.2a-d are examples of this, Figure 5.2a is a repeat of Figure
5.1b, showing the real part of the lower 128 frequencies of 64 traces of a single plane
wave, this time with the x-axes along the ordinate. Figure 5.2b is this same plane
wave, but with every second trace removed leaving a total of 32 traces, and the
frequency range is half that of Figure 5.2a, so each of the 128 frequencies in Figure
5.2b is half that of the corresponding frequency in Figure 5.2a. This same trend is
repeated with p = 3 in Figure 5.2¢c and p = 4 in Figure 5.2d. I obtained the finer
sampling in frequency by zero-padding the time axis by a factor of two, three or four

before the Fourier transformation. The wavenumbers of the corresponding frequency
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Figure 5.1: A spatially-aliased plane wave in t-x, generated with a Ricker wavelet
with a central frequency of 55 Hz and a slope of 650 m/s sampled 64 times (every
20 m) shown in time and space in (a). The real (b) and imaginary (c) values of the
positive frequencies show how the spatial wavenumber increases with frequency until
the spatial Nyquist is reached at 17.5 Hz, and then becomes aliased. The aliasing is
also apparent in t-x. ER |fxNS/. lplaneann‘
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slices of the different spatial samplings are the same, although both the phase and

amplitude of these frequency slices differ from that at a higher frequency.

I estimate a PEF on these lower-frequency data, exploiting the fact that the PEF is
insensitive to the phase and amplitude-scale differences associated with the frequency
change, but the similar wavenumber spectra. I then use this PEF to interpolate the

missing data at a higher spatial sampling rate and frequency.

F-X INTERPOLATION WITH A MULTIDIMENSIONAL
PREDICTION-ERROR FILTER

Recall the PEF-estimation equation from Chapter 2,
Kf = —(D'D)'D'd. (5.1)

The unknown filter coefficients Kf are estimated from fully-sampled training data,
d, and a convolutional matrix, D, containing the training data. The interpolation
goal is to increase the density of spatial sampling by an integer factor, p. Using the
Spitz approximation, the training data (with the original spatial sampling rate) have a
frequency that is 1/p of the desired output frequency. Since these data are in frequency
and not time, d, D, and Kf are all complex-valued. The length of the PEF correlates
with the number of simultaneous dips that can be interpolated, or, equivalently, the
number of complex sinusoids that can be predicted by the PEF coefficients. A two-
term 1D PEF can capture one sinusoid, while a three-term PEF can capture two,
and so on. Expanding this analogy to higher dimensions is straightforward. In the
helical coordinate, equation 5.1 can be used to solve for a one-dimensional filter (for

2D interpolation), a two-dimensional filter (for 3D interpolation) and so on.

Once this PEF has been estimated on the lower-frequency training data, it can
then be used to interpolate the missing samples, as in equation 2.18 (repeated here
as equation 5.2),

Jm = —(FIF,) 'Fir, (5.2)
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Figure 5.2: A plane wave in f-x with four different sampling rates. a) original f-z
Af

data, with Az and Af. b) resampled to S* (showing the lower half of frequencies)

and 2Az. ¢) & (showing the lower third of frequencies) and 3Az. d) 2L (showing

the lower quarter of frequencies) and 4Axz. The spatial wavenumber is the same at
each frequency, but the phase is different. ER |fxNS/. 1planetrickann
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where the unknown values Jm for a single frequency are determined by a convolutional
matrix, F, containing the PEF estimated from the lower-frequency training data, as
well as the known data convolved with the PEF, ry. Again, the data consist of a
single output frequency that is p times more densely sampled in space than is the

input, and each frequency is solved as an independent problem.

Multidimensional plane-wave interpolation

Using filters of one dimension less than the data means that in practice a larger
amount of data can be simultaneously interpolated compared to that in ¢t-z interpo-
lation methods wherein the dimensionality of the filter should (at least) operate over
the dimensions containing holes. For large problems where the data must be broken
up into chunks because of memory limitations, this means that fewer chunks are re-
quired, and the chunks can either cover larger regions of the same axes interpolated in
t-x or additional dimensions can be added to the interpolation, if available. Because
3D prestack reflection seismic data contain five axes: time, two source coordinates,
and two receiver coordinates, I construct a five-dimensional 256 x 30 x 30 x 30 x 30
hypercube containing three plane waves, shown in slices of all combinations of axes in
Figure 5.3. Fourier transformation of the data yields 128 frequency slices (excluding

the symmetric negative frequencies), each of dimension 30 x 30 x 30 x 30.

In order to interpolate these data by a factor of two along all four spatial axes, I
generate 128 frequency slices, each with half the frequency of the corresponding slice
of the original data, extending the data by a factor of two by zero-padding prior to
applying the temporal Fourier transform. I then estimate 128 unique four-dimensional
3 x 3 x 3 x 3 prediction-error filters required to interpolate the 128 input frequency
slices on a 60 x 60 x 60 x 60 grid. This produces a total of roughly 26 GB of data for
even this small five-dimensional example, shown in Figure 5.4. This example would
be impossible to solve at once in t-z, as it requires 128 times more memory than
that in f-x. The interpolation correctly interpolates these data along all four spatial

axes, several of which were severely aliased. Because of the high dimensionality of
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Figure 5.3: Three plane waves in five arbitrary dimensions, four spatial and time
(v,w,x,y,t). The ten slices correspond to combinations of all of the axes: a) v,t; b)
w,t; ¢) x,t; d) y,t; ) v,y; ) w,y; g) x,y; h) v,x; 1) w,x; j) v,w. The plane waves are
severely aliased along many of the axes. ER |fxNS/. planesinann
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Figure 5.4: Interpolation of the data in Figure 5.3 using 128 four-dimensional PEFs.
The aliased data are properly interpolated along all axes, and the amount of data has
been increased by a factor of 16. ER |fxNS/. planesinterpann
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the problem, the interpolation by a factor of 16 was successful, whereas a factor of 16
interpolation along a single axis would be compromised because only the lowest 1/16

frequencies would be used.

The situation for this interpolation was ideal in that the events being interpo-
lated were planar, although interesting in places, and were predictable in f-x with a
single prediction-error filter at each frequency. For field data, which contain curved
events, instead of using this stationary approach in overlapping patches in all dimen-
sions, I opt for a single spatially-variable PEF for each frequency. Because the filters
cannot vary in time, I apply this approach in time patches that have been Fourier

transformed.

NONSTATIONARY F-X INTERPOLATION

Unlike the previous example where the data are composed of planar events, seismic
data are composed mainly of curved ones. Hyperbolic features, however, can be
considered as locally planar events that have a slope varying as a function of position
and time. Figure 5.5a shows a simple hyperbola in space and time. Figure 5.5b
is the real portion of the same data Fourier transformed from time to frequency.
Each frequency slice is like a chirp function with a wavenumber that decreases as
the apex of the hyperbola is approached and slope decreases. It then increases in
both wavenumber and slope as the position moves toward each asymptote of the
hyperbola. Figure 5.5¢ is this same hyperbola with half the spatial sampling and
double the frequency sampling. Although not obvious to the eye, the wavenumbers
present in the subsampled data are the same as those in the original data; thus the
same low-frequency assumption that works for plane waves also works for waves with

spatially varying slope.

Returning to equation 2.22,

Kosfs = —(DI Dy + €RIR) DI d, (5.3)
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Figure 5.5: A single hyperbola in t-z and f-x: a) a hyperbola in t-z; b) the real part
of the same hyperbola in f-z; ¢) the real part of the same data with half the spatial
samples removed and the lower half of frequencies shown. For each frequency, the
local wavenumber content is the same in both b and c. ER ‘fXNS /. hyperbola
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recall that unknown nonstationary PEF coefficients, K,sf,s, can be estimated from
training data, d, a nonstationary data-convolution matrix, D4, that is a function of

the training data, and a regularization operator R with a scaling factor e.

Since the goal of this interpolation is to increase spatial sampling by a factor p
for any given frequency, the training data are again the input data that we wish to
interpolate, but at a frequency p times lower than the frequency we are interpolating.
These complex-valued training data are used to estimate a set of complex-valued

nonstationary PEF coefficients using equation 5.3.

Once I estimate this nonstationary PEF, I then use it to solve equation 2.30,

repeated here as equation 5.4,
Jm = _(FLans)iansrm (54)

interpolating the unknown data, which are the p — 1 samples between each pair of
known values on each axis of the frequency slice. Here, the unknown values of the
frequency slice, Jm, are estimated from the known values convolved with the PEF,
ro, and a convolutional matrix F g, created with the nonstationary PEF estimated in
equation 5.4. Note that the size of the interpolated data is greater by a factor of p
along each interpolated axis than that of the data used to estimate the nonstationary
PEF. The F, matrix must therefore be constructed so that one local set of filter
coefficients is repeated p times along each axis within this matrix when compared to

a matrix for data that are the size of the training data.

QUARTER-DOME SYNTHETIC EXAMPLE

The quarter-dome synthetic has been used in both Chapters 2 and 3; it has both
events with stationary slopes and those with a range of variable slopes. Let us now
sample the data with half the original sampling along each of the two spatial axes and
attempt to interpolate to the original sampling. We first pad the input 256 x 50 x 25

data by a factor of two in time and apply a Fourier transform to create frequency
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slices, each with one-half the frequency of the original data. Next, we estimate a
3 x 3 nonstationary PEF that varies every fifth point in both spatial dimensions
for each of the 128 frequency slices of the training data by using 100 iterations of
a conjugate-direction solver on equation 5.3. Once these nonstationary PEFs have
been estimated, We can then use them in equation 5.4 to interpolate the data onto
the larger 100 x 50 slices.

Figure 5.6a shows the original data, and the sampled data (with zeroes in the
place of unsampled cells) are shown in Figure 5.6b. As a comparison, I use stationary
PEF's to solve the same problem, with a 3 x 3 stationary PEF used for each frequency.
This approach produces the result in Figure 5.6¢. Although the upper and lower parts
of the model, which are stationary, are correctly interpolated, the steep slopes that
vary out-of-plane in the center of the model are aliased when using stationary PEFs.
This stationary approach can also be applied in patches, wherein the model is broken
up into many overlapping patches and each problem is solved independently. Figure
5.6d is a result of this approach, where the 200 x 50 x 25 input data were broken up
into 2160 overlapping patches of 32 x 15 x 15. This result is somewhat better than
that in Figure 5.6¢, with most of the data properly interpolated except for the most
variable regions to the near-left of the cube, also seen in the lower-left of the depth

slice.

Applying the nonstationary f-x approach described in equations 5.3 and 5.4 to
the data in Figure 5.6b results in Figure 5.6e. While the highly variable regions are
reasonably well interpolated, obvious errors appear in the upper and lower stationary
regions of the data, seen in the crossline slice on the right panel. Large amplitude
errors exist in the flat regions correctly interpolated by all other methods. This
method creates spatially variable PEFs, but assumes stationarity in time, that is,
that a PEF for each frequency is appropriate at all times. This is incorrect in this

example, as the slope varies as a function of position and time.

Patching was used along all axes to produce Figure 3.7d, which adds considerable
expense. When nonstationary PEF's are used, I use this approach but only along the

time axis, considerably reducing the added cost. I break up the time axis of Figure
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Figure 5.6: Interpolation of the quarter-dome synthetic. a) original data. b) data
sub-sampled by a factor of two on each spatial axis. ¢) Stationary f-x interpolation.
d) f-x interpolation in patches. e) Nonstationary f-x interpolation. f) Nonstationary
f-x interpolation in time patches. The nonstationary f-x interpolation in time patches
performs slightly better than the patched approach, most notably in the crossline,

and is more than an order of magnitude faster. ER [fxNS/. qdomefxann
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5.6b into 30 overlapping windows of 32 points each and then use the same nonstation-
ary filters used to generate Figure 5.6e. This time, however, I do so independently on
each frequency for each time window, producing the result in Figure 5.6f. This result
couples the patch-based approach along the Fourier-transformed axis with spatially
variable PEFs. The interpolation in Figure 5.6f is arguably better than the result
of patching along all axes in Figure 5.6d, most notably in the highly-variable region,
and is also more than ten times faster to compute. This is because the lack of overlap
in space between patches causes the amount of data shuffling to be reduced as well
as the overall amount of data interpolated. This bodes well for higher dimensions, as
higher-dimensional PEFs can be used and the massive amount of data duplication re-
quired for the overlapping spatial patches for each additional dimension is eliminated

in the interpolation.

This quarter-dome example, repeatedly used in this thesis, is well served with
spatially variable PEFs used in time patches. The computation is relatively fast,
and the result compares well with that of a more expensive traditional approach of

patching along all axes.

SYNTHETIC 3D MARINE DATA EXAMPLES

I now test this method on a more difficult synthetic dataset containing many diffrac-
tions, courtesy of ExxonMobil. A schematic of the model used to create these data
is shown in Figure 5.7a. A prism containing hundreds of point diffractors is placed
below a horizontal water-bottom, with reflectors beneath the water-bottom placed at
a reflection time slightly after the arrival of the diffracted multiples. The data were
modeled analytically (Baumstein and Farrington, 2006), with the many interfering
point diffractors creating a cloud of coherent noise over the reflector of interest. The
shifted apexes of the multiples as well as the out-of-plane multiples are problems not
properly addressed with the conventional high-resolution radon or two-dimensional

surface-related multiple-elimination methods.

The geometry of this synthetic dataset is based upon a modern conventional 3D
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marine acquisition (Figure 5.7b). The minimum and maximum inline offsets are 100
m and 5225 m, respectively, with 410 receivers along a cable at 12.5 m intervals. The
550 m crossline aperture consists of 12 cables separated by 50 m. The 320 inline
sources are acquired in a flip-flop fashion, with the inline spacing between two flip
sources or two flop sources at 37.5 m, while the crossline separation between the flip
and flop sources is 25 m, and the crossline separation between adjacent sail lines is
200 m. A summary of the sampling along with the desired output sampling for 3D
SRME is shown in Table 5.1.

Table 5.1: Sampling of the synthetic marine data.
’ Axis H Arecorded ‘ Adesired ‘

hy 125m | 125 m
hy 50 m 125 m
Sy 37.5m | 125 m
Sy 200 m 12.5m

As seen in Table 5.1, the inline sources need to be interpolated by a factor of three
and the crossline receivers by a factor of four for ideal sampling. I first attempt to
interpolate the data in the inline source direction by a factor of three by interpolating
simultaneously in two, three, and four dimensions. I compare these results in different
sections along all of the axes of this four-dimensional result; a 3D interpolation that
does not include the crossline offset axes produces the best result. I then interpolate
receiver cables in the crossline direction, varying the dimensionality of the filter, and

again find that a 3D approach outperforms a 4D approach.

Synthetic data: Inline source interpolation

The out-of-plane diffractors in Figure 5.7a create both a cloud of diffractions beneath
the water-bottom reflection and a set of diffracted multiples that are even more com-

plicated, shown in the constant-offset section on the front face in Figure 5.8a. These
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Figure 5.7: Schematic of the synthetic dataset: a) shows the model, a prism-shaped
region below the water bottom filled with point diffractors, below which lie three
reflectors whose primary reflection times are nearly the same times as those of water-
bottom multiples; b) is a plan view showing the acquisition schematic, with twelve
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receiver cables and flip-flop sources. NR |[fxNS/. exxon

diffractions and diffracted multiples also appear in the shot gather in Figure 5.8b.
The crossline variability of this noise can be seen in the time slices in both Figures

5.8a and 5.8b, as well as in the crossline offset sections on both figures.

For interpolation along the inline source axis, I test four different approaches using
nonstationary PEFs in frequency and space. All of these approaches use equation 5.3
to estimate the nonstationary PEF and equation 5.2 to interpolate the data with the
PEF; the only differences in the equations are the domain in which both the PEF
and interpolation take place and the dimensionality of the Laplacian filter used in
the regularization matrix, R. I use a conjugate-direction solver in all cases, with 30
iterations for each nonstationary PEF estimation and 60 iterations for each interpo-
lation. I perform these tests on a single sail line from these data, extracting only the
flip sources, for a total of 160 sources and 410 receivers on each of the 12 receiver

cables. As pre-processing for these tests, I first perform a NMO correction with water
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Figure 5.8: Synthetic dataset. a) a cube with a constant-offset section on the front
face, crossline offsets on the side face, and a time slice through this cube on the top;
b) another cube showing a single shot with inline offsets on the front face, crossline
offsets on the side face, and a time slice on top. Events are aliased along both the
inline source and crossline offset axes. ER [fxNS/. exxoninann
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velocity to partially flatten the data along offset as an attempt to reduce the amount
of energy that crosses over the patches on the time axis that I next create, breaking up
the 1024-element time axis into 40 time patches, each 64-elements long. I then apply
a Fourier transformation along the now 64-element patched-time axis to produce 32
frequency slices (ignoring symmetric negative frequencies), each of which has 40 time
patches, producing a cube that has 160 x 410 x 12 x 40 x 32 complex elements, with

a desired output three times the size along the first (inline source) axis.

The simplest nonstationary PEF-based interpolation would be to use a 1D PEF
that operates over only the source axis. This results in (410x 12x40x 32) interpolation
problems in which a one-dimensional PEF is first estimated on lower-frequency data
and is then used to interpolate the sampled data to a higher spatial sampling rate.
I estimate a six-term PEF that varies every fifth point along the source axis, for a
total of 160 unknown filter coefficients for each problem. In total I estimate the same
number of unknown filter coefficients as points in the input data: roughly one billion

complex elements.

I next use a more complicated approach by increasing the interpolation to three
dimensions. One way to do this is by estimating a PEF over both the interpolated
inline source axis and the inline offset axis. Now each individual problem is a two-
dimensional problem in which 2D PEFs are estimated on lower-frequency, coarser-
sampled training data in inline source and inline offset. These PEFs are then applied
to a higher-frequency output with denser sampling along both axes. I subsample the
training data by a factor of three along the inline offset axis prior to estimating the
PEF, and then I estimate a 6 x 6 PEF that varies every fifth sample along each axis of
the training data, meaning every 15 samples in the interpolated result. These 23, 332
unknowns are estimated for each of the 12 x 40 x 32 problems for a total of roughly

360 million complex PEF coefficients.

Another domain for 3D interpolation of inline sources is in inline source and
crossline offset. Here I estimate a 6 x 3 PEF that varies every fifth point along the
inline source direction and does not vary along the crossline offset direction. I solve
for the 480 complex PEF coefficients for each of the 410 x 40 x 32 problems for roughly
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250 million unknown filter coefficients. Since there are few crossline offsets, I do not
subsample the training data along this axis; instead I interpolate both inline sources
and crossline offsets, followed by subsampling along the crossline offset axis to return
to the original crossline offset sampling. Otherwise, the subsampling would leave only

four samples along the crossline offset axis.

Finally, using all of the data in the sail line in a 4D interpolation, I estimate
a 6 x 6 x 3 PEF, over inline source, inline offset, and crossline offset, that varies
every fifth point along both the inline source and inline offset axes, and every third
point along the crossline offset axis. This is repeated for each of the 32 frequencies
of the 40 time windows for a total of roughly 430 million complex filter coefficients.
I again subsample the training data along the densely-sampled inline offset axis and
subsample the output data along the crossline offset axis to remove the currently

undesired interpolated crossline offsets.

In all of these cases, once the data have been interpolated frequency by frequency
and patch by patch, they are transformed back from frequency to time. I then re-
assemble the time patches with a triangular weighting in overlapping areas to ensure a
smooth transition from one patch to the next. Because the PEFs do not operate over
the time axis that I reassemble from patches, a simple triangular weighting suffices
because no edge effects from the filter need to be accounted for. I now compare these
four different approaches by interpolating the entirety of the sail line and comparing
the results. For the four axes, six potential slices can be shown: time and inline
offset, time and crossline offset, time and inline source, inline offset and crossline
offset, crossline offset and inline source, and inline source and inline offset. Because
of the relatively small number of samples in the crossline direction, I now show only
results in the inline direction, although crossline information has been used in two of

the cases.

Figure 5.9 shows an example of a constant inline offset section from the sixth cable
of the data using the four different approaches. This image contains both the known
data at every third sample along the inline source axis and the two interpolated traces

between each known trace. I have zoomed in on a section of the diffracted multiples



CHAPTER 5. NONSTATIONARY FREQUENCY-SPACE INTERPOLATION 141

 bad slopes

9500 10500 9500 10500
s (m) s (m)

Figure 5.9: A zoomed-in comparison of inline source interpolation along constant-
offset sections at 1137.5 m using different PEF dimensions. a) 2D interpolation along
constant inline offset sections. b) 3D interpolation along inline source, inline offset
cubes. ¢) 3D interpolation along inline source, crossline offset cubes. d) 4D interpola-
tion along inline source, inline offset and crossline offset hypercubes. Based on the re-
sulting continuity between sources the inline 3D and 4D interpolations perform better
than the 2D or 3D crossline interpolations. ER |[fxNS/. exxoncoffinterpcoffcompann
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Figure 5.10: Differences between the plots in Figure 5.9. a) 2D vs. 3D inline interpola-
tion; b) 2D vs. 3D crossline interpolation; ¢) 3D inline vs. 3D crossline interpolation;
d) 3D inline vs. 4D interpolation; e) 3D crossline vs. 4D interpolation; f) 2D vs. 4D
interpolation. The 2D results have horizontal errors, the 3D crossline result under-
predicts the target reflectors, and the 3D inline and 4D interpolations both perform
similarly well and show few differences. ER |{xNS/. exxonsourcecoffdiffann




CHAPTER 5. NONSTATIONARY FREQUENCY-SPACE INTERPOLATION 143

that shows the largest differences between the four approaches. Figure 5.9a shows
the result of a 2D interpolation. While the horizontal reflectors and horizontal water-
bottom multiple are easily interpolated, the previously-aliased diffracted multiples
are only partially interpolated: the outer diffractions have been interpolated with
some success, but the inner, more dense part of the cloud of diffractions contain
obvious errors. Horizontal energy appears before the second flat reflection at 2.8 s,
and several traces contain errors with energy present after the cloud of diffractions.
Including the inline source axis in the PEF estimation produces the result in Figure
5.9b. This result is a large improvement over the 2D result, as the diffractors appear
to be continuous, with no errors detectable. Using the crossline offset axis instead of
the inline offset axis in the interpolation produces Figure 5.9c. The addition of the
12-point crossline offset axis improves the result from the 2D example in Figure 5.9a,

as the errors on small groups of traces are not present.

I reexamine these results by taking differences between the results in Figure 5.9
and amplifying the results, shown in Figure 5.10. The differences featuring the 2D
interpolation show both incorrect (flat) slopes surrounding the target reflectors, as in
Figures 5.10a, 5.10b, and 5.10f. Meanwhile, the 3D crossline interpolation incorrectly
interpolates the target reflectors, as in Figures 5.10b, 5.10c, and 5.10d. The 3D inline

and 4D interpolations have few differences, as shown in Figure 5.10d.

However, the 3D crossline offset, inline source interpolation is clearly worse than
the 3D inline interpolation, as the original data are visible in the cloud of the diffrac-
tions, particularly at the rightmost half of the image. Finally, the 4D interpolation
appears to be comparable to the 3D inline result. The locations of the recorded data
are not obvious, and no visible errors exist. While it is difficult to discern the 4D
from the 3D inline interpolation, the 2D result is clearly the worst, and the 3D inter-
polation is superior when including the inline offset axis instead of the crossline offset
axis in the interpolation. Next, we examine these same results along the inline offset

axis.

Figure 5.11 shows these same interpolations, but this time when viewed along the

inline offset axis for a single interpolated shot, so in this figure all of the visible data
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Figure 5.11: One cable from an interpolated inline source at 11706.5 m. a) orig-
inal recorded shot located adjacent to the interpolated shots in b-e. b) 2D in-
terpolation along constant inline offset sections. c¢) 3D interpolation along inline
source, inline offset cubes. d) 3D interpolation along inline source, crossline offset
cubes. e) 4D interpolation along inline source, inline offset and crossline offset hy-
ercubes. The 3D inline and 4D interpolations again produce the best results. ER
fxNS/. exxoncoffinterpshotcompann

have been created by interpolation. For reference, the recorded shot nearest to the
interpolated sources in Figures 5.11b-e is shown in Figure 5.11a. Again, the figure
shows a close-up of an interesting region of the results below the water-bottom reflec-
tion near the apexes of the diffractions. The 2D interpolation in Figure 5.11b, again
shows considerable variability from trace to trace. I attribute this first to each trace
having been created from an independent problem, and second that the parameters
used in the interpolation (size and variability of the PEFs, amount of regularization
of the PEF, and number of iterations) were optimized for a single output constant-
offset section and were then applied to the entire dataset. The 3D interpolations
again show much more continuity than does the 2D interpolation, with the 3D inline
source, inline offset interpolation in Figure 5.11c giving a more continuous result than
that of the 3D inline source, crossline offset interpolation. This is most obvious at
early times around the water-bottom reflection. The difference between the two 3D

results is that each trace in Figure 5.11d is solved as an independent problem, while
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all inline offsets in Figure 5.11c are obtained from the solution to a single problem.
The differences between the full 4D result in Figure 5.11e, and the 3D inline source,

inline-offset result are minimal.

Finally, I examine a time slice from slightly before the first subsurface reflector in
an inline offset, inline source position cube, for all of the results in Figure 5.12. In
all of these images, the ordinate axis has been interpolated by a factor of three. The
2D interpolation in Figure 5.12a shows a problem that appears as a sinusoidal event
along the inline offset axis at roughly 10000 m on the inline source axis, where the
flanks of some of the diffracted multiples intersect the time slice. This is the result
of variations in the amplitude of the interpolated sources. Other problems also exist
with this result, such as the poorly interpolated flanks of other diffracted multiples
at the top of the image, where incorrect data are created outside of the flanks of the
multiples. The flanks of the diffractors at the bottom-left of the image also appear
speckled where the original data are obvious as the higher-amplitude speckles, where

this sinusoidal pattern is also present.

The results in Figures 5.12b and 5.12c show that the increase from 2D to 3D
interpolation improves the result considerably, again especially in the inline offset,
inline source case. The crossline offset, inline source interpolation in Figure 5.12¢
improves upon the 2D interpolation below the cloud of diffractors, as the speckling is
no longer present, but some of the problems at the top and the middle of the image
still remain. The 3D inline offset, inline source interpolation in Figure 5.12b gives an
excellent result, with the visible problems in the other results gone. The sinusoidal
errors in the diffraction flanks are gone, and the recorded data cannot be discerned
from the interpolated data. Moving to a full four-dimensional interpolation, the result
shown in Figure 5.11e was difficult to differentiate from that of the 3D inline source,
inline offset interpolation. In this view, the differences are more pronounced, with
the 4D interpolation containing some of the sinusoidal noise present in the 2D and

3D crossline offset results at the center of the slice.

Overall, inline source interpolation of these data appears to be successful. While
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Figure 5.12: Time slices from 4.336 s in inline source and inline offset, where the
inline source axis has been interpolated by a factor of three. a) 2D interpolation
along constant inline-offset sections. b) 3D interpolation along inline-source, inline-
offset cubes. ¢) 3D interpolation along inline-source, crossline-offset cubes. d) 4D
interpolation along inline-source, inline-offset, crossline-offset hypercubes. The 3D
inline-source, inline-offset interpolation in Figure 5.12b produces a superior result to
all others, particularly on the linear events at the center of the slice, with no vertical

streaking or sinusoidal error. ER

fxNS/. exxoncoffinterpslicecompann
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the 2D interpolation along only the source axis was insufficient, other methods pro-
duce good results, with the 3D inline offset approach yielding the best result. This
is surprising given that the 4D interpolation uses more data at the same time. 1
attribute the poorer performance of the 4D interpolation to the short length of the
added crossline offset axis. Since the same set of filter coefficients are used for multiple
receiver cables, and the nonstationary PEF regularization also operates over receiver
cables means that information across this axis is mixed, while the few points to not
contribute enough to the PEF to counter this effect. Now that the problem of inline
source interpolation on these data has been addressed, and a solution similar to that
for 2D prestack data has produced the best result, I next consider crossline receiver

interpolation, for which a prestack 2D algorithm is useless.

Synthetic Data: Crossline receiver interpolation

Crossline receiver interpolation is a much more difficult problem than inline source
interpolation because of the small number of samples along the interpolated axis,
the sparser sampling of crossline receivers, and the larger factor of interpolation re-
quired. Applying a simple 2D interpolation along crossline offsets will not produce
an acceptable result, as only 12 points are being used at any one time. Increasing the
dimensionality of the problem is an obvious approach, but the question remains as
to which dimensions are the most useful and if increasing the dimensionality of the
problem is worthwhile. For these data, I interpolate crossline receiver cables using
2D, 3D, and 4D approaches. In addition to judging the results along the interpolated
axis, I again examine the results along all other axes, as examining interpolated re-
ceiver cables, constant-inline offset sections, and various time slices produces further

insight into the results.

I test four interpolation methods here. All four methods have the same pre-
processing performed on the data as that in the inline source interpolation test. The
data are again NMO-corrected at water velocity, followed by dividing the time axis

into 40 overlapping patches of 64 samples each, followed by a Fourier Transform over
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the time axis. The training data for the PEFs are the same data, but extended in
length by a factor of two by zero-padding along the time axis (for each patch) before
Fourier transformation to produce data, with half the sampling interval in frequency.
The PEFs were estimated using 60 iterations of a conjugate-direction solver, while

the interpolation was also performed with 60 iterations of the same solver.

The first approach is two-dimensional, in which a 1D PEF of three complex ele-
ments that vary every second sample is estimated across the crossline offset axis and
used to interpolate that one-dimensional vector for each of the 410 x 160 x 40 x 32
problems, for a total number of coefficients that equals the number of data values.
I then test two 3D interpolation methods, one in cubes of crossline offset and inline
offset for a shot-by-shot interpolation, with a 2D 3 x 6 PEF that varies every fourth
point on both axes, now applied independently on all 160 shots, 40 patches, and 32
frequencies of the data. The second 3D interpolation method over crossline offset and
inline source positions again uses a 3 x 6 PEF that varies every fourth point along
both axes and independently for all 410 inline offsets, 40 patches and 32 frequencies,
again for a number of coefficients that roughly equals the size of the training data.
Since I do not wish to interpolate the inline receiver axis and assume it to be well-
sampled, I subsample the training data along that axis when estimating the PEF, so
that the result is not interpolated over the inline receiver axis. However, along the
aliased inline source axis I do not subsample the training data and instead subsample
the interpolated result over the inline source axis. This is because of the small num-
ber of receiver cables that subsampling along the crossline offset axis would produce.
Finally, I test the full 4D interpolation method, where the 3D 3 x 6 x 6 PEF varies
every fourth point along the crossline receiver axis and every fifth point along the
inline source and inline receiver axes. This 4D approach is applied independently for

each of the 40 patches and 32 frequencies.

Looking at the differences among these interpolations along the axis of interpo-
lation, the crossline offset axis, provides little insight, as seen in Figure 5.13. The
original data in Figure 5.13a do not have many observable trends except for the flat

water-bottom and lower reflectors, and some diffractions that are sloping to the left
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Figure 5.13: Receiver cable interpolation viewed for a single source at 10931.25 m and
a single inline offset at 900 m. a) original data. b) 2D interpolation of crossline offset
gathers. ¢) 3D crossline-offset, inline-offset cube interpolation. d) 3D crossline-offset,
inline-source cube interpolation. e) 4D interpolation. The 4D interpolation shows the

most continuity. ER |[fxNS/. exxoncableinterpcxoffann
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Figure 5.14: Receiver-cable interpolation viewed for constant-offset (900 m) sections.
a) original data from a nearby receiver cable. b) 2D interpolation of crossline-offset
gathers. c) 3D crossline-offset, inline-offset cube interpolation. d) 3D crossline-offset,
inline-source cube interpolation. e) 4D interpolation. Looking at the bottom of the
cloud of diffracted multiples, the 3D and 4D results appear to be comparably better
than the 2D result. ER |{xNS/. exxoncableinterpcoﬂ:ann‘

after the water bottom. The 2D result is the least believable, with obvious distinc-
tions between the recorded and interpolated data. The 3D crossline offset, inline
source interpolation (5.13c) is the next worst result, with the recorded data more dis-
tinguishable from the interpolated data in both the diffracted multiples as well as the
primary diffractions at earlier times. The 3D inline result (5.13b) is able to produce a
believable result in the diffractions below the water bottom, but the multiples are still
not properly interpolated. Finally, the 4D result (5.13e) produces what I believe is
the best result in this comparison, with the interpolated data indistinguishable from

the recorded data in both the primary diffractions and the diffracted multiples.

Shown in Figure 5.14 are the results along the source axis. A constant-offset
section taken from a single cable is shown in Figure 5.14a, while the nearest inter-
polated cable produced from the four methods comprises Figures 5.14b-e. This view
is not at all enlightening, even when zoomed into the diffracted multiples below the

water-bottom multiple. The only method that produces a visibly different result is
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Figure 5.15: Receiver cable interpolation viewed for a single shot at 10931.25 m and
a single interpolated cable at zero crossline offset. a) recorded data from a nearby
receiver cable. b) 2D interpolation of crossline-offset gathers. c¢) 3D crossline-offset,
inline-offset cube interpolation. d) 3D crossline-offset, inline-source cube interpola-
tion. e) 4D interpolation. The 3D inline-offset, crossline-offset and 4D interpolations
produce the best results. ER [fxNS/. exxoncableinterpshotann

the 2D approach, which shows considerable noise below the apexes of the diffracted
multiples. The base of the cloud of diffracted multiples appears the clearest in the
4D result.

Another better-sampled axis along which to view the data is the inline-offset axis,
shown in Figure 5.15. Again zoomed on the diffracted multiples, the nearby recorded
cable (Figure 5.14a) looks continuous and noise free, while the 2D interpolation (Fig-
ure 5.14b) and the 3D inline-source, crossline-receiver interpolation (Figure 5.14d)
both contain what appears as noise. This noise arises because each of the inline
offsets for these cases were treated as independent problems, whereas the 3D inline-
offset, crossline-offset interpolation (Figure 5.14c) and the 4D interpolation (Figure

5.14) operate over the entire axis shown in this figure.

Having examined various vertical sections involving the time axis, let us now look
at various time slices through the four-dimensional result. Figure 5.17 shows a time
slice through a single shot record, where the 12 cables have been interpolated by a

factor of two to yield a total of 23 cables. The flank of the diffractions can be seen at
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Figure 5.16: Differences between images in Figure 5.15. a) 2D vs. 3D receiver
interpolation; b) 2D vs. 3D source interpolation; ¢) 3D receiver vs. 4D interpolation;
d) 3D source vs. 4D interpolation; e) 2D vs. 4D interpolation; f) 3D source vs. 3D
receiver interpolation. The 3D crossline receiver, inline receiver and 4D interpolations
are most similar, with the 3D source interpolation producing errors at far offsets. ER
fxNS/. exxoncableshotdiff

roughly 3500 m inline offset, and the apexes of the diffractions are at roughly 1000
m offset. Because of the small number of cables present, the figure is quite short in
h,, making it difficult to discern differences in the images. The 2D interpolation in
Figure 5.17a shows some noise at the far crossline offsets and far inline offsets where
the acquired data are visible. At near offsets, noise is also visible. The 3D inline
offset, crossline offset interpolation in Figure 5.17b is more continuous than the 2D
result at far inline offsets, while the 3D crossline offset, inline source interpolation in
Figure 5.17c is considerably more discontinuous than either the 2D or the 3D inline
result throughout the slice. Finally, the quality of the full 4D interpolation in Figure
5.17d is somewhere between the two 3D results, with a slight loss in continuity of the

interpolated data at far inline offsets.

Finally, I show an inline-offset, inline-source time slice for each of the four methods
from below the water-bottom reflection, where the flanks of the diffractions appear
as strong linear events. In this comparison (Figure 5.18), all of the data are created

by interpolation. The 2D interpolation in Figure 5.18a gives what appears to be a
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Figure 5.17: Receiver cable interpolation viewed in a time slice at 2.276 s through
a crossline-offset, inline-offset cube at s, = 10931.25 m. a) 2D interpolation of
crossline-offset gathers. b) 3D crossline-offset, inline-offset cube interpolation. c)
3D crossline-offset, inline-source cube interpolation. d) 4D interpolation. The 3D
crossline-offset, inline-offset and 4D interpolations produce the most continuous re-
sult. ER |fxNS/. exxoncableinterpxosliceann

visually pleasing result, as do the results in Figures 5.18b and 5.18d. The 3D crossline-
offset, inline-source result in 5.18c appears to contain more noise than do the other

results, with more heterogeneity across the inline-offset axis.

The crossline interpolation of this prestack synthetic example shows how some
domains are better for seeing differences in interpolation results than are others.
In particular, the axes that contain the recorded data are not particularly useful
since the number of samples along the crossline offset axis is so small. Time slices
through an inline-source, crossline-offset cube were not shown as they were even less
useful for drawing distinctions among the data. Instead, comparing a combination of
interpolated time slices through an inline-source, inline-offset cube and interpolated
shot gathers appeared to show the most dramatic differences. These synthetic data
show, somewhat surprisingly, that simply adding axes to an interpolation does not
necessarily improve the result. In particular, for inline-source interpolation a 3D

inline-only interpolation seems to provide the best result, although including the
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Figure 5.18: Receiver cable interpolation (h, = —25 m) viewed in a time slice at 2.276

s through an inline-offset, inline-source cube below the water-bottom reflection for an
interpolated receiver cable. a) 2D interpolation of crossline-offset gathers. b) 3D
crossline-offset, inline-offset cube interpolation. c) 3D crossline-offset, inline-source
cube interpolation. d) 4D interpolation. The 2D result is overly smooth, the 3D
(crossline-offset, inline-offset) result shows vertical striping, the 3D (crossline-offset,
inline-source) interpolation shows horizontal striping, and the 4D result contains more

detail and has no striping. ER |fxNS/. exxoncableinterpsosliceann
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crossline-offset axis is preferable to performing a strictly 2D interpolation. Crossline
interpolation shows that using the aliased inline-source axis is not as useful as the well-
sampled inline-offset axis in interpolation of receiver cables, but the 4D interpolation
is a marginal improvement over the other results. Next, we shall see complications
that field data add to this problem, and how an even more poorly-sampled crossline

offset axis changes things.

FIELD 3D MARINE DATA EXAMPLES

For the 3D prestack field data shown in Chapters 1 and 4, courtesy of CGGVeritas,
I next interpolate sources by a factor of three in the inline direction, and receiver
cables by a factor of four, from four to 13, the density (but not aperture) required
for 3D SRME. I compare multiple approaches to this problem and show how quickly

the results degrade when iteratively interpolated.

Figure 5.19 shows a schematic of the acquisition geometry of two alternating
sources and four receiver cables, with the (idealized) recorded and desired sampling
parameters listed in Table 5.2. The inline source and receiver spacings are ideally 25
m, while the crossline spacing is ideally 40 m, equal to the crossline distance between

the two towed sources and the nearest receiver cables.

Table 5.2: Sampling of the field marine data.
’ Axis H Arecorded ‘ Adesired ‘

h., 25 m 25 m
hy, 160 m 40 m
Sy 75 m 25 m
Sy 320 m 40 m

The actual source locations for the single sail line used in these tests (Figure 5.20a)
are reasonably straight. While the receiver locations (Figure 5.20b) deviate more from
the idealized straight line geometry than do the sources, the deviations are relatively
minor compared with those of other sail lines in this data set. I interpolate sources

along the sail line, and cables between other cables, gridding the data as if the sail
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line and cables are straight. Because this interpolation is a statistical method and
these deviations are smooth, the name of the spatial axis is inconsequential, but the
displays of inline offset might not exactly honor the inline offset when cable feathering

is included.

These data, shown in Figure 5.22, contain a water-bottom canyon with significant
crossline dip, as shown in the failure of both 2D SRMP in Chapter 1 and 2D pseudo-
primary generation in Chapter 4 in this canyon. This canyon, shown in the left half
of the constant-offset section (at 600 m inline offset) in Figure 5.22a has a maximum
crossline dip of approximately 14 degrees, measured from the provided migration
velocity model in Figure 5.21, such that the apex of the reflection from this water
bottom falls outside of the recording array. This reflection is spatially aliased on the
edges of this canyon, both in inline source and crossline offset. In Figure 5.22b, I show
a recording from the second receiver cable for a single shot at 15800 m, where this
canyon in steeply dipping in the inline. This shot has been NMO-corrected using an
RMS velocity generated from the migration velocity model, and because of the strong
lateral heterogeneity of the velocity in this region the data as seen along the receiver
cable appear overcorrected. Looking at the crossline offsets in Figure 5.22¢, where
both inline offset and source location are fixed at 400 and 15800 m, respectively, the

slope in this coarsely-sampled axis is aliased, even after the NMO correction. These
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Figure 5.20: Source and receiver distributions of the input sail line: a) source posi-
tions; b) receiver position map. The sail line is relatively straight with minimal cable

feathering. NR ’ fxNS/. fieldsourec

data are severely undersampled, with a factor of three required in the inline-source
direction, a factor of four required in the crossline-receiver direction. In the next
two examples, I demonstrate nonstationary interpolation of these frequency slices in
various different dimensions for both the inline-source axis and the inline-receiver

axis, and then focus on interpolating both axes in an iterative fashion.

Field data: Inline-source interpolation

To interpolate the inline sources by a factor of three, I first perform an NMO correction
on the data to roughly flatten the data along the offset axes. I do this prior to applying
the nonstationary f-x interpolation in 30 overlapping windows of 128 samples along
the time axis, in order to reduce the number of events crossing the boundaries of
these time windows. Once these data have been NMO corrected and are divided into
overlapping windows, I zero-pad the time windows extending them by a factor of
three of the original length and then perform a temporal Fourier transform to create

training data with one-third the frequencies of my desired output data. I use the
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Figure 5.21: Migration velocity model of the dataset. Note the submarine canyon
with a significant crossline dip. NR ’fXNS /. vmodel‘

unpadded data and perform the same Fourier transform to create the input data to

be interpolated.

To interpolate inline sources, I first perform a two-dimensional interpolation us-
ing 5-element PEFs that vary every eight samples estimated along the inline source
axis, and repeat the process for all offsets, both inline and crossline. I also perform
two 3D interpolations, the first with 6 x 2 PEFs that operate over the inline source
and crossline-offset axes, varying every five and four points, respectively, and repeat
these interpolations over the inline-offset axis. The second 3D interpolation is over
inline source and inline offset, using 6 x 2 PEFs that vary every sixteen and twenty
points along the inline source and inline offset axes, respectively. Finally, I perform
a full four-dimensional interpolation with all of the data in each frequency slice used
simultaneously, using 5 x 5 x 2 3D PEFs operating across inline source, inline offset,
and crossline offset that vary every five, eight, and four points along each axis, re-
spectively. In all cases, the inline-offset axis is subsampled before the PEF estimation

as that axis is not interpolated, and the crossline-offset axis is also interpolated when
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Figure 5.22: Input sail line: a) constant-offset section at 600 m inline offset and the
second receiver cable; b) second cable of a shot at 15,800 m; ¢) crossline-offset gather
at 600 m inline offset and a source position of 15,800 m. The data have been NMO
corrected, and a gain has been applied. NR [fxNS/. fieldinann
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used to estimate a PEF.

I first compare these different interpolations by examining a constant-offset sec-
tion, where every third trace is known, shown in Figure 5.23. The 2D interpolation
result in Figure 5.23a contains more noise than do the other results, most noticeably
before the first arrival. Unfortunately, it is difficult to detect differences among the
other results when looking at this constant-offset section. Looking at the differences
between these figures in Figure 5.24 shows that the 3D inline and 4D interpolations
are the most similar, while the 3D crossline interpolation adds little to the 2D ap-
proach. In all cases the flat regions of the water bottom are well-interpolated, with
the largest differences in the submarine canyon and in the salt body reflection below

the water bottom.

Instead of looking at the axis along which the interpolation is done, the multi-
dimensional nature of this problem gives us several other potential ways to display
the interpolated data. Figure 5.25a shows a receiver cable identical to that in Figure
5.22b, while Figures 5.25b-e are the 2D, 3D inline, 3D crossline, and full 4D inter-
polated cables from the nearest shot to that for Figure 5.25a. Here the differences
in the interpolation algorithms become much more obvious. The 2D result in Figure
5.25b is clearly much poorer than any of the other results. The 3D inline-source,
crossline-offset interpolation in Figure 5.25¢ is a marginal improvement over the 2D
interpolation, but still has interpolated energy appearing before the water bottom,
and also lacks the second dip that is present in the recorded shot in that for Figure
5.25a. Switching the domain of 3D interpolation to inline-source and inline-offset,
where the interpolation also spans the horizontal axis of the figure yields the result
shown in Figure 5.25d. This result is close to that for the nearby recorded shot,
excluding a dimming of the secondary slopes present in the original shot. Extraneous
energy before the water bottom is completely absent. The result of full 4D interpo-
lation, in Figure 5.25e, is not as appealing as that from Figure 5.25d. I attribute
this to the nonstationary PEFs using the same coefficients for all four of the receiver
cables, which spreads information local to each cable. The interpolated receiver cable

in this case, however, also does not contain any energy before the water bottom. The
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Figure 5.23: Interpolation of sources in a constant-offset section by a factor of three:
a) 2D b) 3D (inline source, inline offset); ¢) 3D (inline source, crossline offset), d)
4D. The differences in this view are minor, with slight amounts of energy appearing
before the water-bottom in the 2D interpolation. NR |fxNS/. fieldinlinesourceann
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Figure 5.24: Differences between images in Figure 5.23. a) 2D vs. 3D crossline
offset interpolation b) 2D vs. 3D (inline source, inline offset); ¢) 2D vs. 4D; d) 3D
crossline offset vs. 4D; e) 3D inline offset vs. 4D; f) 3D inline vs. 3D crossline. NR

fxNS/. fieldinlinecoffdiffann
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Figure 5.25: Near offsets of interpolated shot gathers: a) nearest recorded shot gather
from 25 m away; b) 2D constant-offset-section-based interpolation; c¢) 3D (inline-
source, crossline-offset) interpolation; d) 3D (inline-source, inline-offset) interpolation;
e) 4D. The differences among the results are much more dramatic than in the inline
source view, with the 3D inline result appearing most like the nearby data. NR
fxNS/. fieldinlineshotann

difference panels in Figure 5.26 show a surprising difference between the 3D inline
and 4D results. with the amplitude of the 4D result much lower than the 3D inline
result and much of the second slope missing. I attribute this to the smearing over
the crossline offset axis introduced by reusing the same filter coefficients over all of
four crossline offsets. Since this source location is in an area with great crossline

heterogeneity, this produced a less accurate result.

Finally, an inline-source, inline-offset time slice, where the slice intersects the

water-bottom reflection, is shown in Figure 5.27. Here the 2D interpolation in Figure
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Figure 5.26: Differences between images in Figure 5.25. a) 2D vs. 3D crossline offset
interpolation b) 2D vs. 3D (inline source, inline offset); ¢) 2D vs. 4D; d) 3D crossline
offset vs. 4D; e) 3D inline offset vs. 4D; ) 3D inline vs. 3D crossline. The 3D inline

and 4D results show the greatest coherent differences. NR |fxNS/. fieldinlineshotdiff

5.27a contains energy before the water bottom at roughly 14000-15000 m source
position, while all offsets appear rough and poorly interpolated. The 3D inline-
source, crossline-offset in Figure 5.27b contains some variability from one inline offset
to another, as each inline offset is treated as an independent problem. Meanwhile,
the 3D inline-source, inline-offset result in Figure 5.27c¢ is continuous along both axes,

as is the 4D interpolation in Figure 5.27d.

This inline-interpolation test illustrates how examining axes other than those in
which the data are interpolated gives greater insight than does simply comparing the
data along the interpolated axis. Here, as in both of the synthetic examples, the

3D inline interpolation produces a preferable result to that of the more elaborate 4D
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interpolation. Next, we examine crossline-receiver interpolation for these same data.

3D field data: Crossline offset interpolation

These field data have been acquired with four cables spaced by 160 m; meanwhile a
recording density of 40 m in the crossline offset axis is desired, such that there is a
source at every receiver location. I perform three different approaches to interpolating
these data, all using nonstationary frequency-space PEFs. I do not attempt a 2D
approach, as using only four data values for each interpolation problem is unlikely to
be successful. Instead, I use a 3D inline-source, crossline-offset domain approach, a 3D
inline-offset, crossline-offset, or shot-by-shot approach, and finally a full 4D approach,
with the entire sail line interpolated at once. Again the data are NMO-corrected,
broken into patches, and then Fourier transformed to produce 64 frequency slices for
each of the 30 patches, for a total of 1920 inline-source, inline-offset, crossline-offset

cubes (each 256 x 300 x 4 samples) for this sail line.

The 3D inline-source, crossline-offset interpolation uses a 2D 5 x 2 PEF that varies
every tenth inline source and does not vary over the four crossline offsets. I solve a
separate problem for each of the 300 inline offsets for a total of roughly 103 million
filter coefficients. The other 3D interpolation is over the inline offset and crossline
offset axes, with a 2D 5 x 2 PEF that varies every ten points on the inline-offset
axis and does not vary on the crossline-offset axis, where each of the 256 shots is
interpolated independently. The 4D interpolation uses 3D 5 x 5 x 2 PEF's that vary
every 20 points on the inline-receiver axis, every 16 points on the inline-source axis,
and do not vary over the four points on the crossline-offset axis, for a total of 17
million filter coefficients. All of these problems are again solved with a conjugate-
direction solver with 60 iterations for each PEF-estimation problem and 60 iterations
for each interpolation problem once the PEF has been estimated. I now compare

multiple views of results for these different approaches.

Figure 5.28 shows a constant-offset section generated for an interpolated cable

created between the two central cables of the sail line. Figure 5.28a is the result



CHAPTER 5. NONSTATIONARY FREQUENCY-SPACE INTERPOLATION 166

of the 3D inline-offset, crossline-offset interpolation, where each trace is interpolated
separately from the other offsets at that source location. The interpolation looks
good, although a few traces, mostly in the submarine canyon, contain obvious errors.
The other 3D interpolation result in Figure 5.28b does not appear as clean as the
source-by-source result in Figure 5.28a. In particular, the diffractions below the
water bottom at 19000 m and 21000 m source location appear weaker, while energy
appears before the water bottom in the submarine canyon. Finally, the full 4D result
in Figure 5.28¢ is much clearer than either of the 3D results, with little random noise
present. Unlike the 3D inline-source, crossline-offset result there is almost no errant
energy arriving before the water bottom. Next, we examine these same results by

looking at an interpolated receiver cable for a single shot.

Let us now compare these same interpolation results by examining a receiver
cable for a single shot at 12950 m, in the submarine canyon (Figure 5.29). Note two
important details in the recorded third receiver cable in Figure 5.29a: first, a single
receiver at roughly 450 m offset has flipped polarity, and, second, backscattered energy
(a second weaker slope in the recorded data) appears in the middle of the section.
The first 3D result (Figure 5.29), the source-by-source interpolation, captures both
the main energy and the secondary slope, and is difficult to distinguish from the
nearby recorded data except at the near offsets. The flipped polarity of a trace has
degraded the result: several interpolated traces surrounding the trace with flipped
polarity are influenced. The 3D inline-source, crossline-offset result in Figure 5.29¢
is not so obviously degraded by the single flipped trace as in the other 3D example,
but is much noisier, in part because the horizontal axis of the figure is not the axis
used in interpolation. Also, this result does not contain the second slope present in
the recorded data. Finally, the full 4D result in Figure 5.29d shows no errors caused
by the flipped polarity of the nearby trace. Because of the added dimensionality
of the interpolation, the single bad trace is averaged out by the larger amount of
data and additional axes of regularization used in the filter estimation. While this
result does not contain noise from the bad trace, it also does not contain much of
the backscattered energy (possibly signal), with the second slope much dimmer in

the 4D interpolated data than in either the recorded data or the source-by-source
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interpolation in Figure 5.29b. This can again be linked to the added information
from the inline source direction; this energy is not consistent over the 16 shots over

which the filter does not vary.

Finally, in Figure 5.31 is a time slice through an interpolated inline-source, inline-
offset cube, from slightly below the water-bottom reflection, giving yet another view
for comparing the interpolation results. Figure 5.31a is an inline-source, inline-offset
section from the recorded second receiver cable. This cable does not contain the near-
offset trace with the flipped polarity. The 3D source-by-source interpolation produces
the result in Figure 5.31b, where we again see the distortion of the flipped trace in
the nearby cable at the near offsets. The 3D inline-source, crossline-offset result in
Figure 5.31c does not contain the near-offset problem in Figure 5.31b, but varies
strongly from one inline offset to another. The 4D result is not influenced by the
polarity-reversed trace and also is smooth along inline offsets. The 4D result looks by
far the most like the slice from the nearby cable, although this slice is from a region

that does not contain the backscattered energy.

This crossline-offset interpolation, more than any other example so far, shows the
need to view the result along as many axes as possible to diagnose problems. The 4D
interpolation gives the most consistent and robust results, but not necessarily the best
interpolation in all areas at all times and locations. This is because, in total, fewer
filter coefficients are being estimated because of the lesser variability of the filter
coefficients in the 4D interpolation, whereas in the 3D case a separate set of filter
coefficients is estimated for each inline source. While these differences for a single
interpolation can be subtle, they are amplified as data are iteratively interpolated,
which is often necessary in order to generate enough data for adequate sampling,

discussed next.

Field data: Iterative interpolation

In order to interpolate data by large factors, it is known it is preferable to interpolate

in several steps, by first interpolating data by a small factor to partially increase data
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density, and then interpolating the previously interpolated data to create greater
data density along that same axis. The explanation for this can be thought of in
the context of a larger problem. A PEF might be estimated on fully-sampled data
that includes both known and unknown data, which can be thought of as a nonlinear
problem in which unknown filter coefficients are also convolved with unknown data.
I treat this problem as two linear steps in which the nonlinear part of the data is
ignored, and these unknown data are removed from the PEF estimation. Instead of
making larger assumptions in order to treat larger interpolations in two linear steps,
I instead interpolate the data by a smaller amount, assume that data are correctly
interpolated, and estimate a PEF on the interpolated as well as the original data to
create the remaining unknown data. For example, this approach would interpolate
by a factor of four in two steps of a factor of two instead of a single factor-of-four

interpolation in which only the lower quarter of frequencies is used.

Another example is the interpolation of these field data with the data interpolated
by a factor of three in the inline-source direction and a factor of four along the
crossline offset axis. Interpolating in multiple dimensions is straightforward as long
as the interpolation factor is the same. Since it is not the case in this situation, the
data would have to be interpolated by a factor of twelve on all axes simultaneously in
order to generate data at both the factor of three and factor of four desired. Instead,
I interpolate first by a factor of three on the inline source axis, then by a factor of two
on the crossline offset axis, and then by a factor of two again on the crossline axis to
generate the total factor of twelve needed. I show how the quality of the interpolation
degrades as this iterative interpolation proceeds, and how this degradation appears

along the many axes in these data.

Previously, only having four samples, the crossline offset axis was too poorly-
sampled to view a useful section containing that axis. Even after the factor of two
interpolation in the previous section, the seven traces were not enough to construct a
reasonably wide slice. Now I interpolate the entire sail line from the previous section
first by a factor of three along the inline-source axis, then twice by two factors of two

in the crossline offset axis for a total of 13 traces in the crossline-offset direction. I
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show a crossline-offset section for a single source and a single inline-offset in Figure
5.32, where Figure 5.32a is the input data with four receiver cables. Little of the
character of the data is obvious from this image, other than that the water-bottom
reflection is spatially-aliased along this axis. This source and offset location is the
worst-case scenario from this sail line, the area with the greatest amount of crossline
heterogeneity, steepest slope, and strongest aliasing. Figure 5.32b shows the receiver
cables interpolated by a factor of four, for the four original crossline offsets from a
recorded shot. While the water-bottom reflection is properly interpolated, producing
an unaliased output, the amplitude of the interpolated traces decreases at later times
in the section. Figure 5.32c shows the same interpolated crossline-offset section for
the next (interpolated) source; all data in this image are interpolated. The difference
between the data interpolated from originally recorded cables and the interpolated
cables is larger, with the original traces having a higher amplitude. Now that we have
viewed the axis of interpolation, let us look at other views containing this previously

unseen axis.

Viewing the time slice through an inline-source, crossline-offset cube as in Fig-
ure 5.33 shows both interpolated axes at once. Figure 5.33a is a slice through the
input cube, where the slice cuts through the water-bottom reflection in the subma-
rine canyon from roughly 9000 to 16000 m source position. Iterative interpolation
produces the result in Figure 5.33b. The aliased water-bottom reflection at 12000 m
is interpolated with a minimum of acausal ringing. Upon closer inspection, the four
original cables are visible with slightly higher amplitude than along the interpolated

cables.

Figure 5.34 contains a time slice through a inline-offset, crossline-offset cube for
a single recorded shot (Figure 5.34a) as well as for a recorded source with interpo-
lated cables (Figure 5.34b), and the same cable interpolation for an interpolated shot
(Figure 5.34c). In this view, the difference between results for a recorded shot and
for an interpolated shot is small. Next, rather than showing images containing the
interpolated crossline-offset axis, let us look at interpolations from nearby recorded

receiver cables.
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Figure 5.35 shows three constant-inline-offset sections from 425 m inline offset.
Figure 5.35a is a constant-offset section for a recorded receiver cable, with the source
axis interpolated by a factor of three. Once this factor-of-three interpolation has
been performed, the receiver cables are interpolated by a factor of two to produce
the result in Figure 5.35b. In the largely two-dimensional areas of the data, the data
are nicely interpolated, with diffractions from the water-bottom at 20000 m source
position well interpolated, although the speckled areas of the source interpolation in
Figure 5.35a are not interpolated in subsequent steps. The areas in the submarine
canyon with large crossline variability are not as well interpolated, both because of
that and the small number of samples in the crossline offset direction. The weak
diffractions emanating from the center of the water-bottom canyon that are correctly
interpolated in the inline source interpolation are poorly treated by the crossline offset
interpolation. The second iteration of the crossline source interpolation produces a
cable between the previously interpolated cable in Figure 5.35b and the recorded
cable in Figure 5.35a. The deterioration of the result is less noticeable from that
of the inline-source interpolation followed by the first crossline offset interpolation.
The water-bottom-event, even in the submarine canyon, is nicely interpolated, and
most of the diffractions in the largely two-dimensional areas are still present. The
interpolation degrades in the submarine canyon, both in the diffractions immediately
below the water-bottom and in the reflectors beneath the water-bottom reflections,

which become less continuous.

Finally, in Figure 5.36, consider a single receiver cable from a single shot, and com-
pare the original recorded data with the different stages of this iterative interpolation.
Figure 5.36a shows the near offsets of the third receiver cable for source location at
9200 m. This location is in the most challenging area of the survey, with lots of
crossline heterogeneity in the data. The residual moveout in Figure 5.36a is quite
steep after NMO-correction, and the data are aliased in the crossline offset direction.
Moving from the recorded data in Figure 5.36a to the data created by inline-source
interpolation in Figure 5.36b, where the source is 25 m away, the interpolation creates
data that are reasonably difficult to tell apart from the recorded adjacent data. The

backscattered energy is almost entirely present, with some of the energy halfway down
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the section absent. The water-bottom event is almost identical to that in the recorded
data. In the first factor-of-two crossline-offset interpolation in Figure 5.36¢, a cable
between the third and fourth cable is created using the 4D interpolation described in
the previous section. A significant amount of backscattered energy is still present in
these created data. The water-bottom reflection is still reasonably well-interpolated,
although slight anticausal ringing and a drop in frequency of that reflector are present.
The backscattered energy appears to stop at the nearest offsets, perhaps because of a
switch from one set of filter coefficients to another. Also, the proximity of this filter
to the edge causes some edge effects to smooth out the information present in the
filters. Proceeding from the first factor of two interpolation to the second in Figure
5.36d, where another receiver cable is created between the third receiver cable and
the interpolated cable in Figure 5.36¢, little has changed. There is a slight increase
in the amount of ringing before the water bottom, but the backscattered energy is

still present as are all of the major features present in the original recorded data.

The iterative interpolations produce good results for the first factor of three, and

then degrade noticeably for the crossline interpolations.

CONCLUSIONS AND FUTURE WORK

Nonstationary interpolation in frequency and space is an efficient and reasonably-
accurate way of interpolating large quantities of data in many dimensions. The smaller
size of frequency-by-frequency filters allows for higher-dimensional interpolation to
be performed than in a t-z formulation, while the nonstationary approach removes
the need for the many overlapping spatial patches of a traditional f-x approach, an
approach in which higher-dimensional interpolation becomes less feasible because of

the increased amount of overlap required with each additional dimension.

Applying this approach to prestack synthetic 3D data, I examined the results
along many different axes, many showing different aspects of the result. Inline-source
interpolation of these synthetic data are best served by an inline approach interpo-

lating in 3D with inline sources and inline receivers in a cable-by-cable approach.
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For conventional marine-streamer data, the added crossline-offset axis contains too
little additional information to be of use. The crossline-offset interpolation of these
synthetic data tell a similar story, wherein a shot-by-shot 3D interpolation performs

well.

This story changes with field data. The 3D inline-source, inline-offset interpola-
tion still is the most reliable for inline-source interpolation, while the crossline-offset
interpolation results differ, with the full 4D interpolation producing a less detailed
but more robust result than the shot-by-shot interpolation that succeeded with the
synthetic example. I then iteratively interpolated these data by first interpolating
inline sources, then crossline receiver cables twice. The largest drop in accuracy is
from the inline-source interpolation to the crossline-receiver interpolation, not from
the factor of two to the factor of four in the crossline interpolation as I originally

expected.

The data in this chapter all had a relatively small number of samples along the
crossline offset axis. With a wide azimuth acquisition using towed streamers, the
number of samples along this axis increases considerably, making a filter that includes
the crossline offset axis more useful. The 4D interpolation that includes this axis used

in this chapter should be more useful for these types of wide-azimuth data.

In this chapter, I have focused on inline source and crossline receiver interpola-
tion, but not crossline source interpolation. The nonuniform spacing of sail lines as
well as the changing cable feathering from one sail line to another introduce further
complications, as well as the need to extrapolate as well as interpolate data. This
nonstationary-PEF based approach, when used in addition to one of the many pre-

existing move-out or partial migration-based approaches can produce enough data for
a 3D SRME result.

ACKNOWLEDGEMENTS

I would like to thank ExxonMobil Upstream Research Company for the 3D synthetic
dataset, and CGGVeritas for the 3D field data set.



CHAPTER 5. NONSTATIONARY FREQUENCY-SPACE INTERPOLATION 173

15000
sx (m)

Figure 5.27: Time slices through inline-source, inline-offset cubes interpolated along
the inline-source direction by a factor of three. a) 2D constant-offset-section-based
interpolation; b) 3D (inline-source, crossline-offset) interpolation; ¢) 3D (inline-source,
inline-offset) interpolation; d) 4D. NR |{xNS/. fieldinlinesliceann
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Figure 5.28: Receiver cable interpolation of field data. a) 3D (inline-offset, crossline-
offset); b) 3D (inline-source, crossline-offset); c¢) 4D interpolation. The 4D result
shows the most continuity, with no noise on the traces ad little anticausal noise. NR
fxNS/. fieldxlinecoffann
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Figure 5.29: An interpolated receiver cable between the second and third cable, for a
single shot. a) recorded data from the third cable; b) 3D (crossline-offset, inline-offset)
shot-by-shot interpolation; ¢) 3D (crossline-offset, inline-shot) inline offset-by-offset
interpolation; d) 4D interpolation. The flipped polarity of the near-offset trace in (a)
causes large errors in (b). The 4D result contains less of the second dip present in (a)
but is not degraded by the flipped trace in (a). NR |fxNS/. fieldxlinesourceann
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Figure 5.30: Differences between images in Figure 5.30. a) 3D inline offset, crossline
offset vs. 3D inline source, crossline offset; b) 3D inline offset, crossline offset vs. 4D;
¢) 3D crossline offset, inline source vs. 4D interpolation. The 4D result is missing of
the the second slope but also fortunately lacks the noise generated from the flipped
trace. NR |fxNS/. fieldxlinesourcediff
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Figure 5.31: Time slice from an inline source-receiver cube of an interpolated receiver
cable. a) recorded second receiver cable; b) 3D inline-source, inline-offset interpola-
tion; ¢) 3D inline-source, crossline-offset interpolation; d) 4D interpolation. The 4D

result is definitely the best for this view. NR |fxNS/. fieldxlinesliceann
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Figure 5.32: Crossline-offset sec-
tions of the interpolated data.
a) recorded data; b) recorded
data with interpolated cables; c)
interpolated shot with interpo-
lated cables. The amplitudes be-
tween the recorded traces and
the interpolated traces becomes
apparent at later times. NR
fxNS/. fielditercxoffann
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Figure 5.33: Time slice through an inline-source, crossline-offset cube. a) original
recorded data; b) data interpolated by a factor of three along the inline-source and a
factor of four in the crossline-offset direction. The aliased water-bottom reflection is
smoothly interpolated. NR |fxNS/. fielditerxssliceann
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Figure 5.34: Time slice through a
single shot (inline-offset, crossline-
offset) cube. a) original recorded
shot; b) original shot with in-
terpolated receiver cables; ¢) in-
terpolated shot with interpolated
receiver cables. The source in-
terpolation does not appear to
roduce a degraded result. NR
fxNS/. fielditerxosliceann
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Figure 5.35: Constant-inline-offset sections from the interpolated data: a) along the
second recorded receiver cable with interpolated sources; b) along a receiver cable in-
terpolated by a factor of two (between the second and third cables); ¢) along a receiver
cable interpolated by a factor of four (between (a) and (b)). The quality of the inter-
polation degrades with the number of passes applied. especially in the area with large
crossline variability. All figures have been gained. NR |fxNS/. fieldcoffdegradeann
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Figure 5.36: Interpolated receiver
cables.  a) originally recorded
receiver cable; b) receiver ca-
ble from an interpolated shot; c)
receiver cable interpolated by a
factor of two from interpolated
shot; d) receiver cable interpo-
lated by a factor of four from
the interpolated shot. This shot
is from the region of the data
with the greatest crossline het-
erogeneity, making this a worst-
case scenario for these data. NR
fxNS/. fieldshotdegradeann
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