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ABSTRACT

Crack-influence parameters of Sayers and Kachanov (1991) have been shown to be
directly related to Thomsen weak-anisotropy parameters for seismic wave speeds.
These results are applied to the problem of seismic propagation in reservoirs hav-
ing polar (HTI) symmetry due to aligned vertical fractures. To take full advantage
of these relationships, it is also helpful to obtain more accurate expressions for
seismic wave speeds in polar media at longer offsets than those originally intended
for Thomsen’s weak anisotropy formulation.

INTRODUCTION

Recently published work of the author (Berryman, 2007, 2008) shows how anisotropy
due to cracks or large-scale fractures can be quantified using crack-influence parame-
ters of Sayers and Kachanov (1991). Taking maximal advantage of this work requires
use of exact or nearly exact formulas for anisotropic seismic wave speeds in field ap-
plications. Thomsen’s weak anisotropy formulation (Thomsen, 1986), while accurate
for short-offset data, is not adequate at longer offsets in strongly polar media. The
point of the work summarized here is to arrive at a formulation almost as simple as
Thomsen’s, yet accurate enough to be useful at least to angles on the order of θ ' 45o.

EXACT RESULTS FOR VTI AND HTI MEDIA

If ρ is inertial mass density, and the coefficients cij are the usual elastic stiffnesses
(for example, in isotropic media, c11 = c22 = c33 = λ + 2µ, c44 = c55 = c66 = µ,
c12 = c13 = c23 = λ with λ and µ being the well-known Lamé elastic parameters),
then the exact results for VTI media with x3-axis of symmetry (so c11 = c22 6= c33,
c13 = c23 6= c12, c44 = c55 6= c66, and c12 = c11 − 2c66) are given exactly by:

v2
p(θ) =

1

2ρ

{
c44 +

[
c11 sin2 θ + c33 cos2 θ

]
+ R(θ)

}
(1)

and

v2
sv(θ) =

1

2ρ

{
c44 +

[
c11 sin2 θ + c33 cos2 θ

]
−R(θ)

}
, (2)
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where
R2(θ) =

[
(c11 − c44) sin2 θ

− (c33 − c44) cos2 θ
]2

+ 4 (c13 + c44)
2 sin2 θ cos2 θ,

(3)

and where polar angle θ is measured from the vertical x3-axis directed into the earth.
Results for horizontally polarized shear waves in VTI media will not be treated in
the following discussion. Results for HTI media (for example, from aligned vertical
cracks) are obtained directly by substituting θH = θ−π/2 for any vertical plane that
is also perpendicular to the vertical plane of symmetry.

Thomsen’s anisotropy parameters ε, δ, γ can be related directly to the Sayers and
Kachanov (1991) crack-influence parameters η1 and η2 for horizontal cracks according
to εh = c11−c33

2c33
= ρc[(1+ν0)η1+η2]

E0

1−ν2
0
η2G0 ' 2ρcη2G0

1−ν0
= δh, and γh = c66−c44

2c44
= ρcη2G0,

where Poisson’s ratio ν0, Young’s modulus E0, and shear modulus G0 are the values
for the assumed isotropic background medium. For the penny-shaped cracks (having
penny radius a) considered (see Table 1), Thomsen’s parameters ε and δ are always
found to be equal to each other to lowest order in the crack density ρc = na3, with
n = N/V being the crack number density.

Table 1
Crack NI 1st Model 2nd Model

Parameters Approx. ν0 = 0.00 ν0 = 0.4375
η1 (GPa−1) − ν0η2

2(5−ν0)
0.0000 -0.0192

η2 (GPa−1) 8(1−ν0)(5−ν0)
15(2−ν0)G0

0.1941 0.3994

Table 1: Examples of the first crack-influence parameters (the two for lowest order
in powers of ρc) estimated by Berryman and Grechka (2006), from simulations of
Grechka.

EXTENDING THOMSEN’S FORMULAS TO LARGER
OFFSETS FOR VTI AND HTI SYMMETRY

The most obvious problem with Thomsen’s approximations to the wave speeds gen-
erally occurs in vsv(θ). As noted in earlier work, the key issue is that Thomsen’s
approximation for vsv(θ) is completely symmetric around θ = π/4 = 45o, while —
unfortunately — this is usually not true of the actual wave speeds vsv(θ). This in-
herent error may seem innocuous in itself since it is not immediately clear whether
it affects the results for small angles of incidence (< 15o) or not, but this inaccuracy
clearly does lead to large over- or under-estimates of wave speeds in the neighborhood
of both the extreme value (i.e., a peak or a trough) located at θ = θex and also in the
neighborhood of θ = 45o 6= θex. So these discrepancies can certainly become issues at
offsets larger than the original design criterion having polar angles θ ≤ 15o.
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To improve this situation while still making use of a simple and practical ap-
proximation to the phase speed, we reconsider an approach originally proposed by
Berryman (1979). In particular, notice that the square root of R2(θ) in Eq. (3) can
be exactly and conveniently rewritten as:

R(θ) = [c11 sin2 θ + c33 cos2 θ − c44]
√

1− ζ(θ), (4)

where

ζ(θ) ≡ [(c11 − c44)(c33 − c44)− (c13 + c44)
2] sin2 2θ

[c11 sin2 θ + c33 cos2 θ − c44]2
. (5)

To simplify this expression, first notice that ζ(θ) has an absolute maximum (or min-
imum) value, which occurs when θ takes the value θm determined by

tan2 θm =
c33 − c44

c11 − c44

≡ 1− xm, (6)

where

xm =
c11 − c33

c11 − c44

> 0. (7)

The inequality in (7) is true for VTI media having horizontal fractures, since for this
case the stiffness difference c11 − c33 is known to be positive (as it is also known that
ρc, η2, and G0 are all positive, while Poisson’s ratio satisfies ν0 ≤ 1

2
).

Then, the extreme value ζm ≡ ζ(θm) is itself given by

ζm = 1− (c13+c44)2

(c11−c44)(c33−c44)

= 2(ε−δ)c33
c11−c44

=
2(ε−δ)v2

p(0)

v2
p(0)(1+2ε)−v2

s(0)
,

(8)

where the second and third expressions in (8) relate ζm to the difference between the
Thomsen parameters ε and δ, and also to vp(0) and vs(0). In general, (ε− δ) — and
therefore ζm — can take values positive, negative, or zero. Furthermore, ζ(θ) may be
rewritten as

ζ(θ) =
2ζm

1 + χ(θ)
, (9)

where

χ(θ) =
1

2

[
tan2 θ

tan2 θm

+
tan2 θm

tan2 θ

]
. (10)

It is always true that ζ(θ) ≤ 1. [Note that ζm ≥ 0 for all layered media since
ε − δ ≥ 0 for layered elastic media (Postma, 1955; Backus, 1962; Berryman, 1979).
However, such a simple constraint is not known for other types of anisotropic systems.]
The square root in equation (4), can be expanded to first order as√

1− ζ(θ) ' 1− ζ(θ)

2
= 1− ζm

1 + χ(θ)
. (11)
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Approximate results for vp(θ) and vsv(θ) are therefore:

v2
p(θ) ' 1

ρ

( [
c11 sin2 θ + c33 cos2 θ

]
− ζm[(c11−c44) sin2 θ+(c33−c44) cos2 θ]

2[1+χ(θ)]

) (12)

and
v2

sv(θ) ' 1
ρ

(
c44

+ ζm[(c11−c44) sin2 θ+(c33−c44) cos2 θ]
2[1+χ(θ)]

)
.

(13)

The only approximation made in arriving at equations (12) and (13) was the approx-
imation of the square root shown in (11).

Although this simple approach is the one most commonly used, the analysis pre-
sented is not really limited to using only the first order Taylor approximation in
(11). Other researchers (Fowler, 2003; Pederson et al., 2007) have explored rational
approximations to such square roots, but we now choose to take a rather different
approach.

Progress is made by noting that the quantity 1
2
[1 + χ(θ)] may be rewritten as:

1

2
[1 + χ(θ)] =

1

4

(
tan θ

tan θm

+
tan θm

tan θ

)2

=
(tan2 θ + tan2 θm)2

4 tan2 θ tan2 θm

. (14)

To simplify this expression, first multiply numerator and denominator of (14) by
cos4 θ cos4 θm. The denominator of the result is then proportional to sin2 2θ sin2 2θm,
while the numerator is now proportional to the square of the quantity cos2 θ cos2 θm×
(tan2 θ +tan2 θm) = sin2 θ cos2 θm +sin2 θm cos2 θ = 1

2
(1− cos 2θ cos 2θm) . Combining

these two results gives

ζ(θ) =
ζm sin2 2θm sin2 2θ

[1− cos 2θm cos 2θ]2
, (15)

which (although this may not be immediately obvious) is just a more compact version
of (5). Equation (15) is exact; no approximations were made in the transition from
(5) to (15).

Dividing the expression in the text before Eq. (15) by 2 cos2 θm, we also have

sin2 θ + tan2 θm cos2 θ =
[1− cos 2θm cos 2θ]

2 cos2 θm

. (16)

Using the definitions X± ≡
[
1±

√
1− ζ(θ)

]
, the exact expression for quasi-SV-

wave speed can now be rewritten as

2ρv2
sv = 2c44 + (c11 − c44)

(
sin2 θ + tan2 θm cos2 θ

)
X−. (17)

Similarly, the exact equation for quasi-P-wave speed becomes

2ρv2
p = 2c44 + (c11 − c44)

(
sin2 θ + tan2 θm cos2 θ

)
X+. (18)

SEP-134



Berryman 5 Anisotropy

Both of these expressions are exact rearrangements of the original equations.

These results can be consolidated further by using the result (16), together with
the definition

c11 + c33 − 2c44 =
c11 − c44

cos2 θm

≡ 2∆c. (19)

So finally, we have two very compact expressions for the exact wave speeds:

ρv2
sv = c44 +

∆c

2
[1− cos 2θm cos 2θ]

[
1−

√
1− ζ(θ)

]
(20)

for the quasi-SV-wave speed, and also the corresponding equation which is

ρv2
p = c44 +

∆c

2
[1− cos 2θm cos 2θ]

[
1 +

√
1− ζ(θ)

]
(21)

for the exact quasi-P-wave speed.

Extended formulas for HTI symmetry

To complete this analysis, we show how the results for HTI symmetry arise when the
fractures/cracks are aligned and vertical. These results follow easily from our earlier
work:

v̄2
p(θH)/v2

p(0)(1 + 2ε) ' 1− 2ε
1+2ε

sin2 θH

− ε−δ
2(1+2ε)

2 sin2 θm sin2 2θH

[1+cos 2θm cos 2θH ]
,

(22)

from which we find:

v̄p(θH)/vp(0)
√

1 + 2ε ≈ 1− ε
1+2ε

sin2 θH

− ε−δ
4(1+2ε)

2 sin2 θm sin2 2θH

[1+cos 2θm cos 2θH ]
.

(23)

Similarly,
v̄2

sv(θH)/v2
s(0) ' 1 +

[
v2

p(0)/v
2
s(0)

]
× ε−δ

2
2 sin2 θm sin2 2θH

[1+cos 2θm cos 2θH ]
,

(24)

from which follows:

v̄sv(θH)/vs(0) ≈ 1 +
[
v2

p(0)/v
2
s(0)

]
× ε−δ

4
2 sin2 θm sin2 2θH

[1+cos 2θm cos 2θH ]
.

(25)

Again, these formulas reduce exactly to the equivalent Thomsen formulas for HTI
symmetry if θm → 45o. It should always be remembered, however, that these formulas
apply only in planes perpendicular to the plane of the aligned fractures. For other
angles of propagation, we must also account for the azimuthal dependence on angle
φ, although this is in fact easy to do. Examples of these results are presented in the
three Figures.
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(a) (b)

Figure 1: For aligned vertical cracks having crack density ρc = 0.2 and HTI overall
symmetry: two examples of anisotropic quasi-SV shear wave speeds for two values
of Poisson’s ratio ν0 of the host medium: top ν0 = 0.00, bottom ν0 = 0.4375. Back-
ground wave speeds are top vs = 1.77 km/s, bottom vs = 1.00 km/s. Speeds in red
are those for the new approximation. The corresponding exact result is then overlain
in black. Finally, Thomsen’s weak anisotropy curves are overlain in blue. Two of the
vertical lines indicate locations of the true peaks of these curves: Thomsen’s approx-
imation is the dashed blue line and it is always at 45o. The solid black line is the
true peak of the exact expression. The value of θm from equation (6) is the vertical
line shown in red. The other two dashed black vertical lines are two estimators (not
treated here) of the peak of our approximate curve; these two estimators are often
nearly indistinguishable. [NR]

(a) (b)

Figure 2: Quasi-P-wave speeds for the same two model reservoirs, for three choices
of crack density ρc = 0.05, 0.10, 0.20. Background P -wave speed for the first model is
vp = 2.50 km/s and for the seco2nd model vp = 3.00 km/s. As before, speeds in red
are those for the new approximation. The corresponding exact result is then overlain
in black. Finally, Thomsen’s weak anisotropy curves are overlain in blue. [NR]
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(a) (b)

Figure 3: Quasi-SV shear-wave speeds for the same two model reservoirs, for three
choices of crack density ρc = 0.05, 0.10, 0.20. The two values of Poisson’s ratio ν0 of
the host medium considered are: top ν0 = 0.00, bottom ν0 = 0.4375. Background
shear-wave speed for the first model is vs = 1.77 km/s and for the second model
vs = 1.00 km/s. As before, speeds in red are those for the new approximation.
The corresponding exact result is then overlain in black. Finally, Thomsen’s weak
anisotropy curves are overlain in blue. Plots for vsh(θ) are not dependent on the
formulation of the new scheme and, therefore, are not displayed. [NR]

DISCUSSION AND CONCLUSIONS

The preceding analysis presented for the phase velocity equations does not depend
on the source of the anisotropy, and therefore can be applied to layered media, etc.,
as well as to fractured media as we have done here.

The Kachanov (1980) and Sayers and Kachanov (1991) crack-influence parameters
are ideally suited to analyzing the role of fracture mechanics in producing anisotropic
elastic constants for aligned fractures in a reservoir exhibiting VTI or HTI symme-
try. When this approach is combined with poroelastic analysis through the use of
Skempton’s coefficient [Skempton (1954), see also Berryman (2007)], it becomes com-
paratively easy to analyze a wide range of complicated situations that may raise in
reservoir analysis, such as trying to deduce whether the fractures are dry/drained,
or fluid-saturated/undrained. Skempton’s coefficient B introduces a single parameter
that varies from 0 to 1 as fluid properties change from being negligible to being very
strong influences on the fracture compliance – and therefore on the Thomsen seismic
parameters.

Another important observation from the modeling presented is that the Thomsen
weak anisotropy formulation is valid for crack densities up to about ρc ' 0.05, but
should be replaced by more accurate approximations, or (better yet) exact calculations
whenever possible if the crack density is much above 0.05. When the crack density is
ρc ' 0.1, or higher, then higher accuracy approximations are essential. Conversely, if
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the crack density ρc estimated from seismic data using the weak anisotropy formulation
is in fact larger than ρc ' 0.05, one conclusion we might reach is that a more accurate
method is required both to verify and properly quantify the result.
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