
Chapter 2

Prediction-error filters and

interpolation

This chapter is a review of interpolating seismic data using prediction-error filters

(PEFs) (Claerbout, 1992, 2004; Crawley, 2000), a process performed in two steps.

The first is to estimate a PEF on fully-sampled training data, which ideally have the

same autocorrelation as the data we wish to interpolate. This estimation minimizes

the squared prediction error to find the set of nontrivial filter coefficients that most

effectively predicts the training data. Convolving the PEF with the training data

produces an output with an approximately white spectrum. A PEF, with its relatively

small number of coefficients, represents useful information obtained from training

data such as the amplitude spectra and dip information (in more than one dimension),

while ignoring the amplitude scaling and phase of the data. A multi-dimensional PEF

can accurately predict both multiple conflicting dips and spatially-aliased data. The

PEF can have as many dimensions as the data; moreover, as the dimensionality of the

data increases, prediction using a PEF with correspondingly higher dimensionality

results in improved prediction capacity.

Once this PEF has been obtained from training data, it is then used in the second

step wherein the missing data are estimated using the PEF. I define this result as
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the interpolated data, that are composed of the original sampled data and the created

interpolated values. Since the PEF embodies the amplitude spectrum of the training

data, the missing data can be estimated by minimizing the output from convolution

of the known PEF with the final model, the interpolated data. This is again posed

as a least-squares problem, in which the known data are held fixed so that only the

missing data are allowed to vary, and is solved using a conjugate-direction method.

A multi-dimensional PEF is wholly dependent upon its training data, in particular

its multi-dimensional autocorrelation. The examples in this chapter show that, when

the fully-sampled original data including the missing samples to be interpolated, are

used as training data, the PEF is able to accurately interpolate the data. When the

training data are less than ideal, the quality of the interpolation is compromised.

This interpolation using even ideal training data is degraded when a multi-dimensional

PEF is estimated on data containing slopes that vary as a function of space. This

failure is caused by the assumption of stationarity, that all events are planar, which

is violated when the local autocorrelation of the data varies as a function of space.

I initially address this problem by breaking both the PEF estimation and the inter-

polation into smaller overlapping patches that are assumed to contain locally planar

features. After each patch is interpolated independently, the patches are reassem-

bled with appropriate weighting for overlapping portions of the patches to produce

the final output. While this result is marginally better than that from using the

purely stationary approach, it is far from ideal, and many parameters are required,

such as the number of patches and the amount of overlap. Instead, I use a single

spatially-variable, nonstationary PEF (Crawley, 2000) on the entire dataset. For the

nonstationary model data tested, the nonstationary PEF predicts nearly all coher-

ent energy in the test data, and accurately reconstructs missing data. This due to

both the larger number of filter coefficients possible with a nonstationary PEF and

applying the filter on the entire interpolated data simultaneously.
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PREDICTION-ERROR FILTER ESTIMATION

This section reviews how to estimate a forward prediction-error filter from fully-

sampled training data (Robinson and Treitel, 1967; Claerbout, 1976; Yilmaz, 1987).

Consider first a one-dimensional example. A PEF captures the inverse amplitude

spectrum of the training data and, when convolved with the training data, produces

an output that is increasingly uncorrelated as the size of the PEF increases.

A forward linear prediction filter, pi, of np points predicts values, d̂j, based on

previous inputs, dj−i, i = 1, . . . , np, so that for all j = 1, . . . , nd

d̂j =

np�

i=1

dj−ipi. (2.1)

The difference between the actual data and the predicted estimate is the prediction-

error series rj, for all j = 1, . . . , nd

rj = dj − d̂j = dj −
np�

i=1

dj−ipi. (2.2)

This data-prediction problem can be rephrased as a data-whitening one; as the pre-

diction improves, the residual decreases and becomes increasingly random. Equa-

tion 2.2 can be expressed in terms of vectors, denoted with bold lower-case let-

ters, and matrices, denoted by bold upper-case letters, wherein we now define an

nf-element prediction-error filter f = [f1, f2, f3, . . . , fnf
]T with f1 = 1 fixed and set

the remaining np = nf − 1 coefficients as the negative of the prediction filter coeffi-

cients so that f = [1,−p1,−p2, . . . ,−pnp ]
T . We also use the nd-element data vector

d = [d1, d2, . . . , dnd]T to create the nd×np-element data convolution matrix, D. The
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D matrix contains rows of shifted copies of the data vector,

D =





0 0 0 · · · 0

d1 0 0 · · · 0

d2 d1 0 · · · 0
...

...
...

. . .
...

dnp dnp−1 dnp−2 · · · d1

...
...

...
. . .

...

0 0 0 · · · dnd−2

0 0 0 · · · dnd−1

0 0 0 · · · dnd





. (2.3)

The matrix D is multiplied with the np unknown elements in the prediction-error

filter vector Kf to produce the nd + np-element output residual (prediction-error)

vector rd,

rd = DKf + d. (2.4)

The subscript in rd denotes that the residual pertains to the fit of the data. In

order to isolate the unknown filter coefficients from the leading unity value of the

prediction-error filter f , we have introduced a diagonal np × nf matrix K that selects

the unknown filter coefficients, so that

K =





0 1 · · · 0
...

...
. . . 0

0 0 0 1



 . (2.5)

In equation 2.4, the DKf term creates a vector of the negative of the predicted values

and the d vector contains the original data that when combined create the prediction

error, rd. We now minimize this prediction error by finding the unknown coefficients

of f that minimize the L2 norm of the residual, �rd�2, given by

�rd�2 = r†drd = (DKf + d)† (DKf + d) (2.6)
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where the symbol † denotes the adjoint or complex-conjugate transpose of a matrix.

We minimize equation 2.6 by expanding this expression and setting the derivatives

with respect to the unknown filter values Kf to zero:

∂�rd�2

∂Kf
= 0 = K†D†DKf + K†D†d. (2.7)

We then move the second term to one side to obtain

D†DKf = −D†d (2.8)

which is the same as equation B-78 in Yilmaz (1987), where the matrix D†D is an

autocorrelation matrix, which has Toeplitz structure, and D†d is a vector of the sec-

ond and subsequent autocorrelation lags for this ungapped filter. Further simplifying

the expression and isolating the Kf term on the left side of equation 2.7 gives

Kf = −(D†D)−1D†d, (2.9)

the least-squares formula for the unknown filter coefficients. For solving large systems

of equations, such as those we deal with, the method of conjugate directions is par-

ticularly efficient (Hestenes and Stiefel, 1952; Shewchuk, 1994; Claerbout, 2004). The

conjugate-directions algorithm requires a minimal amount of memory, as it requires

only the data vector d in order to apply the matrices D and D†, instead of holding

the autocorrelation matrix in memory.

Note three of the important properties of prediction-error filters, proved elsewhere

in the considerable literature (Wiener, 1964; Robinson and Treitel, 1967; Burg, 1975;

Claerbout, 1976, 1992). First, the prediction-error filter is minimum-delay, so that

the PEF yields stable deconvolution. Second, the PEF is dependent solely upon the

autocorrelation of the training data, not the phase, polarity, or amplitude scale of the

data. Finally, the output of the PEF is uncorrelated with itself for all lags in both

directions, meaning that the output spectrum is white.

Having now reviewed 1D prediction-error filter estimation, I next show how the
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1D construct can be used with helical coordinates (Claerbout, 1998) to represent a

PEF and data in any number of dimensions, demonstrating this on 2D data.

MULTI-DIMENSIONAL FILTERING IN THE HELICAL

COORDINATE

The content of this section is a condensation of material found elsewhere (Claerbout,

1998, 2004). The helical coordinate allows implementation of multi-dimensional con-

volution of multi-dimensional signals as a one-dimensional operation. This coordinate,

the helical coordinate, can also be used to explain the particular shape of a multi-

dimensional prediction-error filter. With use of the helical coordinate, I estimate a

two-dimensional PEF on two-dimensional synthetic data.

The helical coordinate is a way of expressing multi-dimensional operators as one-

dimensional. Take two-dimensional data, padded by zeros along the first axis,

0 0

0 0

1 2

1 4

0 0

0 0

(2.10)

and perform a 2D autocorrelation to produce

0 0 0

0 0 0

4 9 2

6 22 6

2 9 4

0 0 0

0 0 0

. (2.11)
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We perform a helical transform on the original two-dimensional data by appending

each column of numbers on the 1-axis of 2.10 and writing it as the one-dimensional

vector,

0 0 1 1 0 0 0 0 2 4 0 0 0 . (2.12)

When we autocorrelate this 1D vector, we get the one-dimensional output,

0 0 0 4 6 2 0 0 0 0 9 22 9 0 0 0 0 2 6 4 0 0 0 . (2.13)

By unwrapping this 1D autocorrelation back to two dimensions, we obtain the two-

dimensional autocorrelation, 2.11, of the original data. In this way, we have performed

a two-dimensional autocorrelation by doing a one-dimensional operation.

This same approach can be applied in any number of dimensions, with the length

of the one-dimensional helical vector equal to the total number of elements in the

entire multi-dimensional dataset. This method of transforming multi-dimensional

autocorrelations to 1D autocorrelations applies as well to multi-dimensional convo-

lution and deconvolution (Claerbout, 1998). In practice, the edge effects introduced

by this transform will depend on which axes are wrapped using the helix, but can be

mostly eliminated with adequate zero-padding.

The multi-dimensional equivalent of the PEF described in equation 2.9 has a

particular shape, shown in Figure 2.1. This shape should ideally cover as much of

the space as possible while remaining causal in all dimensions. In one dimension,

this forward prediction-error filter has a leading unity value, i.e. the predicted point,

that is based upon previous inputs along the solitary axis. In two dimensions, the

filter is shown in Figure 2.1b. This 2D filter ideally spans previous columns as well

as previous values on the column with the leading unity value, i.e. the predicted

point. The leading value is not at the corner of the filter because we wish to predict

the leading value by using as much of the previous data as possible, so not including

data before the leading unity value on previous columns would result in a poorer

prediction. In three dimensions this combination of causality and the desire to use

as many previous inputs as possible produces the right-panel of Figure 2.1, where
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along the third axis all planes before the leading predicted value are included in the

prediction as well as all previous columns in the plane containing the predicted value.

1 1

a) b) c)

Figure 2.1: Examples of the structure of 1D, 2D, and 3D PEFs: a) five term 1D PEF;

b) 23-term 2D PEF; c) 88-term 3D PEF. NR PEF/. helix

Problems with this method of performing correlation and convolution come from

the boundaries between traces in the helical coordinate, which can be eliminated by

use of adequate zero-padding. Helical boundary effects cause wrapping much like

from a Fourier transform, except that the wrapping occurs on the subsequent trace

attached to the helical trace instead of the same trace. This happens when the earlier

lags of the filter lie on the original trace while later lags of the filter lie on the next

trace wrapped on the helix. For convolution, this can be avoided by padding the end

of the traces by the length of the filter, but for deconvolution the padding must be

much greater, as the response of the filter is much longer than the length of the filter.

PEF ESTIMATION ON SYNTHETIC DATA

Let us illustrate PEF estimation on two-dimensional synthetic data that contain

simultaneous planar events with two distinct slopes. The synthetic data in Figure

2.2a were created by first filtering a field of 256 × 256 normally distributed random

numbers with a two-dimensional dip filter. This is repeated with a different slope

for a second set of random numbers. Then each set of these data is independently
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bandpass filtered such that the planar events that slope downward to the right have

a higher passband than do the planar events sloping downward to the left. These two

data sets are then summed.

These synthetic data are used as the input or training data, d, in the PEF estima-

tion (equation 2.9). Figure 2.2 shows the data d and residuals or prediction-errors,

rd, in equation 2.4 of both a single 10-element 1D column PEF estimated on the first

trace and a 10× 3 2D PEF estimated on the entire data set respectively, obtained by

solving equation 2.9. The 2D PEF has 24 free coefficients, so the conjugate-direction

solver was iterated until theoretical convergence at 24 iterations. As the data convo-

lution matrix D has roughly 256× 256 rows, this problem is overdetermined for the

24 unknowns.

The residual power, �rd�2, of the 1D PEF estimation, equivalent to convolution

of the PEF with the training data, is reduced by 93 percent relative to that of the

input data, or the data convolved with the initial guess of Kf = 0, with the leading

unity value fixed. Noticeable coherent dipping energy exists in the residual, however,

so the output is not completely uncorrelated. The 2D PEF residual is still lower,

with a 30 percent reduction compared to the 1D PEF, but, more important, it has

an uncorrelated residual. The line graph in Figure 2.3 shows the residual norm

as a function of iteration number in the conjugate-direction process. The 2D PEF

has both a lower overall residual norm than that of the 1D PEF and more rapid

convergence. The higher-dimensional PEF was better capable of capturing the entire

inverse spectrum of the data. In particular, the three columns in the 2D PEF are able

to capture two slopes, whereas the single column 1D PEF is unable to capture any

slope. The conjugate-direction solver converged in fewer iterations (less than 10) than

the theoretical number of 24, the total number of unknowns. Since the input data

were generated consisted of events with just two constant slopes, it is not surprising

that the PEF performed so well. If these data contained more slopes, a PEF with

more columns would be required to capture the more complicated information in the

data, with one additional column needed for each additional slope. Next, we review

how to interpolate missing data using a PEF that has been acquired on training data.
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Figure 2.2: Estimation of a 2D PEF on 2D synthetic data with two dips. (a): original
input training data; (b): residual (rd) after PEF estimation using a single 10 × 1
vertical filter; (c): residual (rd) for a 10× 3 filter; (d): residual in (c), divided by the
1D PEF from (a) to highlight the spatial coherency of the residual. All images have
the same amplitude scale. The 2D PEF more accurately predicts the input data. ER
PEF/. planeest
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Figure 2.3: Residual power as a
function of conjugate direction it-
eration for a 10-element 1D PEF
and a 24-element 2D PEF. The
2D PEF converges more quickly
and has a lower residual. ER
PEF/. planeestcv

I then demonstrate the process for the same two-slope example, now with incomplete

sampling.

INTERPOLATION WITH A PREDICTION-ERROR

FILTER

Having seen how to compute a multi-dimensional prediction-error filter, let us now

see how that filter is used to fill in missing data. Letting both the input sampled data

and the output interpolated model be on the same grid, I again phrase the problem

as a least-squares one solved using the method of conjugate-directions.

This interpolation method has two desired goals. The first is to honor the samples

in the data, considering them as known and fixed in the interpolation process. The

second goal is to create interpolated samples that, after combining with the sam-

pled data, have the same multi-dimensional amplitude spectrum as the training data

used in the PEF computation. Suppose for now that the fully-sampled original data

are used as training data for the PEF. Then those same original data are sampled

to produce under-sampled data with missing samples that will be interpolated us-

ing the previously-obtained PEF. To achieve the two desired goals we minimize the

convolution of that PEF with all values, both sampled and not, of the interpolation

result while forcing all sampled data points in the output interpolation to match the

sampled data.
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We start with a 1D example and an equation similar to equation 2.4, but now apply

the known PEF as a convolutional matrix, F, multiplied with the desired interpolated

model m to produce a residual error in the interpolated model, rm, which is therefore

given by

rm = Fm. (2.14)

Here F is the convolutional matrix containing the PEF that was computed in the

previous step and is now held fixed. The nd×1 output interpolated model m consists

of the fixed input (known) values and the values to be interpolated (unknown), and

the subscript in rm distinguishes this residual from the residual in the previous data-

fitting step.

We wish to find a least-squares solution for the interpolated values of m, with the

F matrix known. We first break up the m vector into unknown and known values

using matrices J and L, respectively. These matrices each have nd columns and have

a combined total of nd rows. This approach is somewhat similar in action to that of

the K matrix in the previous step, which isolated the leading unity value of the PEF.

We then break up the F matrix into two narrower matrices, Fu and Fk that operate

on the unknown and known values of m, so we can rewrite equation 2.14 as

rm = FuJm + FkLm. (2.15)

Taking the L2 norm of equation 2.14, differentiating with respect to the unknown

values Jm, and setting these equations to zero, gives

0 =
∂�rm�2

∂Jm
= F†

uFuJm + F†
uFkLm. (2.16)

The first term of this equation is the PEF convolved with the unknown output model

points, since the known model points are removed, while the second term is the PEF

convolved with the known points of the output model, since the unknown model

points are in the first term. The second term in equation 2.16 is fixed throughout the

minimization process, so we write it as a single known quantity r0 and replace it in



CHAPTER 2. PREDICTION-ERROR FILTERS AND INTERPOLATION 29

equation 2.16, giving

0 = F†
uFuJm + F†

ur0. (2.17)

We can then rearrange terms to place the unknown model points Jm on the left side

of the equation, to get

Jm = −(F†
uFu)

−1F†
ur0. (2.18)

We solve these normal equations using a conjugate direction solver as in the solution

to equation 2.7. If the norm of the residual in equation 2.16 was exactly zero, the

value of FuJm would be the negative of FkLm = r0. I typically use as the starting

guess zeroes for the unknown values so that the FuJm term would also be zero and

the residual would be −r0, which would be far from an optimal solution. As the

conjugate direction solver iterates, the solution for Jm changes the residual series

from −r0 to something much closer to zeroes.

The previous theory was described for one dimension, but equation 2.18 can be

extended to multiple dimensions using the helical coordinate, as was described for

the PEF estimation process. Here the multi-dimensional PEF would be applied to

the multi-dimensional data using helical convolution to produce a multi-dimensional

output.

Interpolation example on synthetic data

Having defined the second step of the interpolation procedure, using a PEF estimated

from training data to create missing data, let us now test this second step on a sampled

version of the 2D synthetic data from Figure 2.2 in the previous section. We first

compute the PEF from training data, which are the same fully-sampled data, shown

in Figure 2.4a. We sample these data in a checkerboard-like pattern, so that half of

the data is missing. Four 32×32 point squares are sampled along each axis, as shown

in Figure 2.4b, with the missing data values set to zero.

The sampled version of the data, with zeroes in the place of missing data, is

the fixed Lm term in equation 2.16, meaning that the Jm term in this case is all
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Figure 2.4: Synthetic 2D data. (a): original data, identical to that in Figure 2.2a.
(b): the original data with 50 percent of the values missing in a checkerboard pattern

of 32× 32 cells. ER PEF/. dataholeann

zeroes. When the fully-sampled data are filtered by the 10× 3 two-dimensional PEF

estimated in the previous section, the filtered output is largely uncorrelated, as shown

in Figure 2.5a, which has the amplitude scale magnified by a factor of 20 compared

to that in Figure 2.4a. On close inspection the filtered output does show remnants of

the two slopes in the input data, particularly for the higher-frequency event sloping

downward to the right. The sampled data, filtered with the same two-dimensional

PEF and shown in Figure 2.5b, have the same largely random character as do the

filtered fully-sampled data in Figure 2.5a within the sampled regions, but near the

boundaries between the sampled and unknown portions of the data in the filtered

output amplitudes are relatively large and are correlated. Figure 2.5b can also be

viewed as an image of r0. Solving equation 2.17 should produce an interpolated output

that when filtered will be much more like Figure 2.5a than Figure 2.5b because the

interpolated data should be the negative of the correlated (and therefore predictable)

portions of r0.
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Figure 2.5: Synthetic 2D data shown in Figure 2.4 after filtering with a 10 × 10
PEF. (a): filtered original data. (b): filtered sampled data, r0 in equation 2.18.
The amplitudes are magnified by a factor of 20 compared to those in Figure 2.4. The
boundaries between sampled and unknown data have a large prediction error, because
the drop from known data to the zeros not match values that would be predicted by
the PEF. ER PEF/. dataholefiltann
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Figure 2.6: 2D Synthetic data in Figure 2.4 interpolated using a 2D PEF. (a): in-
terpolated result. (b): difference between interpolated and original fully-sampled
data. The interpolation captures the slopes of the training data, with the amplitudes
under-predicted at the edges of the data. ER PEF/. dataholeinterpann

I stopped the conjugate-direction solver for m in equation 2.18 after 300 iterations.

If this interpolation problem had been solved with explicitly constructed matrices, it

would have been much more expensive because the F†
uFu matrix is sparse, with over

one billion elements of mostly zeroes. The iterative approach is, in comparison, much

more efficient, allowing solution of much larger problems.

The interpolation result is shown in Figure 2.6a, while Figure 2.6b shows the error

between the interpolated result on the left and the original fully-sampled data in Fig-

ure 2.4a. The interpolated data have slopes that match those of the planar events in

the fully-sampled data, and the locations of the portions that have been interpolated

are not obvious. The difference panel in Figure 2.6b shows large differences near the

edges of the image and relatively small differences in the interpolated regions in the

interior of the image. The errors around the edges of the image that were interpolated

arise because the PEF is extrapolating instead of interpolating the data there. In the
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interior of the image we see that amplitudes of interpolated values are slightly under-

predicted by up to roughly 5 percent. The reason for the slight amplitude differences

between the interpolated and original data away from the boundaries is more easily

seen by filtering the data and the difference with the PEF; the results are shown in

Figure 2.7.

Figure 2.7: Interpolation and interpolation error, the difference between the interpo-
lated data and the originally fully-sampled data, filtered with the PEF. (a): filtered
interpolation result. (b): filtered difference between interpolation and original fully-
sampled data. The random noise present in the filtered original data (Figure 2.5a) is

not present at the interpolated values. ER PEF/. dataholeinterpfiltann

The large coherent output near the boundaries in the filtered sampled data (Fig-

ure 2.5b) are gone, and the random noise present in the filtered original data (Figure

2.5a) is not present in the interpolated values of Figure 2.7a. This lack of noise in the

interpolated values signifies the slightly lower amplitude in the result, which is equiv-

alent to random numbers filtered by the PEF. This random noise is not predictable

and hence is not introduced to the interpolation, as the starting solution of the solver

is zero-values, so this unpredictable random noise that is present in the original data

would increase the residual and hence is not introduced. The amplitude of this result
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could be corrected by introducing random noise into the filtered residual in the inter-

polated areas. Different realizations of random noise would produce different results,

providing equally-probable interpolation results (Clapp, 2001).

All of the results here are predicated on having correct training data. In this

stationary example, if there were sufficient contiguous data adjacent to the missing

data, they could be used as training data. In this case, the checkerboard pieces are

too small to estimate a PEF on but examples elsewhere (Claerbout, 2004) show how

this is done.

Next we examine what happens when the training data used in the first step of

PEF estimation has an autocorrelation that differs from that of the ideal data, i.e.,

the data in 2.4a from which we had obtained the checkerboard sampled data in Figure

2.4b.

Interpolation with imperfect training data

Given that the fully-sampled data here were provided as training data to the PEF

estimation, and that the data consisted of planar features with just two slopes, it

might be no surprise that the interpolation result in the previous section was so

accurate. Now we examine what happens when the training data for the PEF differs

from the ideal. Two of the ways the training data can differ from the ideal are in

phase and amplitude scale. Suppose first, however, they have statistically the same

(scaled) two-dimensional autocorrelation. Figure 2.8a is the original sampled data,

2.8b contains the training data that have been generated with the same dip filters

and bandpass filtering as those for the fully-sampled data used to create Figure 2.8a,

but different random numbers were used before filtering, so the phases of the planar

events are different. The data have also been amplified by a factor of 100. We first

estimate a PEF on the imperfect training data in Figure 2.8b, and then use the

PEF to interpolate the checkerboard holes in 2.8a. The interpolated result in Figure

2.8c shows that these differences in the training data used to estimate the PEF in

equation 2.9 made little difference in the PEF and less than 5 percent difference on
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the interpolated result. The PEF is insensitive to both the phase and the amplitude

of the data; it depends on only the normalized autocorrelation of the data.

Figure 2.8: Interpolation with training data with different amplitude scale and phase.
(a): sampled data. (b): training data with different phase and 100 times the am-
plitude of the ideal training data set in Figure 2.4a. (c): interpolated result. The
interpolation is almost identical to that in Figure 2.6a based on using ideal training
data. ER PEF/. statphasepeffill

Figure 2.9b contains training data that have two slopes that differ slightly from

those in the previous training data as well as from those in the sampled data. The

slope of features that are downward to the right is 15 degrees greater than in the

data to be interpolated, and that of features that are downward to the left is 15

degrees less. Using these data as the training data for a PEF that is used to again

interpolate the sampled data in Figure 2.9a produces the result in Figure 2.9c. The

lower-frequency event (downward to the left) is acceptably interpolated, while the

higher frequency one is not properly interpolated, as seen in the comparison with

the result in Figure 2.8c. Use of an erroneous slope in the training data causes less

degradation of the interpolation for the lower-frequency data.

Finally, suppose the slopes present in the training data do not at all match those in

the original data that were sampled. The training data shown in Figure 2.10b do not

in the least exemplify the original data in Figure 2.4a that have been sampled into the
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Figure 2.9: Interpolation with training data with different amplitude scale, phase,
and slopes. (a): sampled data. (b): training data with slopes 15 degrees less than
and greater than the original slopes. (c): interpolated result. The interpolation of
the low-frequency planar event is reasonably good, but that of the higher-frequency
event is not. ER PEF/. statmediumpeffillann

Figure 2.10: Interpolation with training data with slopes that are wildly different
from those in the ideal training data. (a): sampled data. (b): training data with
vertical and horizontal slopes. (c): interpolated result. The interpolation is hopelessly

incorrect. ER PEF/. statbadpeffill
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checkerboard pattern of gaps seen in Figure 2.10a. As a result, the PEF is significantly

altered, and, when applied in the second step, produces the faulty patchwork quilt

interpolation shown in Figure 2.10c. The interpolated data match not at all the

fully-sampled data, and are obviously incorrect. While the training data can differ in

amplitude and phase from those in the data that need to be interpolated, they must

reasonably reflect the character of the data, in particular their multi-dimensional

autocorrelation.

In summary, data are interpolated as two linear least-squares problems. We first

capture the inverse multivariate amplitude spectrum of the training data in a compact

prediction-error filter, then use that PEF to filter the missing data while simultane-

ously matching the data at known locations. The method of conjugate directions is

used to solve both problems, largely because of the relatively small memory require-

ments of the method: only the data vector rather than the full matrix is held in

memory to apply forward and adjoint convolution. This interpolation method is suc-

cessful on the test data comprised of multiple stationary dips as long as the training

data reasonably mimic the true data. Next, I show how this method can fail when

the dip of the data varies as a function of position, even when the training data are

ideal.

NONSTATIONARY PREDICTION-ERROR FILTERS

In the previous section, I used a PEF to interpolate a combination of planar events

with constant slopes. Seismic data are not composed solely of planar events, but

instead of various curved ones that gradually change in slope as a function of position.

An example of this is the three-dimensional quarter-dome synthetic data (Claerbout,

2004) shown in Figure 2.12a. The three joined panels in the frame are the three

unfolded faces of a (x, y, z) data cube, with the top panel a depth slice (z is constant),

the right panel a cross-line section (x is constant), and the left panel an in-line section

(y is constant). The lines on each of the panels correspond to the locations where

the other slices intersect the cube. The data contain horizontal layers at shallow
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depths, an anticline structure at middle depths, and layers with constant dip below.

The anticline structure has both dips that are gradually varying in the upper-right

portions of the depth sections, and rapidly varying toward the left.

We next see the action of the PEF-based approach on the data shown in the Figure

2.12a. I first estimate a 5× 5× 5 3D PEF on the 200× 100× 50 data by using 113

iterations (equal to the number of unknown filter coefficients) of a conjugate-direction

solver for equation 2.9. The residual of this process, obtained by convolving the PEF

with the training data, is shown in Figure 2.12b, where I divided the residual by a

1D PEF estimated on the data to highlight errors in spatial prediction. Based on the

small relative amplitudes in the filtered residual, we judge that the PEF accurately

predicts both the shallow horizontal layers and the deep constant-slope layers, but

is unsuccessful in interpolating the anticline structure at intermediate depths. The

slowly varying dips toward the right of the depth slices are slightly more accurately

predicted than are the rapidly varying ones toward the left.

a) b) c)
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Figure 2.11: A schematic of the ‘cubeplot’ figures used throughout this thesis. Three
input planes from within a cube (a) are separated (b) and placed side-by-side, where
the lines on each image denote the intersections of the other slices through that image.
NR PEF/. cubeplot

With a PEF estimated on the fully-sampled data, we next attempt to use that

PEF to interpolate a sampled version of the quarter-dome data. Figure 2.13a shows
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Figure 2.12: Estimating a PEF on the three-dimensional quarter-dome data. (a):
original fully-sampled data. (b): filtered residual (i.e. prediction-error) from convolv-
ing a PEF with the original data, then dividing by a 1D PEF estimated on (a). Only

the stationary upper and lower energy is predicted. ER PEF/. qdomestatestann
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a quite poorly sampled version of the data in Figure 2.12a wherein a small percentage

of the traces in the full data set (only 20 percent) were sampled at random. We then

use the PEF estimated from the fully-sampled data to interpolate the missing data,

using equation 2.18. The interpolation result is shown in Figure 2.13b. Interpolating

the extremely poorly sampled data with the PEF gives a result that generally does

reflect the structure of the ideal training data used, but nevertheless is severely flawed

as representing the original data before having been sampled. The areas with rapidly

varying dips are especially poorly interpolated, but the interpolation is flawed as well

over the more stationary portions of the data. The failure does not reside in the

design of the PEF, as evidenced by the small PEF residual in Figure 2.13b. Despite

the use of the ideal training data (Figure 2.12a), the assumption of data stationarity

(i.e., a single autocorrelation for the entire data set) is inadequate for these poorly-

sampled data. Two ways of dealing with this nonstationarity are (1) treat the data

in (overlapping) patches small enough that events are approximately linear within

them, and (2) solve for a single nonstationary PEF. Both are described next.

One way to deal with curved data is to consider the data as a collection of small

overlapping patches, each patch small enough so that the curved events appear to

be straight within a patch. Using this approach, the data in Figure 2.12 are broken

up into smaller overlapping patches. By assuming that the data in each of these

patches are stationary, we apply the same stationary interpolation approach described

previously on each patch independently, with a different PEF for each patch. We

then reassemble the patches to form the interpolated output. Figure 2.14 shows this

approach. Figure 2.14a is a checkerboard plot depicting the size of the 216 overlapping

50×25×15 patches on the 200×100×50 data, the patches were alternating in black

or white, with the gray indicating where the patches overlap. Figure 2.14b is the

residual of the 5 × 5 × 5 PEF estimation performed on 216 patches that are solved

separately and then reassembled. The patches are padded on all axes to account for

PEF edge effects, with the padding discarded before reassembly. The estimation is

better, but only marginally so, than the stationary result shown in Figure 2.12b, but

again produces the largest residual in the region with the most spatial variability, and

the boundaries between patches.
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Figure 2.13: Interpolating the quarter-dome data from Figure 2.12 with a 3D PEF.
(a): randomly-sampled traces with only 20 percent of data present. (b): data
from (a) interpolated with a 3D PEF estimated on the fully-sampled data. ER

PEF/. qdomestatfillann
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Figure 2.14: Multiple PEFs estimated on the quarter-dome synthetic in patches.
(a): a representation of the size of the patches used, depicted by alternating black
and white patches and gray representing overlap between patches. (b): patched
filtered residual of PEF estimation for the 216 different patches PEFs shown in
(a). The patched approach is only slightly better than a single PEF for the en-
tire data set. It still performs poorly where the slope changes most rapidly. CR
PEF/. patchpefestann
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The PEFs estimated on the fully-sampled data in Figure 2.12a are now used

to interpolate the missing data, with the PEF for each patch used to interpolate

within that same sampled patch. In Figure 2.15b, the interpolation result, shows

that this method performs not much better than did that of using a single PEF

(Figure 2.13b). It still fails wherever the data sampling was poorest. This is for

two main reasons. First, the patches are too large for the rapidly changing slopes

at the peak of the anticline. The obvious solution to this problem would be to

reduce the patch size, but the patches need to be large enough to provide enough

fitting equations for the PEF estimation and to span large regions of missing data.

This is related to the second problem, the boundary problems that appear during

the second step, equation 2.18. In the previous stationary example in Figure 2.6b

the interpolated data were satisfactory but were poor near the boundaries where

the result was extrapolated instead of interpolated. The relatively small patches

used result in many more boundaries where the PEF does not perform well. These

problems are largely solved by using a smoothly nonstationary prediction-error filter

(Clapp et al., 1999; Crawley, 2000), with filter coefficients that vary as a function of

space. I describe this nonstationary PEF approach next.

Nonstationary PEF estimation

Use of a single PEF for the entire data set does not adequately describe data with

locally changing slopes, while using many PEFs for smaller patches in separate prob-

lems partially addresses the changing slopes but has issues with the size of the patch

and boundary effects. I estimate a nonstationary prediction-error filter by solving a

single least-squares problem, in which instead of estimating a series of prediction-error

filters that are each tied to a specific patch of data, I estimate one large nonstationary

prediction-error filter that varies smoothly as a function of space to account for the

varying slopes present in the data. The equations used to estimate a nonstationary

PEF have a form similar to that of the stationary case in equation 2.4 except that

the structure of the matrices involved differ, as described in this synopsis of Guit-

ton (2003). The PEF vector f , comprised of the unknown filter coefficients and the
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Figure 2.15: The quarter-dome synthetic interpolated in patches. The three faces
correspond to three slices through the 3D cube. (a): input sampled data. (b):
the interpolated result. The result is still poor due to the rapidly changing dips
combined with the sparse sampling of the data, which increased boundary issues
from the patches, even with overlap. CR PEF/. patchpeffillann
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leading unity value is now the nonstationary filter, fns, containing a separate series

of filter coefficients optimized for each data point. Other matrices involved in non-

stationary PEF estimation also follow this convention of the ns subscript indicating

the nonstationary counterpart to the stationary PEF problem. The filter vector fns,

instead of having nf filter coefficients, now contains nf × nd coefficients, where nf is

the number of multi-dimensional filter coefficients and nd is the total number of data

points. The vector fns is structured as a concatenation of the filters for each data

point (Margrave, 1998), so

fns =





f1

f2
...

fnd




with fk =





1

f2,k

f3,k

...

fnf,k





. (2.19)

Here the horizontal lines distinguish the distinct sets of PEF coefficients for each data

point. The first subscript of f is the coefficient index for the output data point, and

the second subscript labels the output data point. The definition of the residual we

wish to minimize for the nonstationary filter is similar to those of the stationary case

in equation 2.4,

rd = DKf + d, (2.20)

so that
min
fns

�rd�2 + �2�rf�2

rd = DnsKnsfns + d

rf = RKnsfns.

(2.21)

Following the same differentiation with respect to unknown filter values as in the

stationary case, this system may be rewritten in a single line as

Knsfns = −(D†
nsDns + �2R†R)−1D†

nsd (2.22)
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The first equation in 2.21 denotes that we wish to minimize both residuals rd and rf,

where rf is scaled by a trade-off parameter, �. The second equation in 2.21 is similar

to equation 2.4. Now a third equation for the model residual, rf, is added to regularize

the problem, since the number of unknown filter coefficients has increased from np

to np × nd in equation 2.21 while the number of fitting equations is still roughly nd,

making the problem under-determined and in need of regularization.

Just as for the nonstationary filter vector, the nonstationary convolution matrix

Dns is also nd times larger than its stationary counterpart, so that it can map the

larger number of nonstationary filter coefficients (np × nd) to the output space of

length nd, giving a matrix of nd × (np × nd). Dns, like fns, is a concatenation of

component matrices, Di
ns, each corresponding a convolution matrix for the ith output

point, so

Dns =
�

D1
ns D2

ns . . . Dnd
ns

�
, (2.23)

Dns =









d1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0




,





0 0 · · · 0

d2 d1 · · · 0
...

...
. . .

...

0 0 · · · 0




,. . . ,





0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

dnp dnp−1 · · · d1








,

(2.24)

where each sub-matrix (D1
ns,D

2
ns, . . . ,D

nd
ns ) has nd × np elements. Each sub-matrix

Di
ns in Dns contains only one row of nonzero elements, so that only the first row of

D1
ns is nonzero, only the second row of D2

ns is nonzero, and so on. This maps each

series of data points to a set of nonstationary filter coefficients for each output point.

In reality, I choose the nonstationary PEF, fns, such that it does not have unique

coefficients for each output data point, but instead has the same coefficients over a

small region in order to reduce the memory requirement. For example, reusing the

same filter coefficients for two adjacent output data points would reduce the size of

the fns vector by half. This alters the matrix Dns so that the component matrices

Di
ns contain two rows of nonzero coefficients instead of one, and there would be half

as many component matrices. The matrix K that constrains the first filter coefficient

to 1 in equation 2.4 is replaced by a Kns that is tailored to isolate the constrained
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coefficients of the much larger nonstationary filter vector. The matrix now is

Kns =





M 0 0 · · ·
0 M 0 · · ·
0 0 M · · ·
...

...
...

. . .




, (2.25)

where

M =





0 1 0 · · ·
0 0 1 · · ·
...

...
...

. . .



 . (2.26)

Each component matrix M has np × nf elements and corresponds to a set of PEF

coefficients for a single data point or small region. There are nd of these component

matrices on the diagonal of the Kns matrix, for a total size of (ndnp)×(ndnf) elements.

Multiplying the removed first row with the leading unity value in Kns with Dns

produces a data vector of length nd, as in the stationary case, and separates the

unknown nonstationary PEF coefficients from the known leading-unity values.

Now let us focus on the second term of equation 2.21, the regularization term.

I regularize the filter by minimizing the differences between the filter coefficients of

filters that are adjacent in space. That is, when we look at the vector fns, the elements

in consideration are np values apart along the vector, the distance between horizontal

lines in the description of fns in equation 2.19. When written for a 1-D example the

matrix R is

R =





I −I 0 · · ·
0 I −I · · ·
0 0 I · · ·
...

...
...

. . .




, (2.27)

where I is an np×np identity matrix, making R an ndnp×ndnp matrix. This can be

visualized in one dimension as organizing PEF coefficients along both a lag axis and a

position axis and applying a derivative filter along the position axis separately for each

lag. In higher dimensions the derivative is replaced by a multi-dimensional Laplacian,
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and can be visualized as organizing the filter coefficients onto the additional spatial

axes and applying the multi-dimensional Laplacian filter along all of the spatial axes

for each lag. In matrix form, the higher-dimensional case would look like the matrix

in equation 2.27, but with additional off-diagonal terms corresponding to the adjacent

filter coefficients in other spatial axes.

Once the nonstationary PEF has been estimated, it can be applied in the same

manner as for the stationary PEF in equation 2.16. Now, however, the convolution

with the PEF is nonstationary so the F matrices are replaced with the nonstationary

convolution matrix Fns, with coefficients fi,j indexed by both space i and filter lag j,

written as

Fns =





1 0 0 0 · · ·
f1,1 1 0 0 · · ·
f2,2 f2,1 1 0 · · ·
f3,3 f3,2 f3,1 1 · · ·
...

...
...

...
. . .





. (2.28)

The matrix Fns is a compact nd × nu matrix, as it is applied to the nu-element

unknown data and outputs a filtered version of that nd-element data. This goes into

an equation similar to equation 2.16, but with a nonstationary Fns matrix in place of

the stationary F matrix to produce

rm = FnsJm + r0. (2.29)

This can again be expressed in a form similar to equation 2.18, giving

Jm = −(F†
nsFns)

−1Fnsr0. (2.30)

Now that both stages of the interpolation have been described, this time with a non-

stationary prediction-error filter, we apply the method to the quarter-dome synthetic

data.
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Nonstationary prediction-error filter interpolation: 3D exam-

ple

Figure 2.16 shows nonstationary PEF estimation, again on the quarter-dome synthetic

that proved problematic for both a single PEF and a series of PEFs applied in patches.

The 3D nonstationary PEF has 5 × 5 × 5 elements, and varies every 5th data point

on the depth axis and every 2nd data point on the other axes, giving a total of

almost 3 million unique filter coefficients, slightly less than triple the number of

fitting equations for these data.

The pattern in Figure 2.16b shows the regions over which the PEF coefficients are

constant, in this case five points along the depth axis and two points along the other

two axes. Figure 2.16c is the data residual rd of the nonstationary PEF estimation

in equation 2.21, that is, the convolution of the nonstationary PEF with the fully-

sampled training data. The data are almost perfectly predicted. The conjugate-

direction solver used to solve this problem converges quickly, as shown in Figure

2.16d, which plots the norm of the residual of equation 2.21 as a function of iteration

number. The solution converges in less than 100 iterations instead of the theoretical

guarantee of nearly 20, 000 times that number, the total number of unknowns.

Figure 2.17a shows the same sampled data seen in Figure 2.13a, and Figure 2.17b

shows the interpolated result, the solution of equation 2.29. The difference between

the interpolated data and the original data is shown in Figure 2.17c. Here the only

significant errors are near the highly nonstationary left side of the input data.

The interpolation result is significantly better than either the stationary PEF

result in Figure 2.13b or the result obtained with patching in Figure 2.15b. This is

explained by both the number of filter coefficients estimated and the lack of lower

amplitudes associated with the boundaries between patches. For the stationary case

113 filter coefficients were estimated; the patch-based case used approximately 44, 000

filter coefficients, while the nonstationary case has over 2 million coefficients. Figure

2.18 is an example where a nonstationary PEF was estimated with the same number

of filter coefficients as the case in Figure 2.15. We can see that the interpolation result
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in Figure 2.18a is much better than the result in Figure 2.15a, and the differences

between the interpolated data and the original fully-sampled data are again where

the data is the most nonstationary, where using additional filter coefficients improves

the result.

The convergence of the PEF interpolation, shown in Figure 2.17d shows that the

conjugate-direction algorithm again requires a small number of iterations to converge.

The value of using the method of conjugate directions for this problem is clear when

we consider that the PEF estimation matrix, if actually constructed, would have

approximately 8 × 1012 elements, almost all of which are zero. The matrix in the

second step of the interpolation would also be large. Instead in both of these problems

only a few copies of the data and the filter are needed, and the results converge after

fewer than 100 iterations in both problems.

The examples shown in this chapter have involved real-valued data, but all the

theory is applicable as well to complex data and complex-valued prediction-error

filters. The only adjustment is to ensure that the adjoint matrices are the complex-

conjugate transpose of the original matrices.

The assumption made in most of the interpolation examples in this chapter is a

strong and unrealistic one: that the answer is already known; that is, the training

data are essentially that data we would have if they contained no gaps. What I have

shown is that a nonstationary PEF is able to reconstruct missing data nearly perfectly

if adequate training data for the PEF are used. This means that the training data

have a local autocorrelation that matches to (within a scale factor) an acceptable

extent that of the data that need to be interpolated. The following chapters deal

with practical examples where ideal training data are not available, so other training

data must be used.
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Figure 2.16: Estimation of a nonstationary PEF on the quarter-dome synthetic. (a):
original data. (b): diagram of non-stationarity of filter coefficients. (c): data resid-
ual of PEF estimation after division by a 1D PEF estimated on (a) To emphasize

differences. (d): convergence of PEF estimation. ER PEF/. nspefestann
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Figure 2.17: Interpolation of the quarter-dome with a nonstationary PEF. (a): Sam-
pled quarter-dome data. (b): Interpolated result. (c): difference between interpo-
lated result and original data. (d): convergence of interpolation of missing data. ER

PEF/. nspeffillann
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Figure 2.18: Interpolation of the quarter-dome with a nonstationary PEF with the
same number of coefficients as the patched case. (a): interpolated data. (b): differ-
ence between interpolated result and original data. The interpolation is much better
than the patched case but is worse than the smoothly-nonstationary result. ER
PEF/. patchnsfillann


