
Chapter 3

Interpolation of irregularly

sampled data

Most modern seismic acquisition methods aim to sample data regularly along all axes.

Deviations from this sampling happen for various reasons. On land and ocean-bottom

cable data, obstacles and terrain cause both sources and receivers to be moved. An

example of the distribution of sources in an ocean-bottom cable (OBC) survey is

shown on Figure 3.1a. The source positions are not evenly distributed because of the

source ships both firing irregularly and not sailing in straight lines. There is also a

large gap in the center of the survey because of an ocean platform. The ocean-bottom

receiver cable positions in Figure 3.1b show that the receiver cables are not straight

and are unevenly spaced in the crossline. Some acquisition designs intentionally

acquire data with irregular sampling. One example of this is an ocean-bottom node

array, where the nodes may be randomly placed on the sea floor. Land data can be

randomly sampled to reduce acquisition footprint (Zhou and Schuster, 1995).

While data are often irregularly sampled, many of the algorithms that we wish

to apply to seismic data, such as a spatial Fourier transform or a finite-difference

migration, are best-suited for data on a regular grid. Interpolation methods for

irregular data typically are based upon either move-out or partial prestack migration
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Figure 3.1: An example of source positions (left) and receiver positions (right) from

an OBC survey. Figure courtesy of Daniel Rosales. NR MSPEF/. acquisition

based methods (Chemingui, 1999; Fomel, 2001; Clapp, 2003) that require a root-

mean-square velocity model, or Fourier or Radon transform-based methods (Gulunay

and Chambers, 1996; Schonewille and Duijndam, 1998; Liu and Sacchi, 2004; Xu

et al., 2005), that typically require unaliased data. Aliased data may be interpolated

in f-x (Spitz, 1991), but this method requires regularly-sampled data. As described

in Chapter 2, a prediction-error filter can be used to interpolate data on a regular

grid with missing samples. This PEF can interpolate many simultaneous slopes that

can be aliased, which is often the case with irregularly sampled data. However, a

prediction-error filter is also dependent upon regularly-sampled training data. In

practice, we use nearest-neighbor interpolation to place the irregular sampled data

on to a regular grid with both known and unknown values. When estimating a PEF,

the rows of the autocorrelation matrix that depend on missing samples in the training

data are weighted to zero. With many samples missing from the data, we encounter

a problem of too many rows being weighted to zero, leaving insufficient information

to estimate a PEF.
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Previously, in order to add more information to the PEF estimation, the prediction-

error filter was spaced out over the data, so that the values of the filter sample every

second point of the data along each axis (Crawley, 2000; Claerbout, 2004). This

spacing of the filter can be changed to other integer values, and a single multi-scale

PEF can be estimated from one copy of the input data. This method requires some-

what regular sampling so that the PEF falls upon entirely known data at some filter

spacing. Also, care must be taken to ensure that the filter spacing in time is not too

coarse to alias the data. Alternatively, instead of changing the spacing of the filter on

the original data, I generate training data with fewer holes by regridding the sparse

data onto a coarser grid so that more values are nonzero (known), so fewer rows of

the autocorrelation matrix will be zeroed (Curry and Brown, 2001). Since the sam-

pling varies with position, different areas are best captured by different grids, both

in cell size and position. In order to use as much of the data as possible, I estimate

a single PEF from multiple regridded copies of the data, and then use this PEF to

interpolate the missing data. I test this on a random sampling of traces from the

two-slope example introduced in Chapter 2.

This multi-grid approach to training data can also be used for nonstationary PEF

estimation (Curry, 2002). Multiple grids are even more useful here as many more

unknown coefficients must be estimated than in the stationary case. Also, because

different areas have different sampling and contain unique information because of

this nonstationarity, multiple grids are needed to extract this information. To test

this approach, I randomly sample the quarter-dome synthetic data from the previ-

ous chapter, and estimate a nonstationary PEF from multi-gridded data, with more

regridded copies of data producing better results. I then perform this multi-grid esti-

mation on 2D land data in the source-offset domain to produce a PEF that fills most

gaps and improves velocity supergathers.
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PREDICTION-ERROR FILTER ESTIMATION WITH

MISSING DATA

In Chapter 2, I estimate a multi-dimensional prediction-error filter, f , of length nf

(including the leading 1) using regularly-sampled training data, d, of length nd by

solving a least-squares problem,

Kf = −(D†D)−1D†d, (3.1)

where the unknown filter coefficients, Kf , are estimated from the training data, a

convolutional matrix, D, and its adjoint , D†, constructed from elements of d. When

data values are unknown, we premultiply D with a nd×nd diagonal matrix, W, that

multiplies rows with unknown data by zero and all others by one. Replacing D in

equation 3.1 with WD and recognizing that W is a symmetric, idempotent matrix

(W2 = W† = W), equation 3.1 becomes

Kf = −(D†WD)−1D†Wd. (3.2)

For example, if a nine-point data vector (nd = 9) with a missing third data point,

(d3 =?) were used to estimate a four-component PEF (nf = 4), matrices WD would

be written as

WD =





1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1









d1 0 0 0

d2 d1 0 0

? d2 d1 0

d4 ? d2 d1

d5 d4 ? d2

d6 d5 d4 ?

d7 d6 d5 d4

d8 d7 d6 d5

d9 d8 d7 d6





. (3.3)



CHAPTER 3. INTERPOLATION OF IRREGULARLY SAMPLED DATA 58

In addition to weighting equations with missing data to zero, we can also weight

equations where the filter rolls off the known data to zero, so that for the same

example

WD =





0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1









d1 ? ? ?

d2 d1 ? ?

? d2 d1 ?

d4 ? d2 d1

d5 d4 ? d2

d6 d5 d4 ?

d7 d6 d5 d4

d8 d7 d6 d5

d9 d8 d7 d6





. (3.4)

Introducing a single unknown point in the training data in equation 3.3 causes np

rows of the D matrix to be ignored, as the unknown point is multiplied by each filter

coefficient once. The W matrix in equation 3.4 also includes a mute for areas where

the filter rolls off of the data boundary. An example of this in two dimensions with

one unknown data value and a 7× 3 2D PEF is shown in Figure 3.2.

Because each unknown training data value greatly decreases the number of us-

able rows of the D matrix, sparsely sampled training data, where the gridded data

have many unknown cells, can have an all-zero W matrix, making PEF estimation

impossible. For such sparsely sampled data, we can regrid the data with coarser bins

so that the number of missing data points (and the number of zero-values in W) is

reduced, as in Figures 3.3a and 3.3c. We can also shift the origin point of this grid,

as in Figures 3.3d-f. Depending on the origin point and the cell size of the grid, the

gaps present in the data will differ. If many different grids are used, more of these

gaps will be filled so that more rows of the W matrix are non-zero. The regridding

procedure used to generate these multiple grids is described next.
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?

Figure 3.2: An example of missing data and boundary roll-off when estimating a 7×3
(18 coefficient) PEF, shown in black. The 24×16 grid has three rows at both the top
and bottom as well as two columns on the left where the PEF falls of the boundary
of known data, so those output locations are ignored, denoted with white cells. The
one unknown data value, denoted with a ?, causes np = 18 output points, also shown
in white, to be ignored. The remaining usable output locations, where the PEF falls
entirely upon known data, are shaded gray. NR MSPEF/. PEF-boundaries



CHAPTER 3. INTERPOLATION OF IRREGULARLY SAMPLED DATA 60

ESTIMATION OF A PREDICTION-ERROR FILTER

WITH MULTI-GRID DATA

Sparsely sampled data can be represented as a combination of known and unknown

values on a desired regularly sampled grid as shown in Figure 3.3a. Mapping from

one grid to another is a two-stage process. The first stage is mapping the known

values of the original grid to a vector of known points, as in Figure 3.3b. We do this

with a sampling matrix B that is nd elements horizontally and nk elements vertically,

so it maps from the nd-length vector containing both known and unknown points

to a nk-length vector. These data points can be placed on a different grid with a

normalized linear interpolation matrix that maps the known data points onto the

ndri
-length output grid vector with a matrix, Li. This new grid is generally coarser

and also can have different origin points, as the grids in Figures 3.3c-f do. Cascading

these two operators maps data from a fine grid to a coarser grid, so that

dri = LiBd. (3.5)

Applying equation 3.5 to the illustrated example in Figure 3.3a with varying

grid origins and sizes produces Figures 3.3c-i, with Figure 3.3b as the intermediate

Bd result. These different grids each provide additional information to the PEF

estimation. This regridding is more useful in higher dimensions, where the L matrix

is a bilinear (2D) or trilinear (3D) interpolation matrix. A coarsened version of the

data is useful as training data for a PEF because plane waves are somewhat scale-

invariant (Claerbout, 2004), so that a PEF estimated on coarser scale data typically

contains the same slopes as do the original scale of data. This assumption is not

completely satisfied for the frequency content of the data of curved events, where

slope is scale dependent.

Regularly-sampled data have a single grid that optimally captures the data: one

datum within each bin. Because this chapter addresses irregularly sampled data, no

single grid is ideal because different regions of the training data are captured best

with different grids. To use irregularly-sampled data effectively, we can estimate a
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a) b) c)

d) e) f)

g) h) i)

Figure 3.3: Regridding of data with nk = 12 known points on a nd = 64-cell grid. (a):
original data on a finely-sampled grid; known data are shaded. (b): data from known
cells are sampled with matrix B and their locations stored. (c)-(i): multiple different
grids with varying origin points for multiple cell sizes generated by applying different
Li matrices. The different grids produce different distributions of known grid values.
NR MSPEF/. Regridding
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single set of PEF coefficients on multiple regridded copies of the data, each grid with

a different cell size or origin. Taking equation 3.2 and replacing the W, D, and d

matrices and vectors with their multi-grid equivalents (denoted by a subscripted m),

we have

Kf = −(D†
mWmDm)−1D†

mWmdm. (3.6)

The data vector dm is a concatenation of n regridded versions of the data, dm =

[dr1|dr2| · · · |drn ]T , for a total length of ndm =
�
i
ndri

. Similarly, Dm is a concatenation

of n convolutional matrices, totaling ndm rows and np columns, so that

Dm =





Dr1

Dr2
...

Drn




. (3.7)

Wm is a ndm × ndm matrix constructed from multiple versions of the W matrix in

equation 3.2 for each of the rescaled copies of the data, so that

Wm =





Wr1 0 . . . 0

0 Wr2 . . . 0
...

...
. . .

...

0 0 . . . Wrn




. (3.8)

This approach uses multiple regridded copies of the sampled data as training data,

as data on a coarser grid should have fewer holes and better constrain a PEF.

STATIONARY PEF ESTIMATION ON SYNTHETIC

DATA WITH MULTIPLE GRIDS

Figure 3.4a is the same two-plane data used as the stationary test case in Chapter 2,

and Figure 3.4b is a random sampling of 30 percent of the data traces. Interpolating

these data using the same (10×3) 2D PEF estimated in Chapter 2 from fully-sampled
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data in Figure 3.4a results in the successful interpolation in Figure 3.4c, where the

interpolated data contain the same spectrum as the recorded data, with slightly-lower

amplitude where the large gaps were. We now attempt to estimate a PEF using only

the sampled data by using the multiple-grid approach to generating training data.

Figure 3.4: The two-plane data from Figure 2.2: (a) fully sampled; (b) with 30% of
traces randomly sampled; (c) interpolation of (b) using a PEF estimated on (a). ER

MSPEF/. idealtraceann

Multiple regridded versions of the sampled data are shown in Figure 3.5, where I

vary the coarseness of the grid from the original 256×256 down to 64×64. The higher-

frequency event is not present in the coarser grids, as the regridding has effectively

acted as a high-cut filter in both dimensions.

I generate seven regridded copies (one 192× 192, two 128× 128 and four 64× 64)

of the sampled data using equation 3.5, and place those regridded data along with the

original 256× 256 data into a 150 thousand-element vector dm and the matrix Dm in

equation 3.6. I then use all of these scales of training data to generate a single PEF.

I use 100 iterations of a conjugate-direction solver on equation 3.6, and with the PEF

thus obtained, I use it to interpolate the missing data using equation 2.18. Comparing

this result in Figure 3.6c with both an interpolation using an isotropic Laplacian

filter in Figure 3.6a and a PEF estimated on a single 64 × 64 regridded data in
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Figure 3.6b, the multiple-grid result interpolates both the low-frequency and the high-

frequency events, whereas the Laplacian filter (minimum curvature interpolation) only

interpolated the low-frequency event and the single-grid PEF incorrectly interpolated

the high-frequency event with the slope of the low-frequency event.

The multiple-grid PEF, however, produced a poorer result than the interpola-

tion with the ideal PEF (Figure 3.4c), which more completely interpolated the high

frequency event. This is not surprising: Figure 3.4c was generated using a PEF esti-

mated on the fully-sampled data, in effect providing the answer to the problem. The

differences between Figures 3.4c and 3.6c lie in the approximations used to obtain the

training data; that a regridded version of the data could act as a surrogate for the

fully-sampled data. The finer of the grids were sufficient for the PEF to capture the

high-frequency event, but not with the fidelity of the fully-sampled data, meanwhile

the low-frequency event was sufficiently captured in both the multi-grid and the single

64 × 64 grid, as it was present in all of the grids in Figure 3.5. This example was

stationary, with two constant dips. I next adapt nonstationary PEF estimation to

use multiple grids of data.

ESTIMATION OF A NONSTATIONARY

PREDICTION-ERROR FILTER WITH MULTI-GRID

DATA

Multi-grid training data can also be used to estimate nonstationary prediction-error

filters, in order to extract as much local information as possible, that is crucial for

generating a nonstationary PEF. The multiple grid estimation equations are similar

to those for nonstationary PEF estimation in equation 2.21, so

min
fns

�rd�2 + �2�rf�2 (3.9)

rd = WmDnsmKnsfns + dm (3.10)

rf = Rfns. (3.11)
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Here, I do not change the nonstationary filter, rather the data being used in the esti-

mation, so the estimation is still the minimization of a nonstationary convolution. In

equation 3.11, the data vector, dm, is now the same ndm-element vector of concate-

nated regridded versions of the data from equation 3.6, and the nonstationary data

convolutional matrix Dnsm is again a concatenation of multiple data-convolutional

matrices (this time the nonstationary convolutional matrices from equation 2.21).

One complication to this approach is that each of the component matrices in the

Dnsm matrix are mapping between the non-stationary filter of length nd × nf to a

component of the rescaled data vector dm, which is of a differing length, ndri
. I use

a subsampling matrix, S, that I apply to the nonstationary filter, fns, and subsample

it from a nd × nf-length vector to a ndri
× nf length vector, so that Dnsm is

Dnsm =





Dnsr1
Sr1

Dnsr2
Sr2

. . .

DnsrnSrn




. (3.12)

Now we have replaced all of the data from equation 3.11 with multiple regridded

versions of that data. We also have to include the matrix Wm from equation 3.6 that

zero-weights rows of Dnsm containing unknown data.

MULTIGRID ESTIMATION OF A NONSTATIONARY

PEF ON SYNTHETIC DATA

Now that nonstationary PEF estimation from multiple grids of data has been covered,

I test this approach on the 3D synthetic quarter-dome data from Chapter 2. Recall

that I estimated a nonstationary 3D PEF on a fully-sampled version of the quarter-

dome synthetic dataset and used it to interpolate a near-perfect result from a severe

random sampling of 30 percent of the traces from the data; that was the result,

however, of using ideal training data. Now, instead of using ideal fully-sampled

training data we start with only the randomly-sampled traces from the data, and we
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generate multiple regridded training data from these sparse data.

The quarter-dome data are again shown fully-sampled in Figure 3.7a and with only

30 percent of traces randomly selected in Figure 3.7b. A PEF cannot be estimated

on the data in Figure 3.7b because of the lack of contiguous data, making W zero

everywhere in equation 3.11. To overcome this problem, the randomly-sampled data

are regridded to four different bin sizes in Figures 3.8a-d, where the bins are anywhere

from 25 to 400 percent larger along each axis. As the size of the bins increases, the

holes in the data become smaller, and more contiguous regions appear from which

we can estimate prediction-error filter coefficients. Eventually, the quality of the

regridded data degrades, such as the 40 × 20 × 10 data in Figure 3.8d where the

sampled data have destructively interfered within the large grid cells.

Figure 3.9a presents a baseline comparison generated by interpolating the ran-

domly sampled data in Figure 3.7b by solving equation 2.18, but using a three-

dimensional Laplacian filter rather than a prediction-error filter. The stationary re-

gions at shallow and great depths are properly interpolated as the slopes in both of

these regions are small. The areas with large slopes are poorly reconstructed. This

is because the Laplacian filter is isotropic and does not interpolate well along the

steep events. I then estimated a 10 × 3 × 3 nonstationary PEF that varied every

second point on each axis, for a total of over 9 million coefficients. I estimate this

PEF on the four regridded copies of the data shown in Figure 3.8, and then use it

to interpolate the data to produce the result in Figure 3.9b. This result is much

better than the Laplacian result, but is still unacceptable over the portions of the

data with high curvature. Given the sparsity of the data and the rapidly-changing

slope of the underlying model, there is no hope of reconstructing this region without

external information.

I generate more regridded copies of the data by not only varying the size of the

cells in the grid, but also their origin point. Figure 3.9c was generated by estimating

the same nonstationary PEF, but now on an additional 28 different grids where the

origin of the grid has been variously shifted. As grid bin size increases, the number

of possible shifts does likewise, so there is only one 160 × 80 × 40 or 120 × 60 × 30
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grid, but there are four possible 80× 40× 20 grids and 27 possible 40× 20× 10 grids.

This result is noticeably improved over that with four scales of data in Figure

3.9b. The slowly-varying areas at the deep right of the depth slice are not noticeably

improved, as they were reasonably interpolated with four scales. The center-left of

the depth slice is noticeably improved, where the coherent energy introduced by the

additional shifted grids of data appears in the difference panel between the four-grid

and 34-grid PEF in Figure 3.9d. The multiple-grid approach still cannot reconstruct

the rapidly-changing area of the model with the quality of the result of the ideal

nonstationary PEF in Figure 2.17b, but this goal is unrealistic given the small amount

of input data. The improvement of the result when more gridded datasets are added

to the estimation shows how additional regridded data contributes to the result.

Both the stationary result and the nonstationary quarter-dome result are based

upon random sampling of traces. Most data are not acquired in such a manner, such

as the 2D land field data shown in the next section.

MULTIGRID ESTIMATION OF A NONSTATIONARY

PEF ON 2D LAND FIELD DATA

While the previous examples are synthetic data with random sampling, field data

are typically not randomly sampled, nor so sparsely sampled. The Hulia dataset is a

2D split-spread land survey acquired in Colombia. The sampling of the data, shown

in source-offset coordinates in Figure 3.10 has occasional gaps on the 790-element

source axis as well as both a near-offset gap and periodic gaps in the 420-element

offset axis, both sampled in 20-m intervals. With the reciprocal traces included, the

missing sources now contain some offsets from these reciprocal traces, with roughly

half of the grid unsampled.

The recorded data in Figure 3.11 have a low signal-to-noise ratio, with few dis-

cernible reflectors in the constant-offset section (520-m) on the left panel. Both the

shot gather at 6220 m in the right panel and the time slice at 1.68s in the top panel
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show little usable signal. The gaps in the recorded data can be seen in all three of

the panels, the missing sources in the constant-offset panel, the missing offsets from

the reciprocal traces of these shots in the shot gather, and the near-offset gap in the

time slice.

I break the data into 10 overlapping windows along the source axis that I treat

as independent problems because of memory restrictions. I generate four regridded

versions of the data, where the cells are 25, 66, and 150 percent larger along each axis

than in the original 20-m ×20-m, 4-ms cell. Once these regridded copies of the data

are generated, I estimate a 10× 3× 3 PEF that varies every 40 time samples, every

10 source locations, and every 15 offsets, for a total of 375000 filter coefficients. I

applied 900 iterations of a conjugate-direction solver on equation 3.6 to estimate these

PEF coefficients. This lower number of coefficients, compared to the quarter-dome

example is possible because of the more gradual changes in dip in the field data.After

estimating the PEF from the multiple grids of data, I apply it in 400 iterations of a

conjugate-direction solver on equation 2.29 to reconstruct the missing data (Figure

3.12). The total computational cost of this interpolation is on the order of one day

for each window on a single core of a machine from 2006.

The interpolation in Figure 3.12 is a mixed result. The shot gather on the right

panel of Figure 3.12 contains multiple dips, many aliased, which were correctly inter-

polated. The near-offset gap was only interpolated successfully at later times, which I

attribute to three factors. First, there is a lack of out-of-plane information; the near-

offset gap is present for all sources. Second, the recorded data at later times extends

to further offsets, which implies that more data contribute to estimate a PEF at near

offsets and later times. Finally, the frequency content of the data is much lower at

later times, and would be less attenuated in the coarser grids of data.

The constant-offset section on the left panel of Figure 3.12 contains relatively few

gaps compared with many other offsets, but the gaps in the region with the most

coherent reflections, at roughly 13000 m, are correctly interpolated. Conversely, the

interpolated gap at roughly 4000 m is weak below the first arrival. This is because the

recorded data surrounding the gap is almost incoherent, as seen in Figure 3.11. The
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time slice in the top panel of Figure 3.12 is more coherent, even at the near offsets,

as this slice is at 1.68 s.

This interpolation can also be judged based on the results of further processing

of the data. One such example is migration, which requires a velocity model that

is not available for this dataset. One way to generate a root-mean-square velocity

model is through semblance scans. Figure 3.13a is a semblance scan for an area of the

survey with higher signal-to-noise, where I calculated semblances from ten adjoining

common midpoint gathers and summed the results. Figure 3.13b shows the same

semblance scan using the interpolated data, which, containing less noise, is easier to

interpret, particularly at early times. The differences are slight but still noticeable,

and given that this image is the result of combining ten CMP gathers the benefits of

the interpolation are not totally negligible.

CONCLUSIONS AND FURTHER WORK

Multi-grid training data can be used to estimate a prediction-error filter on data

that are insufficiently sampled. It was useful for both stationary and nonstationary

cases, in that a PEF could be estimated from data that were insufficiently sampled

to estimate a PEF in the conventional manner. While the PEF produced is superior

to a PEF produced from a single grid of data, this PEF is inferior to one estimated

from ideal training data. The basic assumption used is that a regridded version of

the data contains the same dip spectra as the data on the original grid, essentially

the familiar assumption that the slopes at lower frequencies are the same as those

at higher frequencies. This assumption was reasonably valid for the stationary and

quarter-dome cases, and somewhat less accurate for the field data.

Results were improved by increasing the number of regridded data sets used. The

size and location of the grids were manually chosen and the cell sizes were evenly

distributed, which is reasonable for randomly-sampled data. An improvement to

this method is to choose scales more intelligently so that they best fit the data; the

portions of the data that are better-captured by one grid could also be weighted higher



CHAPTER 3. INTERPOLATION OF IRREGULARLY SAMPLED DATA 70

relative to the other scales by using a more sophisticated Wm matrix. However, field

data are rarely randomly-sampled, as ships travel in straight lines and receivers are

typically attached to cables. Increasing the size of grid cells in this scenario is a

poor choice, since the cell size from one grid to another requires the same aspect

ratio for scale-invariance so the recorded data will be placed on too coarse of a grid.

For example, receivers in a 3D land survey are well-sampled along the cable, but

are poorly-sampled between cables. Since the desired output grid cell is (roughly)

square, the only grid that would provide contiguous data from cable to cable would

drastically undersample the axis along the cable, so that higher frequency and higher-

wavenumber events would be penalized.

This method is not ideal for other systematic gaps in data acquisition, such as

the near-offset gap present in the field data. These gaps require external information

instead of only information from the nearest traces. One example of such information

is pseudo-primary data, discussed in the next chapter.
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Figure 3.5: Six coarsening regridded versions of the (256 × 256) sampled data: a)
256 × 256; b) 192 × 192; c) 160 × 160; d) 128 × 128; e) 96 × 96; f) 64 × 64. At the

coarser scales the high-frequency event disappears. ER MSPEF/. tracescalesann
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Figure 3.6: Sampled data from Figure 3.4b interpolated three ways using equation
2.18 with the filter f as a: (a) Laplacian filter; (b) PEF estimated from a single
64 × 64 regridded version of 3.4b; (c) PEF estimated from nine different regridded
copies of the data. The high-frequency dip is correctly interpolated only with the
PEF estimated on multiple-grid data. ER MSPEF/. multitracefillann
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Figure 3.7: The quarter-dome synthetic: fully-sampled (a) and with 30 percent of

traces randomly-sampled (b). ER MSPEF/. qdomeann
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Figure 3.8: The randomly-sampled quarter-dome data (200×100×50) on four different
grids: (a) 160 × 80 × 40, (b) 120 × 60 × 30, (c) 80 × 40 × 20, (d): 40 × 20 × 10. As
the number of cells in the grid decreases, the number of unknown cells also decreases.
ER MSPEF/. qdomescaledann
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Figure 3.9: Interpolations of the randomly sampled quarter-dome data from Fig-
ure 3.7b: a): Laplacian interpolation; b): Interpolation with a PEF generated from
four grids of data; c): Interpolation generated from 32 grids of data; d) Difference
between b and c. The added grids of data improve the range over where the in-
terpolation succeeds, but all methods fail at the highly nonstationary region. CR
MSPEF/. qdomeinterpann
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Figure 3.10: The source-offset locations of the Hulia dataset, with points representing
the positions of traces in source-offset space. Both original recorded data coordinates
as well as traces predicted by source-receiver reciprocity, which appear as diagonal
lines, are included. ER MSPEF/. huliamap
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Figure 3.11: The Hulia dataset in source and offset. As seen, the data contains gaps
visible in the common-offset gather at 520 m on the left, the shot gather at 6220 m
on the right, and the time slice at 1.68 s on the top. ER MSPEF/. huliaann
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Figure 3.12: The Hulia dataset interpolated with nonstationary PEFs estimated
from 4 regridded versions of the data. The shot gather contains multiple conflict-
ing dips, as well as spatially-variable slopes that are successfully interpolated. CR
MSPEF/. huliainterpann
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Figure 3.13: Two semblance scans
generated from super-gathers. (a)
semblance generated from 10 ad-
jacent CMP gathers from orig-
inal data. (b) semblance gen-
erated from same data after in-
terpolation. The supergather
in (b) is slightly more focused
and less noisy than the origi-
nal super-gather in (a). CR

MSPEF/. huliascans


