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Abstract

With finite capital and logistical means, interpolation is a necessary part of seismic

processing, especially for such data-dependent methods as surface-related multiple

elimination. One such method is to first estimate a prediction-error filter (PEF) on

a training data set, and then use that PEF to estimate missing data, where each

step is a least-squares problem. This approach is useful because it can interpolate

multiple simultaneous, aliased slopes, but requires regularly-sampled data. I adapt

this approach to interpolate irregularly-sampled data, marine data with a large near-

offset gap, and 3D prestack marine data with many dimensions.

I estimate a PEF from irregularly-sampled data in order to interpolate these data

onto a regular grid. I do this by regridding the data onto multiple different grids and

estimate a PEF simultaneously on all of the regridded data. I use this approach to

interpolate both irregularly-sampled 3D synthetic data and 2D prestack land data

using nonstationary PEFs, both with reasonable results.

Marine data typically contains a near-offset gap of several traces, which can be

larger when surface obstacles are present, such as offshore platforms. Most methods

that depend on lower-frequency information from the data fail for these large gaps. I

estimate nonstationary PEFs from pseudoprimary data, which is generated by cross-

correlating data within each shot, so that the correlation of multiples with primaries

creates data at the near offsets that were not originally recorded. I use this approach

in t-x-y and f -x-y, on both the Sigsbee2B 2D prestack synthetic dataset, and a 2D

prestack field data set. While this method is currently unfeasible in the crossline

direction in 3D marine data, the larger crossline aperture of a wide-azimuth dataset
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would improve results considerably

Finally, I estimate nonstationary PEFs in many dimensions using the approx-

imation that slope is constant as a function of frequency, and interpolate data in

two, three, four, and five dimensions simultaneously by using nonstationary PEFs

on frequency slices. This method correctly interpolates multiple simultaneous aliased

slopes in the data. I interpolate both prestack 3D synthetic as well as field data to

the densities required for future processing.
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Preface

The markings [ER], [CR], and [NR] included in the figure captions in this thesis denote

the extent to which each figure is reproducible by anyone desiring to do so. The

electronic version of this thesis provides the original figures and Fortran90 programs

written to produce all of the results. Most programs are included locally in the

chapter directories. I assume you have a UNIX-based workstation with Fortran90

and C compilers, an X-Windows environment, and the Stanford Exploration Project

(SEP) software available from our website (make rules, programming libraries, and

LATEX packages).

Reproducibility is a way of organizing computational research that allows both

the author and the reader to verify and regenerate results. Reproducibility also

facilitates the transfer of knowledge within SEP and between SEP, its sponsors, and

the geophysical community at large.

ER denotes Easily Reproducible results of processing described in the paper. I

claim that you can reproduce such a figure from the programs, parameters,

and makefiles included in the electronic document. The data must either be

included in the electronic distribution, be easily available to all researchers

(e.g., SEG-EAGE data sets), or be available in the SEP data library. Before

the publication of the electronic document, someone other than me tested my

claim by destroying and rebuilding all ER figures.

CR denotes Conditional Reproducibility. I certify that the commands are in place

to reproduce the figure if certain resources are available. CR results have been
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tested to make sure that the makefile rules exist and the source codes referenced

are provided. Conditional reproducibility applies to figures produced with ex-

cessively long or parallel computing processes or when using proprietary data.

NR denotes Non-Reproducible figures. SEP discourages authors from flagging

their figures as NR except for figures that are used solely for motivation, com-

parison, or illustration of the theory, such as: cartoons, drawings, scans, or

figures taken from other publications.

Our testing is currently limited to LINUX 2.6 (using the Intel Fortran90 compiler),

but the code should be portable to other architectures. Reader’s suggestions are

welcome. For more information on reproducing SEP’s electronic documents, please

visit

http://sepwww.stanford.edu/research/redoc/.
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(e) 7500 ft. The signal quality degrades as the density of sources is

reduced, but is still coherent with one source for every 20 offsets. CR 117

4.23 The same comparison as in Figure 4.22, but viewed as a virtual source

gather at s=35000 ft and source sampling of: (a) 300 ft, (b) 750 ft, (c)

1500 ft, (d) 3000 ft, (e) 7500 ft. CR . . . . . . . . . . . . . . . . . . 118

4.24 A comparison of aperture for pseudoprimaries at s=35000 ft with

sources along (a) 15000, (b) 10000, (c) 5000, (d) 2000 ft surrounding

the virtual source point. The data rapidly degrades as the aperture is

limited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
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5.1 A spatially-aliased plane wave in t-x, generated with a Ricker wavelet

with a central frequency of 55 Hz and a slope of 650 m/s sampled

64 times (every 20 m) shown in time and space in (a). The real (b)

and imaginary (c) values of the positive frequencies show how the spa-

tial wavenumber increases with frequency until the spatial Nyquist is

reached at 17.5 Hz, and then becomes aliased. The aliasing is also

apparent in t-x. ER . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 A plane wave in f -x with four different sampling rates. a) original f -x

data, with ∆x and ∆f . b) resampled to ∆f
2 (showing the lower half of

frequencies) and 2∆x. c) ∆f
3 (showing the lower third of frequencies)

and 3∆x. d) ∆f
4 (showing the lower quarter of frequencies) and 4∆x.

The spatial wavenumber is the same at each frequency, but the phase

is different. ER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3 Three plane waves in five arbitrary dimensions, four spatial and time

(v,w,x,y,t). The ten slices correspond to combinations of all of the

axes: a) v,t; b) w,t; c) x,t; d) y,t; e) v,y; f) w,y; g) x,y; h) v,x; i) w,x;

j) v,w. The plane waves are severely aliased along many of the axes. ER127

5.4 Interpolation of the data in Figure 5.3 using 128 four-dimensional

PEFs. The aliased data are properly interpolated along all axes, and

the amount of data has been increased by a factor of 16. ER . . . . . 128

5.5 A single hyperbola in t-x and f -x: a) a hyperbola in t-x; b) the real

part of the same hyperbola in f -x; c) the real part of the same data

with half the spatial samples removed and the lower half of frequencies

shown. For each frequency, the local wavenumber content is the same

in both b and c. ER . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
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5.6 Interpolation of the quarter-dome synthetic. a) original data. b) data

sub-sampled by a factor of two on each spatial axis. c) Stationary f-x

interpolation. d) f-x interpolation in patches. e) Nonstationary f-x

interpolation. f) Nonstationary f-x interpolation in time patches. The

nonstationary f-x interpolation in time patches performs slightly better

than the patched approach, most notably in the crossline, and is more

than an order of magnitude faster. ER . . . . . . . . . . . . . . . . . 133

5.7 Schematic of the synthetic dataset: a) shows the model, a prism-shaped

region below the water bottom filled with point diffractors, below which

lie three reflectors whose primary reflection times are nearly the same

times as those of water-bottom multiples; b) is a plan view showing the

acquisition schematic, with twelve receiver cables and flip-flop sources.

NR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.8 Synthetic dataset. a) a cube with a constant-offset section on the front

face, crossline offsets on the side face, and a time slice through this cube

on the top; b) another cube showing a single shot with inline offsets

on the front face, crossline offsets on the side face, and a time slice on

top. Events are aliased along both the inline source and crossline offset

axes. ER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.9 A zoomed-in comparison of inline source interpolation along constant-

offset sections at 1137.5 m using different PEF dimensions. a) 2D

interpolation along constant inline offset sections. b) 3D interpolation

along inline source, inline offset cubes. c) 3D interpolation along inline

source, crossline offset cubes. d) 4D interpolation along inline source,

inline offset and crossline offset hypercubes. Based on the resulting

continuity between sources the inline 3D and 4D interpolations perform

better than the 2D or 3D crossline interpolations. ER . . . . . . . . . 140
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5.10 Differences between the plots in Figure 5.9. a) 2D vs. 3D inline in-

terpolation; b) 2D vs. 3D crossline interpolation; c) 3D inline vs.

3D crossline interpolation; d) 3D inline vs. 4D interpolation; e) 3D

crossline vs. 4D interpolation; f) 2D vs. 4D interpolation. The 2D re-

sults have horizontal errors, the 3D crossline result underpredicts the

target reflectors, and the 3D inline and 4D interpolations both perform

similarly well and show few differences. ER . . . . . . . . . . . . . . 141

5.11 One cable from an interpolated inline source at 11706.5 m. a) original

recorded shot located adjacent to the interpolated shots in b-e. b) 2D

interpolation along constant inline offset sections. c) 3D interpolation

along inline source, inline offset cubes. d) 3D interpolation along inline

source, crossline offset cubes. e) 4D interpolation along inline source,

inline offset and crossline offset hypercubes. The 3D inline and 4D

interpolations again produce the best results. ER . . . . . . . . . . . 143

5.12 Time slices from 4.336 s in inline source and inline offset, where the

inline source axis has been interpolated by a factor of three. a) 2D

interpolation along constant inline-offset sections. b) 3D interpolation

along inline-source, inline-offset cubes. c) 3D interpolation along inline-

source, crossline-offset cubes. d) 4D interpolation along inline-source,

inline-offset, crossline-offset hypercubes. The 3D inline-source, inline-

offset interpolation in Figure 5.12b produces a superior result to all

others, particularly on the linear events at the center of the slice, with

no vertical streaking or sinusoidal error. ER . . . . . . . . . . . . . . 145

5.13 Receiver cable interpolation viewed for a single source at 10931.25 m

and a single inline offset at 900 m. a) original data. b) 2D interpola-

tion of crossline offset gathers. c) 3D crossline-offset, inline-offset cube

interpolation. d) 3D crossline-offset, inline-source cube interpolation.

e) 4D interpolation. The 4D interpolation shows the most continuity.

ER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
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5.14 Receiver-cable interpolation viewed for constant-offset (900 m) sec-

tions. a) original data from a nearby receiver cable. b) 2D interpola-

tion of crossline-offset gathers. c) 3D crossline-offset, inline-offset cube

interpolation. d) 3D crossline-offset, inline-source cube interpolation.

e) 4D interpolation. Looking at the bottom of the cloud of diffracted

multiples, the 3D and 4D results appear to be comparably better than

the 2D result. ER . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.15 Receiver cable interpolation viewed for a single shot at 10931.25 m and

a single interpolated cable at zero crossline offset. a) recorded data

from a nearby receiver cable. b) 2D interpolation of crossline-offset

gathers. c) 3D crossline-offset, inline-offset cube interpolation. d) 3D

crossline-offset, inline-source cube interpolation. e) 4D interpolation.

The 3D inline-offset, crossline-offset and 4D interpolations produce the

best results. ER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.16 Differences between images in Figure 5.15. a) 2D vs. 3D receiver in-

terpolation; b) 2D vs. 3D source interpolation; c) 3D receiver vs. 4D

interpolation; d) 3D source vs. 4D interpolation; e) 2D vs. 4D inter-

polation; f) 3D source vs. 3D receiver interpolation. The 3D crossline

receiver, inline receiver and 4D interpolations are most similar, with

the 3D source interpolation producing errors at far offsets. ER . . . . 151

5.17 Receiver cable interpolation viewed in a time slice at 2.276 s through

a crossline-offset, inline-offset cube at sx = 10931.25 m. a) 2D inter-

polation of crossline-offset gathers. b) 3D crossline-offset, inline-offset

cube interpolation. c) 3D crossline-offset, inline-source cube interpola-

tion. d) 4D interpolation. The 3D crossline-offset, inline-offset and 4D

interpolations produce the most continuous result. ER . . . . . . . . 152
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5.18 Receiver cable interpolation (hy = −25 m) viewed in a time slice at

2.276 s through an inline-offset, inline-source cube below the water-

bottom reflection for an interpolated receiver cable. a) 2D interpo-

lation of crossline-offset gathers. b) 3D crossline-offset, inline-offset

cube interpolation. c) 3D crossline-offset, inline-source cube inter-

polation. d) 4D interpolation. The 2D result is overly smooth, the

3D (crossline-offset, inline-offset) result shows vertical striping, the 3D

(crossline-offset, inline-source) interpolation shows horizontal striping,

and the 4D result contains more detail and has no striping. ER . . . 153

5.19 Schematic plan-view diagram of the acquisition geometry. NR . . . . 155

5.20 Source and receiver distributions of the input sail line: a) source posi-

tions; b) receiver position map. The sail line is relatively straight with

minimal cable feathering. NR . . . . . . . . . . . . . . . . . . . . . . 156

5.21 Migration velocity model of the dataset. Note the submarine canyon

with a significant crossline dip. NR . . . . . . . . . . . . . . . . . . . 157

5.22 Input sail line: a) constant-offset section at 600 m inline offset and

the second receiver cable; b) second cable of a shot at 15, 800 m; c)

crossline-offset gather at 600 m inline offset and a source position of

15, 800 m. The data have been NMO corrected, and a gain has been

applied. NR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.23 Interpolation of sources in a constant-offset section by a factor of three:

a) 2D b) 3D (inline source, inline offset); c) 3D (inline source, crossline

offset), d) 4D. The differences in this view are minor, with slight

amounts of energy appearing before the water-bottom in the 2D in-

terpolation. NR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.24 Differences between images in Figure 5.23. a) 2D vs. 3D crossline

offset interpolation b) 2D vs. 3D (inline source, inline offset); c) 2D

vs. 4D; d) 3D crossline offset vs. 4D; e) 3D inline offset vs. 4D; f) 3D

inline vs. 3D crossline. NR . . . . . . . . . . . . . . . . . . . . . . . 160
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5.25 Near offsets of interpolated shot gathers: a) nearest recorded shot

gather from 25 m away; b) 2D constant-offset-section-based interpola-

tion; c) 3D (inline-source, crossline-offset) interpolation; d) 3D (inline-

source, inline-offset) interpolation; e) 4D. The differences among the

results are much more dramatic than in the inline source view, with

the 3D inline result appearing most like the nearby data. NR . . . . 162

5.26 Differences between images in Figure 5.25. a) 2D vs. 3D crossline

offset interpolation b) 2D vs. 3D (inline source, inline offset); c) 2D

vs. 4D; d) 3D crossline offset vs. 4D; e) 3D inline offset vs. 4D; f) 3D

inline vs. 3D crossline. The 3D inline and 4D results show the greatest

coherent differences. NR . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.27 Time slices through inline-source, inline-offset cubes interpolated along

the inline-source direction by a factor of three. a) 2D constant-offset-

section-based interpolation; b) 3D (inline-source, crossline-offset) in-

terpolation; c) 3D (inline-source, inline-offset) interpolation; d) 4D.

NR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.28 Receiver cable interpolation of field data. a) 3D (inline-offset, crossline-

offset); b) 3D (inline-source, crossline-offset); c) 4D interpolation. The

4D result shows the most continuity, with no noise on the traces ad

little anticausal noise. NR . . . . . . . . . . . . . . . . . . . . . . . . 173

5.29 An interpolated receiver cable between the second and third cable, for

a single shot. a) recorded data from the third cable; b) 3D (crossline-

offset, inline-offset) shot-by-shot interpolation; c) 3D (crossline-offset,

inline-shot) inline offset-by-offset interpolation; d) 4D interpolation.

The flipped polarity of the near-offset trace in (a) causes large errors

in (b). The 4D result contains less of the second dip present in (a) but

is not degraded by the flipped trace in (a). NR . . . . . . . . . . . . 174
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5.30 Differences between images in Figure 5.30. a) 3D inline offset, crossline

offset vs. 3D inline source, crossline offset; b) 3D inline offset, crossline

offset vs. 4D; c) 3D crossline offset, inline source vs. 4D interpolation.

The 4D result is missing of the the second slope but also fortunately

lacks the noise generated from the flipped trace. NR . . . . . . . . . 175

5.31 Time slice from an inline source-receiver cube of an interpolated re-

ceiver cable. a) recorded second receiver cable; b) 3D inline-source,

inline-offset interpolation; c) 3D inline-source, crossline-offset interpo-

lation; d) 4D interpolation. The 4D result is definitely the best for this

view. NR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.32 Crossline-offset sections of the interpolated data. a) recorded data;

b) recorded data with interpolated cables; c) interpolated shot with

interpolated cables. The amplitudes between the recorded traces and

the interpolated traces becomes apparent at later times. NR . . . . . 177

5.33 Time slice through an inline-source, crossline-offset cube. a) original

recorded data; b) data interpolated by a factor of three along the inline-

source and a factor of four in the crossline-offset direction. The aliased

water-bottom reflection is smoothly interpolated. NR . . . . . . . . . 177

5.34 Time slice through a single shot (inline-offset, crossline-offset) cube. a)

original recorded shot; b) original shot with interpolated receiver ca-

bles; c) interpolated shot with interpolated receiver cables. The source

interpolation does not appear to produce a degraded result. NR . . . 178

5.35 Constant-inline-offset sections from the interpolated data: a) along

the second recorded receiver cable with interpolated sources; b) along

a receiver cable interpolated by a factor of two (between the second

and third cables); c) along a receiver cable interpolated by a factor of

four (between (a) and (b)). The quality of the interpolation degrades

with the number of passes applied. especially in the area with large

crossline variability. All figures have been gained. NR . . . . . . . . 179
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5.36 Interpolated receiver cables. a) originally recorded receiver cable; b)

receiver cable from an interpolated shot; c) receiver cable interpolated

by a factor of two from interpolated shot; d) receiver cable interpolated

by a factor of four from the interpolated shot. This shot is from the

region of the data with the greatest crossline heterogeneity, making

this a worst-case scenario for these data. NR . . . . . . . . . . . . . 180
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