
Chapter 1

Introduction

Acquisition of reflection seismic data is a resource-intensive process: both source and

receiver positions vary along the surface of the earth, sampling data along five different

axes, including the finite recording time. Fully sampling all of these axes is logistically

unrealistic for many reasons: a finite number of active recording channels, surface

obstacles, experimental design, and limited capital. Meanwhile, many algorithms

used in the processing of reflection seismic data are designed for regularly-sampled,

unaliased data with a wide aperture. As such, interpolating reflection seismic data is

a common practice. The interpolation method used will often vary depending on the

type of acquisition. Let us now discuss common types of acquisitions.

ACQUISITION DESIGNS

Methods of acquiring surface reflection seismic data vary considerably. Marine acqui-

sition has typically been constrained by the use of ships such that data are typically

collected along parallel lines, as both the sources and receivers are towed along the

same axis, usually by the same ship. In contrast, land acquisition is typically done

with intersecting source and receiver lines, with considerable deviation from this reg-

ular grid caused by surface obstacles and logistical issues. Other methods, such as

ocean-bottom cable or ocean-bottom sensor surveys have still different issues. I now
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discuss the two most common types of geometry that are in part addressed in this

thesis. For a more thorough description of acquisition geometries, multiple textbooks

are available (Vermeer, 2002; Biondi, 2006).

Land acquisition geometry

Multiple geometries of land data acquisition have been proposed, with the cross-swath

method as one of the most popular. In this geometry, both the sources and receivers

are placed along intersecting lines. The receiver locations are typically less influenced

by surface conditions, since it is possible to place receivers where access for sources

is restricted, it is easier to plant a geophone than it is to position either a vibroseis

truck or a drill for shot holes. An example of a 3D survey in South America with this

geometry is shown in Figure 1.1, here source locations, denoted by an ‘x’, are more

sporadically placed than are the receiver locations, denoted by points. A large gap

exists in the bottom-left of the survey, most likely caused by a surface obstacle that

prevents sampling with both source and receiver. This geometry has great variability

in both source-receiver space as well as midpoint-offset space. The near offsets, for

example, typically contain a wider azimuth range than do the far ones.

While the sampling issues in 3D are more clearly evident, the differences between

receiver and source sampling in Figure 1.1 are also applicable for a 2D survey. An

example of a 2D field acquisition geometry is shown in Figure 1.2. The aspect ratio

in Figure 1.2 is severely distorted, as the axes are stretched by a factor of 500 on the

‘y’ axis relative to the ‘x’ axis. This example again illustrates that in land geometries

sources are more unevenly distributed than are receivers, and that surface obstacles

also cause problems (albeit less dramatic) in 2D acquisition. While land acquisition

contains great variability, the marine case is less irregular because the ship tows the

array in a continuous fashion, as discussed next.
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Figure 1.1: An example of the cross-swath geometry from a 3D land survey. The
points are receiver locations while each ‘x’ denotes a source position. The receiver
sampling is more regular than the source sampling. ER Intro/. landgeom3



CHAPTER 1. INTRODUCTION 4

Figure 1.2: An example of receiver and source sampling for a 2D land survey. There
are slight deviations along the ‘y’ direction for the receivers and much greater vari-
ability in source sampling. ER Intro/. landgeom2

Marine data geometry

Sampling in marine geometry is more regular than that in land geometry. This is

largely because both the receivers and sources are towed by the same ship, so the

offsets between the source and the receivers are roughly equal for each shot. One

systemic gap in the data is created by the fixed distance between the source and the

first receiver on the cable, leaving a near-offset gap that exists in every shot in both

2D and 3D marine surveys. Also in both 2D and 3D surveys the source interval is

typically a multiple of the receiver interval since the air-gun source takes a while to

recharge and the ship has traveled more than one receiver interval in the interim. To

increase source sampling (and reduce the cost of acquisition) a second source is often

added near the first one, creating what is referred to as flip-flop shooting, wherein

the two sources are fired alternately. A map containing source locations for a 3D

marine survey is shown in Figure 1.3. In this map, the two closely-spaced parallel

lines are the alternating flip-flop sources for a single sail line. We can also see the

comparatively sparse source distribution in the crossline (y) direction compared to

the inline (x) direction. This usually results in severe aliasing in the crossline source

direction.
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Figure 1.3: Source locations for a 3D marine survey. The ship sailed in approximately
straight lines. The parallel lines are due to flip-flop shooting. Sources are much
better sampled in the inline (horizontal) than the crossline (vertical) direction. NR

Intro/. marinegeom1
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Figure 1.4: Different sets of receiver locations put on the same map for various source
positions. The crossline offsets vary considerably from sail line to sail line, even if the
sources are nearby. NR Intro/. marinegeom2

In addition to the sparse crossline source sampling, the crossline offset axis is

also undersampled. Figure 1.4 shows a map view containing the positions of receiver

cables for three points along three different sail lines. The three sets of cables on

the bottom of the figure are relatively consistent, but the feathering is on the order

of several hundred meters. The three overlapping sets of receiver cables at the top

of the figure show that even when the source locations are near one another, in this

case all near y = 11500 m, the cable feathering can be considerably different, as the

ocean currents and previous ship movement that determine the cable feathering are

functions of space and time.

Since the number of channels (both governed by length of cable and number

of cables) is limited, a trade-off exists between the acquisition aperture, the total

area covered by the recording array, and the sampling within that recording array.

Interpolating data allows wider apertures to be used, provided that the interpolation

method is able to capture information from the potentially aliased data.
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THE NEED FOR INTERPOLATION

Many data-processing algorithms, including wave-equation migration and many multiple-

removal methods, require regular, complete, and densely-sampled data as input, but

as the previous section illustrates, actual sampling in the field is far from ideal. Sur-

face obstacles and logistical requirements cause irregular sampling of sources and

receivers, in both land and marine data. Acquisition design also results in systematic

gaps in the data, such as the near-offset gap in marine data. Finite capital results in

a trade-off of sampling density and aperture size, for example when adequately dense

sampling along all axes is traded for larger sampling areas, resulting in spatially

aliased data, particularly in the crossline direction in marine data.

Traditionally, many 2D algorithms had been applied on 3D data, one example of

which is surface-related multiple elimination (SRME) (Verschuur et al., 1992). 2D

SRME is effective on data from areas where the subsurface has mostly cylindrical

symmetry with little variation in the crossline direction. When applied to data with

multiples generated from out of the inline plane, the multiple prediction degrades.

Two examples of this are shown in Figures 1.5 and 1.7. Figure 1.5a is a close-up

of water-bottom multiples in field marine data (courtesy of CGGVeritas) generated

from a sea floor with a varying dip in the cross-line direction, while Figure 1.5b is an

example of the multiple model generated from a single receiver cable using 2D SRME.

The right side of the prediction matches the multiples present in the data reasonably

well, excluding the expected amplitude and phase differences. The left side of the

prediction, however, is kinematically quite different from the observed multiples in

the data. The predicted multiples arrive later than the actual multiples, since the

actual multiple arrivals reflect from out-of-plane in the shallower water bottom.

Another example, this time synthetic, of shortcomings in 2D SRME is in Figure

1.7. Figure 1.7a shows synthetic marine data containing a horizontal water bottom

and many diffractions and diffracted multiples from out-of-plane. Figure 1.7b shows

the 2D multiple prediction from auto-convolution of these data. While the cloud of

diffracted multiples is in roughly the correct place, the predicted diffracted multiples
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Figure 1.5: The failure of 2D multiple prediction in a 3D world: a) inline constant-
offset section of original data; b) 2D multiple prediction for the same region, with the
arrival times of the multiples from the actual data superimposed as a dashed line.
NR Intro/. srmprann
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are aliased and the positions of the many diffractions that make up the cloud of

multiples are incorrect. The aliasing results from insufficient inline source sampling

that is one-third that of the receiver sampling. The mispositioning of the events within

the cloud of diffracted multiples is attributable to the 2D nature of the algorithm,

in which all events are assumed to originate from within the vertical 2D plane at

zero crossline-offset. Implementing 3D SRME on these data requires that a source

is present at every receiver location, as described for the 2D case in Figure 1.6would

require considerable crossline receiver and source interpolation as well as extrapolation

of crossline offsets.

Figure 1.6: Schematic for surface-
related multiple prediction. A
free-surface multiple recorded at
x2 with a bounce point at x1. This
raypath can be expressed as two
primaries, one with the original
source and a receiver at x1, the
second with a source at x1 and a
receiver at x2. The source and re-
ceiver sampling should be equal.
NR Intro/. srmecartoon

*
x1 x2

EXISTING INTERPOLATION METHODOLOGIES

Interpolation has a long history, with many classic methods such as Gaussian poly-

nomial and sinc-based (Shannon, 1949) interpolation. I place methods developed for

reflection seismic data into two main categories: those that use mainly a-priori infor-

mation about the physics of the recorded data, and those that use mainly statistical

information gathered from the data.

The first category contains many methods, some based upon normal move-out,

others on more sophisticated imaging operators such as prestack partial migration

(Chemingui, 1999; Fomel, 2001; Biondi and Vlad, 2002; Clapp, 2003; Baumstein,
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Figure 1.7: Synthetic marine data: a) original data; b) multiple prediction. The
diffracted multiples created from out-of-plane in (a) are not accurately predicted by a
2D SRME prediction shown in (b), although the water-bottom multiple is accurately

predicted. CR Intro/. srmpsann
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2004), and others of full migration and demigration of data (Trad, 2002) or use of a

surrogate for migration operators (Verschuur and Berkhout, 2005). These methods

have several benefits, the first of which is the ability to extrapolate as well as inter-

polate data. Another benefit is that many of these methods can deal with irregular

sampling of data, but the main drawback with these methods is that the events in

the recorded data do not necessarily conform to the physics of the imaging operator.

This can be because of an incorrect assumed velocity, the presence of energy (such as

ground roll) that is not predictable by the imaging method, multiple reflections, or

coherent noise.

Statistical methods use only information contained in the data to interpolate

missing data. Statistical methods include a myriad of transform-based methods,

such as Fourier, Radon, wavelet (Wang and Li, 1994), or curvelet (Thomson and

Herrmann, 2006) transforms. Fourier transform-based methods exist in many forms

(Gulunay and Chambers, 1997). Examples include non-uniform (Schonewille and

Duijndam, 1998), minimum reweighted norm (Liu and Sacchi, 2004), Projection onto

Convex Set (POCS) (Abma and Kabir, 2005), sparse (or high-resolution) methods

(Zwartjes and Gisolf, 2007), and antileakage methods (Xu et al., 2005). Radon-based

methods are also commonly used, often in the form of a high-resolution radon-based

approach (Sacchi and Ulrych, 1995), and more recently a shifted-apex radon transform

(Hargreaves and Trad, 2005). Most of these methods can interpolate irregularly-

sampled data, but are limited in that they typically do not faithfully interpolate

aliased data.

Another group of non-physically-based statistical methods are filter-based meth-

ods. These filters include dip filters and prediction or prediction-error filters. With

dip filters, a single dip is estimated within a window of data, from which a filter

is created that is then used to interpolate the unknown data in that dip direction

(Fomel, 2002). While this method can cope with irregularly-sampled and spatially-

aliased data, extension to treating multiple interfering dips is not straightforward and

is considerably more complicated. Unlike a single local-dip filter, prediction (Spitz,

1991) or prediction-error (Claerbout, 1992) filters can estimate data in the presence
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of multiple simultaneous slopes. Since these filters are larger (i.e., they have many

more coefficients) than do two-column dip filters, their estimation requires regularly-

sampled training data, typically estimated from a lower-frequency sampling of existing

data. More recently, nonstationary prediction-error filters have been used to inter-

polate data in the time-space (t-x) domain (Crawley, 2000), instead of the previous

patch-based approach (Claerbout, 1992).

MOTIVATION AND CONTRIBUTIONS

In this thesis, I create new nonstationary prediction-error filter (PEF)-based inter-

polation methods applicable to multiple applications, including problems of irregular

data, large systemic gaps in acquisition, and higher-dimensional interpolation to the

extent necessary for 3D SRME. I do this by adapting the choice of data used to

estimate the PEF to each particular problem.

Methods to interpolate irregular data are typically limited to unaliased data or to a

single dip, while prediction-error filters can capture multiple aliased slopes, but require

regularly-sampled data. My contribution is a method to estimate a nonstationary

PEF from irregularly-sampled data, using multiple regridded copies of the data as

training data (Curry, 2003). While the more coarsely-gridded copies of the data are

not exact, they produce a superior result than when using no information from the

data or from using a single regridded copy of the data. This method succeeds in more

accurately interpolating multiple simultaneous changing slopes that are irregularly

sampled than do previous approaches.

Marine data contain a near-offset gap between the air gun source and the nearest

towed receiver, but this missing near-offset information is essential for use in SRME

methods. Most methods to recover these near offsets rely on the curvature of the

primaries in nearby data, either in a Radon-transform-based approach or in a more

straightforward NMO-based prediction wherein the stacking velocity is derived from

the nearby recorded primaries. Similarly, a conventional approach using prediction-

error filters would rely on using the nearby primaries as training data. In my approach,
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I generate training data for a nonstationary PEF by cross-correlating traces within

each shot to generate a pseudoprimary dataset (Curry and Shan, 2006). Instead of

simply substituting these data into the near-offsets or manually matching them to

the recorded data using deconvolution or matching filters, I use these as training

data for a nonstationary PEF. I estimate this PEF both in time, offset, and source

position, as well as in frequency, offset, and source position, and compare the results.

Estimating nonstationary PEFs in the frequency domain provides a much faster, more

parallelizable result.

3D SRME requires dense sampling of both receivers and sources in the inline and

crossline directions. Currently, most algorithms for generating these data are based

upon normal moveout (Levin, 2002), dip moveout (Baumstein and Hadidi, 2006),

azimuth moveout (Matson and Abma, 2005), or a migration/demigration approach

(Weisser and Taylor, 2006). While SRME is a purely data-driven approach with no

required velocity model, these methods still require some sort of velocity estimate. I

generate data densities suitable for 3D SRME by interpolation using nonstationary

PEFs. Instead of estimating the filter in time and space, I estimate it in frequency and

space by applying the Spitz (1991) approximation that links data at coarse sampling

and low frequencies to data at finer sampling and higher frequencies, but instead of

the patch-based approach of Spitz I estimate a single nonstationary PEF for each

frequency. This new approach of nonstationary interpolation of frequency slices is

much faster than both the nonstationary t-x based approach and the previous patch-

based approach of Spitz in f -x. I apply this approach to interpolate both inline

sources and crossline receivers in two, three, and four dimensions, and compare the

results for the different choices of dimensionality and domain of the PEFs. I also

iteratively interpolate the data to generate data with increases in density by factors

of four and six in multiple dimensions, and show how the data degrades as the iterative

interpolation proceeds.

In this thesis, I focus mainly on examining and comparing the interpolated data.

In practice, these data are used in subsequent processing stages to produce a final

migrated image and ultimately, a geologic interpretation. For the land data example, I
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show a subsequent processing step used in velocity estimation, while in the subsequent

marine data examples, the subsequent step is multiple prediction.

THESIS OVERVIEW

Chapter 2: PEFs and Interpolation

This chapter is a review of the background theory for this thesis. I review estimation

of a prediction-error filter on fully-sampled training data, and interpolation of data

with an estimated prediction-error filter. I show the extent to which use of inexact

training data can degrade the interpolation result. I then review the estimation

of nonstationary prediction-error filters, how to interpolate data using them, and

demonstrate the interpolation with perfectly-known training data on a 3D synthetic

model, comparing it to a patch-based approach.

Chapter 3: Interpolation of irregularly-sampled data

The previous chapter assumes that the training data for the PEF are completely

known. I review how to exclude unknown data from the PEF estimation by weight-

ing equations containing unknown data to zero, and then propose a new method of

estimating a PEF when the data are irregularly-sampled and PEF estimation was

previously impossible, with all equations weighted to zero. I use multiple copies of

the data placed on grids that vary in both size and origin as training data, estimate

both stationary and non-stationary PEFs on synthetic examples, and then interpolate

to create a regular source-offset cube from an irregularly-sampled prestack 2D land

data set from Colombia.

Chapter 4: Interpolation of near offsets with multiples

Here, I fill in the systemic near-offset gap in marine data by using information con-

tained in free-surface multiple reflections. I cross-correlate traces within each shot
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using the known principle that primaries correlated with free-surface multiples create

pseudo-primaries, with one receiver acting as a virtual source. With the near-offsets

of these pseudo-primaries as training data for non-stationary PEFs, I use the esti-

mated PEFs to interpolate traces in the large near-offset gap. I test this method on

the Sigsbee2B dataset and a large near-offset gap, using nonstationary filters in both

time and, for the first time, in frequency and compare the results. I then apply this

same approach to field data with a smaller gap. Finally, using a 3D synthetic model,

I investigate the issues with using this approach in 3D, both in terms of crossline vari-

ability of 3D field data and the severely limited source distribution in the crossline

direction.

Chapter 5: Nonstationary f-x interpolation of prestack 3D data

One common application of interpolation and regularization methods is for 3D surface-

related multiple elimination, in which the data need to be regularly and fully sampled

so that there is a source at every receiver location in both the inline and crossline

directions. Data need to be created in the inline source direction as well as both the

crossline receiver and crossline source directions.

After first reviewing Spitz’s observation that the wavenumber spectra of a plane

wave in the f -x domain at a single frequency and spatial sampling with that of a

higher frequency and finer spatial sampling are linked, I then use coarser-sampled

lower frequencies as training data for a complex-valued nonstationary PEF that I use

to interpolate a higher frequency to a finer sampling. I demonstrate this method on

multidimensional plane waves as well as a 3D synthetic model.

I apply the method to interpolate 3D prestack synthetic data containing many

diffracted multiples. I investigate the different domains on which these filters can

be estimated, as well as the dimensionality of the filter for interpolating both inline

sources and crossline receivers. For iteratively interpolating data to the extent re-

quired for 3D SRME, I continue this investigation for a 3D field data example with
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only four cables, pushing the nonlinear approach of interpolation previously interpo-

lated data to its breaking point.

Chapter 6: Conclusions

I summarize the different approaches to generating training data for a PEF used to

interpolate data, and highlight some future avenues of research. This non-stationary

PEF-based approach is very generalizable, and can be tailored to other applications

by varying the training data and domain used, and the tools present in inverse theory.


