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ABSTRACT

Shuki Ronen has shown that a dip spectrum in 2-D may be characterized by a 1-
D Prediction Error Filter (PEF) after his “pyramid transform” where (¢, x)-space is
transformed to (w,u = wx)-space. The transform to (w,u)-space creates empty loca-
tions (missing data). Thus we have the question of unknown PEF along with missing
data. Here we propose to find both simultaneously by iterative linear least squares.

INTRODUCTION

A Prediction Error Filter (PEF) is good at characterizing a 1-D spectrum. A short simple
PEF will easily model a narrow bandwidth, a broad one, or a combination — whatever
fits. Unfortunately, the spectrum characterized by a PEF is a temporal spectrum or a
spatial spectrum, when in practice it is more generally the dip spectrum that we seek a
good representation for.

Although the helix transform brings us the power of PEFs to 2-D and 3-D data it
does not directly offer us exactly what often seek, a dip spectrum. Shuki Ronen’s pyramid
transform does. It brings PEF power from time and space axes to the dip axis.

First we review Ronen’s principles noticing that raw data traces are moved to radial
traces on a new grid. The 1-D PEF must be found on this new grid. But the new grid
has empty spaces (missing data) between the known radial traces. Thus we approach the
problem as one of nonlinear least squares which we propose to solve by iterative linear least
squares.

FIRST PRINCIPLES

Let us review Ronen’s pyramid transform (Hung et al., 2005). Fourier transform data from
(t,z) to (w,z). Ronen then shrinks and stretches the space axis to transform from z to
u = wz. All the information on a trace (constant xg), in the (¢,z) plane, lands on the line
u = wxg in the the (w,u = wz)-plane. This is a line through the origin. Ordinary traces
have become radial traces.

Look ahead to Figure 1 and you will see an example of the basic property of Ronen’s
space, the property we will prove next, namely: Whereas dips in (¢,2) space are curves
in (w,x) space, they return to straight lines in (w,u) space. Dips in physical (¢, ) space
become frequencies on Ronen’s u-axis, the same u-space frequency for all w. To track the
three events in Figure 1 into Ronen’s space, it’s helpful to notice that each has a different
w spectrum.
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Figure 1: LEFT: Input data (¢, 2) with three events, each with different frequency content
(and spatial extent). MIDDLE: Real part of (w,x)-space of the panel on the left. RIGHT:
Same in (w,u = wz)-space, Ronen’s pyramid space in which we again see straight lines as
we did in (¢, x)-space. Observe three frequencies on the u-axis, each corresponding to a
different slope in the (¢, x)-plane. To help identify which is which, notice each of the three
events in the (¢, z)-plane has a different w spectrum. [ER]
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To establish the basic property of pyramid space we consider a dipping signal in (¢, x)-
space, say ¢(t,z) = g(t — px). Transform time ¢ to frequency w. Now we have a plane of
complex valued information say G(w, z). What is it in Ronen’s (w, u) space? Say g(t,z = 0)
fourier transforms to G(w). Then g(t — t) transforms to G(w)e™?. Take the time shift ¢,
to be distance z times slope p. Then g(t — zp) transforms to G(w)e™*? = G(w)e*. Add
some extra plane waves.

Gw,u) = Gr(w)eP™ + Gy(w)eP?¥ ... (1)

FExamine any w. You see sinusoids on the w-axis. The frequencies of these sinusoids are
(p1,p2,- -+ ). We see those same frequencies for each w. Thus the PEF on the u-axis informs
us of a spectrum on the p-axis. To a seismologist, p is a dip axis though it would be more
correct to call it an axis of stepout.

What happens in 3-D?7 Instead of (x,y)-axes we have (u,v) = (wz,wy) axes. It is
not immediately clear what applications will bring us to do in the (u,v)-plane. Some
applications may call for a 2-D PEF there, while others call for two 1-D PEFs. What are
we expecting to describe in (p,,py)-space? Globally, there may be a bounding range in a
slowness circle corresponding to a slowest material velocity. Locally things will look more
like plane waves.

APPLICATION: AN ALGORITHM FOR INTERPOLATION

In seismology we often deal with instruments spaced more widely than they should be,
more widely than they should be for typical data processing such as Fourier transform,
more widely than is suitable for data display. Fundamentally something is lost, but that
does not detract from our goal of regular spaced data on a dense enough mesh. Given
regular data, finding a PEF is a linear problem. Given a PEF, interpolating data is a
linear problem (demonstrated by many examples in Claerbout’s free on-line book, “Image
Estimation by Example”). In both cases we are minimizing the energy of filtered data. A
more generalized approach minimizes energy in the filtered data where some unknowns are
in the PEF while others are missing data values among the knowns. This minimization is
nonlinear (because the PEF multiplies missing data).

The main difficulty of trying to utilize Ronen’s pyramid in practice is the issue of bringing
the z-space to the u-space. On first glance it seems to require interpolation. On trial, this
interpolation seems to need to be done extremely carefully. An alternate approach, which
we take here, is to sample the u-space very densely. This, of course, introduces many
locations not touched directly by the data. We have traded the interpolation problem for
a missing data problem, nonlinear because we must estimate this new missing data at the
same time we estimate the PEF. We’d like to come up with a reliable pyramid method of
interpolating aliased data that is devoid of low frequency information. An attractive feature
is that the pyramid concept does not require the original data on a regular mesh in x-space.
Our method will build a dense regular mesh in model u-space.

The problem is non-linear because of the product of unknowns, the PEF multiplying
the missing data. Here we approach the problem by multistage linear least squares which
can be iterated to solve the nonlinear problem. In any nonlinear problem the initial guess
must be “near enough”. Hopefully the proposed method will not demand unaliased low
frequency information.
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Imagine five unevenly spaced traces on the z-axis. The data space is defined as d(w, )
at five known values of the coordinate z. Define a model space m(w,u = wx) that is dense
(many uniformly spaced points) on u-space. We are interested in fitting

0~ Lm-—-d

The operator L linearly interpolates from the dense u-axis to the sparse z-space (which
need not be regularly sampled on z). In the limit of an extremely dense u-space we might
choose L to be “extraction” basically “nearest-neighbor inverse binning”. A zeroth order
model space is mg = L'd. This model is simply dropping the several data traces into radial
traces in pyramid space. Because u-space has very many points, mg(w, u) has many empty
regions (triangularly shaped). Thus we use preconditioning. Let us precondition with the
convolutional roughener A0 = (1, —1) on the w-axis. This particular A0 leads to a solution
m(u) that linearly interpolates the given data. Such preconditioning should be good at
large w where the radial traces are far apart. Thus p = Agm or m = Ay~ 'p. To find p
and m (independently for each w) we iterate on the regression

0 ~ LAy 'p—d

The resulting m we will call my (because we will eventually improve on it getting an msa).

Next let us upgrade Ag. At each w from the model space mq, make an operator M for
convolution over the u axis. Simultaneously for all w we find the regression for an upgraded
PEF a (which is constant over w).

0 ~ WMla

Here W is a diagonal weighting matrix defined next. As mentioned earlier, there are
large empty spaces in the zeroth order model space mg = L’d. Although our improved
model space m (w, u) has filled the holes with artificial data, we don’t want to use regression
equations except where the model space points directly to real data, namely where mg(w, u)
is non-zero. Thus we define W to be a diagonal matrix of ones and zeros, zeros where
mo(w,u) is zero.

Although we are planning to iterate, we will never change W. From solution of the
regression above we have the vector a which we use to make the filter operator A;. Use it
in place of Ag in the regression for p above. Iterate to get an m that is improved over my.
Call it mo. Iterate.

CONCLUSIONS

We have an algorithm. We should code it and test it.
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