Maximum entropy spectral analysis

James G. Berryman

ABSTRACT

A review of the maximum entropy spectral analysis (MESA) method for time
series is presented. Then, empirical evidence based on maximum entropy spectra
of real seismic data is shown to suggest that M = 2N/In2N is a reasonable
a priori choice of the operator length M for discrete time series of length V.
Various data examples support this conclusion.

INTRODUCTION

When analyzing seismic traces, it is often useful to know what frequencies are present
in the data. Filtering and smoothing of data should be done with knowledge of
the frequency content. In the standard approach to spectral analysis, the Fourier
transform of the trace (amplitude spectrum) is computed. This approach is quite
reliable for long data sequences (1000 or more data points) and is satisfactory for
somewhat shorter sequences. Unfortunately, this technique becomes unreliable for
very short time samples due to the increased importance of end effects: (a) the
resolution of true peaks in the spectrum becomes poor and (b) spurious peaks may
be introduced because of the implicit (and incorrect) assumption often made that the
known data sequence is repeated periodically in time.

A different approach to spectral anaysis was introduced into the geophysical liter-
ature by ?. His idea was to obtain an estimate of the power spectrum (square of the
amplitude spectrum) by maximizing the spectral entropy with the known autocorre-
lation values as constraints. In principle, this approach should give a power spectrum
that is consistent with the available information, but maximally noncommittal with
regard to the unavailable information. It turns out that the resulting mathematical
problem can be solved exactly using linear matrix theory. In fact, the method re-
quires computation of the minimum phase deconvolution operator [also known as the
“prediction error filter” (?)], which has received much attention in the geophysical
literature. The power spectrum is then given by the square inverse of the operator’s
Fourier transform. Burg’s method is known as maximum entropy spectral analysis
(MESA) and is closely related both to deconvolution and to autoregressive analysis
of stationary random time series.

The method of computing the spectrum in MESA can be easily understood in
terms of filter theory. If we apply a prediction error filter to an input time series, the
output will be a white spectrum. It is well-known that the spectrum of the output is
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the spectrum of the input times the spectrum of the filter. Since a white spectrum is
constant, an estimate of the input spectrum is given by the inverse of the spectrum
of the prediction error filter.

MESA has one principal advantage over the standard Fourier transform method
of spectral analysis: resolution of peaks in the power spectrum is enhanced for short
data sequences. MESA has two principal disadvantages: (a) computation time is
increased (substantially for long data sequences) and (b) the best choice of for the
operator length is not known (poor choices can give misleading results for short data
samples). A possible solution to this second problem is discussed in the section on
Choosing the Operator Length.

At least two other approaches to spectral analysis are possible. (a) The maximum
likelihood method or MLM ? has been shown by ? to be the inverse of the arithmetic
average of inverse maximum entropy spectra of increasing operator length. Thus,
MLM weights the strongest peaks of MESA the least and cannot give very good
resolution. (b) Using the terms of stochastic theory (?), the ordinary power spectrum
assumes that the underlying process is a moving average (MA) process. Using MESA
can be viewed as being equivalent to assuming the process is autoregressive (AR). In
fact, a discretely sampled geophysical time series is most likely to be a combination of
the two, namely an autoregressive-moving-average (ARMA) process. It is possible to
estimate the spectrum under the ARMA assumption; however, a substantial increase
in computation time is required (over MESA), while the resolution of peaks should
remain nearly the same.

A brief discussion of the theory and practice of MESA has appeared previously
in 7. An expanded version of this account is given in the following pages. The work
presented here leads to the conclusion that for short time series MESA may well be
a useful tool, and that MESA is probably the best available alternative to standard
methods for such short data processing problems.

THE VARIATIONAL PRINCIPLE

Given a discrete (possibly complex) time series { X7, ..., Xx} of N values with sam-
pling interval At (and Nyquist frequency W = 1/2At), we wish to compute an
estimate of the power spectrum P(f), where f is the frequency. It is well known that

2

P(f)= lim — ZX exp (i2w fnAt)| = f: R, exp (i2w fnAt), (1)

N—oo N
n=-—00

where the autocorrelation function R is defined by (for n > 0)
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Now suppose that we use the finite sequence {X;} to estimate the first M auto-
correlation values Ry, ..., Ry—1. (Methods of obtaining these estimates are discussed
in the section on Computing the Prediction Error Filter.) Then, ? has shown
that maximizing the average entropy (see Appendix A for a derivation)

1 w
h= g7 /_ Wln 2W P(f)] df, (3)

subject to the constraint that (1) is equivalent to extrapolating the autocorrelation
R,, for |n| > M in the most random possible manner.

Doing the math, we find that

oh Y AL . /2 for |n| <M
SR W/_WP (f)exp (i2m fnAt)df = { 0 for |n| > M. (4)

The N's are Lagrange multipliers to be determined. That the variation of h with
respect to R, for |n| > M should be zero is the essence of the variational principle.
The value of h is then stationary with respect to changes in the R,’s, which are
unknown. We can infer from Equation (4) that

M-1

PNy =) wexp(—i2rfnAt). (5)

n=—(M-1)

Making the Z-transform to Z = exp (—i2w fAt), Equation (5) becomes a polynomial
of the complex parameter Z:

P =) a2 (6)

Since P is necessarily real and nonnegative, Equation (6) can be uniquely factored as

ZamZm ZCLZZ*" ZanZ"

m n n

2

P7Yf) = 2WE;} = 2WE;} : (7)

with ag = 1. The first sum in (7) has all of its zeroes outside the unit circle (minimum
phase) and the second sum has its zeroes inside the unit circle (maximum phase).

Fourier transforming Equation (1), we find that

Rn:/_ P(f)exp (—i2m fnAt)df. (8)

w

Substituting (7) into (8), we find (after a few more transformations) that R, is given
by the contour (complex) integral

Ey j{ A
R, = - dz. 9
210 J 7121 > amZm|? 9)
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The integrand of (9) can have simple poles inside the contour of integration at Z = 0
and at any zero of the maximum phase factor. The poles for Z # 0 can be eliminated
by taking a linear combination of Equation (9) “for various values of n.” Using the
Cauchy integral theorem, we find that

A E,, for n=0
ZCLR”J_Q_M]{Z Y apZm Sazntl = { 0 for n>0, (10)

since ag = 1. Equation (10) and its complex conjugate for the a,, are exactly the stan-
dard equations for the maximum and minimum phase spike deconvolution operators
{af,} and {a,,}, respectively.

Notice that, if we define the N x N matrix Ty_; as the equidiagonal matrix of
autocorrelation values whose elements are given by

[TNfl]ij = Rij, (11)

then Equation (10) may be seen as a problem of inverting the matrix 7" to find the
vector {a}_y,...,1}. Equation (10) can be solved using the well-known Levinson
algorithm for inverting a Toeplitz matrix (7). Therefore, a power spectral estimate
can be computed by using (10) to find the a,’s, and (7) to compute the spectrum.

One gap in the analysis should be filled before we proceed. That the variational
principle is a stationary principle (i.e., dh = 0) is obvious. That it is truly a maximum
principle however requires some proof. First note that the average entropy h computed
from substituting (7) into (3) is exactly

1
h= 5 Ey. (12)

This fact can be proven by writing (3) as

2h=InBy +YLflnZx L
o Lém(Y anZ’E% , (13)

The first integral in (13) vanishes identically as is shown in Appendix B. The second
integral vanishes because its argument is analytic for all |Z| < 1 except for Z = 0,
and the residue there is Inay = 0. The third integral can be rewritten as

1 A Mg A
1 ( *ZM*’H)—:I —7{1 774 14
7 P (2 7 MOJF;M n )7 19

where the Z’s are the M — 1 zeroes of the maximum phase factor (|Z] < 1). Each
of the integrals on the right side of (14) vanishes because of the identities proven in
Appendix B.
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For small deviations from the constraining values of R,,, and from the values of
R,, computed from (8) once Py(f) is known, we can expand h in a Taylor series:

M—-1 [e%s)
1 .
h = 51n Eu + . E(M ) AT — E_ Hypn . (15)

The r,’s are small deviations in the R,’s. The \,’s are defined by (4). The matrix
elements of H are given by

5h Z” m
H,., = d , 1
R, IR AW / / (16)
with Z = exp (—i2nw fAt). H is obviously Hermitian and is seen to be positive definite
because | Z |2
’Um -m
ZHanmU 4W/ df >0, (17)

where {v,} is an arbitrary complex vector and the equality in (17) holds only when
{v,} is identically zero.

The result (17) is sufficient to prove that h is not only stationary, but actually a
maximum.

The analysis given in this section has at least two weak points: (a) For real data,
we never measure the autocorrelation function directly. Rather, a finite time series
is obtained and an autocorrelation estimate is computed. Given the autocorrelation
estimate, an estimate of the minimum phase operator must then be inferred. A
discussion of various estimates of the autocorrelation is given in the next section
on Computing the Prediction Error Filter, along with a method of estimating
the prediction error filter without computing an autocorrelation estimate. (b) Even
assuming we could compute the “best” estimate of the autocorrelation, that estimate
is still subject to random error. The probability of error increases as we compute
values of R,, with greater lag n. Since there is a one-to-one correspondence between
the R,’s and the a,’s, the length of the operator can strongly affect the accuracy of
the estimated MESA power spectrum. A method of estimating the optimum operator
length for a given sample length N will be discussed in the subsequent section on
Choosing the Operator Length.

COMPUTING THE PREDICTION ERROR FILTER

When the autocorrelation values Ry, ..., Ry—1 are known, Equation (10) is a linear
set of M equations for the M unknown aj,’s. On the other hand, if a prediction
error filter {a,,} and prediction error E,, are known, Equation (10) together with (2)
forms a linear set of equations that could be solved for the R,,’s. Thus, there exists a
one-to-one correspondence between the prediction error filter and the autocorrelation
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function. This relationship is exploited by ? in his algorithm for computing the
minimum phase operator.

The autocorrelation function defined by (2) requires an infinite series, yet it can
only be estimated from a series of finite length N. Given the data set {X1,..., Xn},
a reasonable estimate of R, for large N is given by

N—n
1 *
R, = ¥ mgl X Xmin for 0<n<N-—-1 (18)

This estimate has at least two shortcomings: (a) Conceptually, the autocorrelation
should be an arithmetic average of the N —n lag products in (18). The true arithmetic
average is (for n > 0)

R, =
"TN

1 = N

_an:leXmM ~ R (19)
Equation (19) might be used as the autocorrealtion estimate instead of (18). Unfor-
tunately, this is seldom possible because the Hermitian Toeplitz matrix T defined in
(11) is not always nonnegative definite when the definition (19) is used (7). A stable
operator {a,,} cannot be found if 7" is not nonnegative definite. We conclude that
(19) is not a satisfactory estimate of R,,. (b) Suppose for the moment that the matrix
T computed using (19) happens to be positive definite. Then each estimated R/, is
being computed from only N — n measurements of the n-lag product, whereas Ry is
estimated from N measurements of the zero-lag product. From measurement theory;,
it is clear that the uncertainty increases approximately as (N — n)_%. In fact, this
increase in the uncertainty of R,, is unavoidable regardless what choice of estimate
for R, we use as long as N remains finite. One might try to alleviate this problem
by using periodic boundary conditions, so that

N
]' *

and
Xm+N = Xm (21)

However, this approach merely trades one problem for another one. The periodic
assumption introduces spurious peaks into the spectrum by making unfounded as-
sumptions about time series behavior off the ends of the data. Although nevertheless
a fairly common approach, this method really cannot improve the accuracy of the
computed R,’s for seismic traces having typical lengths.

We conclude that, if an autocorrelation must be computed, then Equation (18)
should be used. However, ? has observed that, in order to compute the maximum
entropy spectrum, all that is required is an estimate of the minimum phase decon-
volution operator. If this estimate can be computed without first estimating the
autocorrelation values, then so much the better.
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Suppose an estimate of the operator length M is known (ag = 1 for M = 1). How
can the operator length be increased from M to M + 17 Note that by definition the
forward prediction error is given by

frm(M) =" aj(M)Xipn—; for 1<i<N-—M, (22)

and the backward prediction error is

M-1
bi(M) = aj(M)Xiy; for 1<i<N-—M. (23)
=0
Similarly, we have
M
firrr (M +1) = Z%(M + D) Xitm41-, (24)
=0
and
M
bi(M +1) = aj(M+1)X,4;, (25)

]:

which are the linear combinations of (22) and (23) given by

firnra(M + 1) = firprai(M) + Chryabi(M) (26)

and

bi(M +1) = bi(M) + Cypyr firrr 12 (M). (27)
Assuming the value of Cj/11 is known, (22)—(27) can be used to show that the recur-
sion formulas for the a’s are:

CL()(M + 1) = 1,
ai(M+1)=a;,(M)+ Cyray,_;(M) for 1<i<M-—1, and (28)

Equation (28) is exactly the recursion relation for a minimum phase operator when
|C;| < 1 for all i < M + 1. Thus, estimating the a’s reduces to estimating the C’s. A
criterion for choosing Cj;; is still required.

? suggests that one reasonable procedure is to choose the Cj/y 1 that minimizes
the total power of the prediction errors. Setting

N—-M-1
d : M+ D%+ |b; (M +1)]?] = 2
o 2 [ (M + DI + (M + 1] = 0. (29)
M+1 i=1

the estimate becomes

o 2> 05(M) fixm (M)
vt = =S5 ODF + [0 G0 (30)
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Substituting (30) for Cj/4; into the total power, it is not difficult to show that

0 <32 [ firmrn (M + 1))+ [b(M + 1)[7]
= 5 2 [ firar (M) + 16;(M)[] (1 — [Crrya?) (31)
=By (1= |Cyus1l?) = Ensa,

where Ey = Ry. Equation (31) guarantees that |Cj/.1| < 1, as is required for a to be
minimum phase.

Finally, the algorithm for computing the set {a,,} is this: (a) Compute the C’s
using Equation (30). (b) Store the C’s until the desired operator length M is attained.
(c) Compute the a’s from the C’s using the recursion (28). This algorithm (simplified
for real data) is the one used in the maximum entropy processor for MESA that I
developed.

It is important to notice before proceeding further that the Burg algorithm has
been constructed to remove the first difficulty discussed earlier in computing R,.
All the information {X,} has been used; the operator is minimum phase; but no
explicit averaging of lag products was required. On the other hand, this algorithm
does nothing to alleviate the second problem we discussed. It is still inherent in the
finite time series problem that the numbers we compute become less reliable as the
operator length increases.

A major difficulty in applying MESA is that there is no built-in mechanism for
choosing the operator length. From the derivation of (5), it is clear the operator length
should be N if the first N autocorrelation values are known precisely and unknown
otherwise. However, the autocorrelation function has (normally) been estimated from
the time series data and its estimated values are inaccurate for n close to N. How to
choose a practical operator length M satisfying 1 < M < N is therefore the subject
of the next section.

CHOOSING THE OPERATOR LENGTH

Numerous procedures for choosing the operator length have been discussed in the
literature. In this section of the paper, first a discussion of the general principles
behind the operator length optimization is given. Then several of the most prominent
practical methods in use are critically reviewed. Finally, a new criterion is derived
which is easier to apply and believed to be more appropriate for use in MESA.

A mean square error criterion

One theoretically sound procedure for choosing a truncation point is based on a
mean square error criterion (?). Suppose that Py (f) is our M-th estimate of the
true spectrum P(f). Then we might wish to mimimize the square error

E[Py(f) = P(N))* = Var[Py(f)] + B*[Pu(f)], (32)
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where F is expectation, Var is variance

Var(Py) = E(Py;) — E*(Pu), (33)
and B is bias

B[Py (f)] = P(f) = E[Pu(f)]- (34)
In general, as M increases, the bias decreases while the variance increases. Thus, (32)
will have a minimum for some value of M.

This criterion is not of practical value unless it is possible to obtain reasonably
good estimates of the variance and bias of Py;. This problem is not easily solved, but
satisfactory approximate solutions can probably be found. However, this approach
will NOT be pursued here.

This notation has been introduced to help the reader understand why one should
expect such an optimum operator length to exist. Spectral estimates are nearly always
designed to decrease the bias as M increases. (MESA is clearly designed this way.)
However, when the bias is small, the variance is a measure of the ragged oscillations
Py (f) makes around P(f). Since most people prefer to study a smooth spectrum, a
balance between variance and bias is our goal.

The common criteria

A number of fairly simple criteria are commonly discussed in the literature. Some of
these will be reviewed here.

? suggest monitoring the magnitude of Cy; to determine the operator length
empirically. Their criterion is to choose that M value for which C), first satisfies
|Cr| << 1. The argument is that C; computed from (30) is “a partial correlation
coefficient,” measuring the correlation between the forward and backward prediction
errors. When |C)y/| ~ 1, the correlation is high. When |C);| << 1, the correlation is
low — presumably because most of the predictable information in the data has been
removed by the filter. However, they point out that this procedure fails to produce
reliable results for series not purely autoregressive in character. Numerical studies of
the author on real seismic traces have shown the fluctuations in |C);| to be too great
for this approach to give a reliable criterion.

? review a number of possible approaches. The two which are probably easiest to
apply are the F-test and the relative error coefficient test: (a) The F-test monitors Fyy
and checks whether the change in going from F,; to Fj;y is statistically significant
according to some predetermined criterion. This method is limited by computer round
off error for large data samples. It is also limited for small data samples because the
predetermined criterion of statistically significant change may very well be met for
all M < N. (b) The relative error coefficient test amounts to finding the minimum
of the modified prediction error

N

EM:N—M

B (35)
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The prediction error is modified in this manner to account for the decrease in the
degrees of statistical freedom for the time series as the operator length increases.
Clearly, E); decreases whereas the multiplicative factor increases as M increases. E;,
will therefore exhibit a minimum. A number of such minima can (and do) occur in
practice. The parameter E', is easily monitored while computing the C),’s using the
Burg algorithm. Results obtained using this approach have been found satisfactory
for moderate to large data samples. For small N, the variations in both factors in
(35) can be dramatic and the results become less reliable.

? review a number of alternatives and conclude that the final prediction error
(FPE) criterion of ? is an objective basis for choosing the operator length. This
criterion monitors N M

(FPE)y = - i B, (36)
Like (35), this expression has a minimum since E); decreases monotonically while
the multiplicative factor increases monotonically with M. In fact, (35) and (36) have
very similar behavior, the principal difference being that “when F,, is sufficiently
smoothly varying,” the minimum of (36) always occurs for smaller M values than
that of (35). For short time series with sharp spectral lines, ? found that FPE did
not give a clear minimum. Both (35) and (36) suffer from this same ambiguity. For
data samples of length 20 < N < 40 in their work, they found that M = N/2 was a

satisfactory choice. This choice is also confirmed for short time series by the work of
o

Although each of these criteria has its merits, none of them is really satisfactory for
a data sample of arbitrary length. Furthermore, none of them has been derived in the
spirit of MESA | i.e., with no assumptions about the data off the ends of the sample.
Much has been said about the application of optimum criteria from autoregressive
analysis to MESA (7). But an important point should be made: The fact that an
autoregressive process has the maximum entropy is interesting but irrelevant. The
spectrum of an arbitrary time series (whether MA, AR, or ARMA of any order) can
be estimated using MESA. But, making any assumption about the nature of the
stochastic process that generated the series is contrary to the spirit of MESA.

Thus, it seems that the choice of operator length should be made without assump-
tions concerning the nature of the stochastic process involved. The argument in the
next subsection is based only on information theory, and measurement theory. It is
believed to free of these inconsistencies.

An information theory criterion

Suppose we have found an estimate of the prediction error filter of length M using
the autocorrelation estimates Ry, ..., Ry/_1. In order to increase the operator length
to M + 1, additional information is needed: namely, R);. A quantitative measure of
the information in the operator is easily obtained from the average entropy, which we
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know is given by h,, = In E)y. Using (31), notice that

1 1
w1 = g I Bt g I (1= [Chal’) < fiy. (37)

Thus, the entropy decreases as the operator length increases. The bound information
(Brillouin, 1956) I,; in the power spectrum is therefore given by

1
Iy = ~My = —5 By, (38)

which obviously [since, from (37), we have —h}, < —h), ] increases monotonically
with M as it should.

If the autocorrelation values Ry, ..., R, 1 were known precisely, bound informa-
tion would continue to increase by using all the estimates and letting M — N — 1.
But the R’s are not precisely known. The finite number of measurements used to
compute the R estimates means that only N — n measurements of R, were made,
whereas N measurements of Ry were made. The quality of information contained in
Ry is correspondingly higher than that in R,. A quantitative measure of this change
is therefore required.

For the moment, take Equation (19) as our estimate of the autocorrelation. Then,
assuming that the X;’s are normally distributed, ? shows that

Var(X; Xy, — R,) = R2+ R%. (39)

Since |Ry| > |R,|, for all n, and generally |Ry| >> |R,|, for large n, the variance (39)
can be approximated by the constant R%. Viewing R, as a measured quantity (which

in fact it usually is not) and using standard arguments from measurement theory, we

find that .

R
R, = > X X £ 0.67——

VN —n’

with fifty percent confidence if R, is also normally distributed.

N —n (40)

The probable error in R, increases like (N —n)~'/2 as n — N — 1. We imagine

that the factor (N — n)~'/2 is proportional to the probability p, that an operator
computed from Ry,..., Ry is a worse estimate of the true opertor than was the
operator computed using only Ry,..., R, ;. Since we know empirically that the
estimate worsens as M — N with probability one, the P(n) are normalized by writing:

=

P(n)=a(N —n)~ (41)

and

2

-1

N
1= P, ~ a/ (N = n)"2dn = 2v/Na. (42)
0

3
Il
o

Equation (42) determines the value of «, for the data that are available.
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The average entropy of measurement error associated with an operator of length

M is Mt
Yy =—=>,._o P(n)lnP(n)
~ — fOM P(n)In P(n)dn.

The second line of (43) is valid for large N. The value of hj; increases as M increases

in agreement with our intuition. It is well known that the largest average entropy for
N probabilities is In N. Letting M — N in (43), we find

2N
hly =1n (—) <InN, (44)

(43)

e
which is consistent.

Combining (38) and (43), the average information in the power spectrum can be
quantitatively estimated using the expression

1 M

Iy =— (W, +1Yy) = —Eln Ey +/ P(n)In P(n)dn. (45)
0

The first term increases while the second term decreases with increasing M. A max-

imum will occur for some value 1 < M < N. The spectrum with the maximum

information is the optimum spectrum; the value of M that maximizes (45) is the

value we are seeking.

The values of (45) can be monitored continuously while the operator is being com-
puted. However, an approximate analytic solution for the maximum can be found
without making very restrictive assumptions on the behavior of F;;. Numerical stud-
ies of the author on real seismic data have shown that Ej; can be represented ap-
proximately by

Ey o M7, (46)

where 3 is a slowly varying function of M. Generally, 3 is in the range 2 > § > %,
with § ~ 2 for small M and § — % for large M. Leaving [ arbitrary for the moment,
substituting (46) into (45), and finding the stationary point, we have

gM‘l =—P(M)In P(M). (47)
Using (42) for a, Equation (47) can be solved graphically for M. The solution for
0 = 2 is plotted as the solid line in Figure 1.

An analytic bound on M can be obtained from (47) by noting that the right-hand
side of (47) increases with M, so its minimum value occurs when M = 0. Thus, M

has the very simple bound:
N

In2N"
Since we have stated already that f < 2 in general, a useful bound on M for all N
appears to be

M<p (48)

2N
< .
— In2N

(49)
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Figure 1 compares the values of M obtained from (47), from (48), and from M = N/2.
The value 8 = 2 is chosen because of the empirical evidence mentioned above and
also because

p

Byl < GIM <IN (50)

is valid for all M < N only for f# < 2. The comparison with M = N/2 is of
interest because various authors (including this one) have often found this value to
be satisfactory for small V. The derivation given above is strictly valid only for large

N. But the estimate (49) interpolates well between these extremes as is seen in Figure
1.

Because the correspondence between P(n) and (N — n)~2 has been established
by this heuristic argument, the results of this section of the paper should not be
interpreted as rigorous estimates of the optimum operator length. Nevertheless, I
believe that (47) and (49) are reasonable estimates of the operator length. The
derivation was not founded on any assumptions about the type of stochastic process
generating the time series. Hence, these estimates are definitely not intended to be
an estimate of the order of some underlying autoregressive process. Rather, (49) is an
upper bound on the operator length that will extract the most reliable information
for a data sample of length N. For example, suppose the time series {X7,..., Xy}
is a representation of an autoregressive series of order L < M. Then computing the
operator of length L should give the most efficient estimate of the spectrum; but
computing the additional (M — L) terms should do little to alter that spectrum.
Next, suppose the time series is a representation of an AR series of order L > M.
The arguments above indicate that we probably cannot obtain a really good estimate
of the operator (or the spectrum), because our data sample is simply too small. The
best we can hope to do is to compute the operator of length M. In either case,
when additional information about the underlying stochastic process is lacking, the
best operational decision that can be made appears to be choosing M according to
Equations (47) or (49).

EXAMPLES

One good way to study various choices of operator length is to use unexpanded
checkshot data. Two traces of this type are shown in Figure 2. By choosing a large
window, we obtain a good estimate of the spectrum of the pulse. Then, by choosing
smaller and smaller windows which pinch down on the pulse, we should expect the
positions of the major peaks to remain unchanged while resolution becomes more
difficult.

The first column of Figure 3 gives the ordinary power spectrum of Figure 2(a)
computed using five different length windows. In seconds, the windows are from top
to bottom (0.0,2.0), (0.1,0.5), (0.15,0.45), (0.15,0.25), and (0.175,0.225). No taper is
included in the Fourier transform of the trace. We see that the resolution is quite
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Figure 1: Operator length M as a
function of data sample length N
for three different operator length
estimates. The solid line is the so-
lution of Equation (47). The dash
line is M = 2n/In(2N). The dot-
dash line is M = N/2. [NR]

OPERATOR LENGTH M

1 1
10 100 1000

SAMPLE LENGTH N

good for the two second window, but the resolution gets progressively worse until it
is almost nonexistent for the 50 ms window.

In contrast, the first column of Figure 4 gives the maximum entropy spectrum of
Figure 2(a) with the operator length M = 2N/In2N. We see that the two second
window MESA spectrum is essentially the same as the ordinary spectrum. However,
as the number of data points decreases from 500 (for a two second window) to 13 (for
a 50 ms window), we see that MESA is still able to resolve the peaks at 10 Hz and
30 Hz.

The first column of Figures 5-7 give examples of the results obtained from MESA
for the trace of Figure 2(a) with other choices of operator length. Choosing M = N/2
in Figure 5 gives acceptable results for all but the smallest window where the 10 Hz
peak has moved towards 20 Hz. Also, the computation time was increased for the
longest three windows. Choosing M = N in Figure 6 demonstrates the fact that
choosing a longer operator does not lead to improved results. Here the single peak
at 10 Hz has been split into two spurious peaks for the shortest two windows. The
longest three windows give very spiky spectra and (although they properly indicate
where the spectrum lies) they do not give useful power spectra. This Figure shows
how the variance in (32) can dominate the bias and produce useless power spectra.
Finally, we choose M = N/In N in Figure 7 to demonstrate the effect of choosing
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a slightly different functional form for M. The spectrum of Figure 4 mimics that
of Figure 3 better than Figure 7 in all cases except possibly for the 100 ms window
where Figure 7 gives a stronger peak at 30 Hz. For the smallest window, Figure 7
does not have its peak at 10 Hz as it should.

Figure 2(b) is also an unexpanded checkshot trace which is translated in time from
that in Figure 2(a). The second columns of Figures 3-7 were computed as before,
but the input trace was Figure 2(b).

As a final note, we wish to point out that it has been observed in general that
M =2N/In2N is in fact an upper bound on the operator lengths one would obtain
from either (35) or (36). For example, using the trace of Figure 2, both the relative
error coefficient test and the FPE have a series of minima for 120 < M < 135
with an absolute minimum at M = 132 for both criteria. For comparison, we find
M = 145 for N = 500 using (49) and M = 127 using (47). It is encouraging that the
arguments of the subsection on An Information Theory Criterion give estimates
for the operator length so close to those of Equations (35) and (36) without the added
complication of monitoring a performance parameter.

DISCUSSION

As with many procedures in seismic data enhancement and analysis, computation
of power spectral estimates with MESA can be more art than science. Considerable
insight into the stochastic processes involved and experience with choices of operator
length is required before MESA can be considered a standard processing tool. The
work summarized here was intended to eliminate some of the uncertainty in applying
MESA by producing a reasonable upper bound [Equation (49)] on the operator length.
In many cases, this upper bound will itself be a good choice for the operator length,
since it often gives values comparable to those of other methods without requiring
performance parameter monitoring.

In conclusion, I recommend that anyone wishing to obtain high resolution power
spectra for seismic traces should examine both maximum entropy spectra and ordi-
nary spectra. When both methods give peaks approximately at the same frequencies,
we may be confident that the maximum entropy method is giving higher resolution
of true modes in the spectrum. If the MESA peaks are not reasonably close to the
peaks obtained by the better understood Fourier transform method, we should give
additional and careful consideration to the proper choice of the operator length for
the MESA spectrum.

ACKNOWLEDGMENTS

I thank Robert H. Stolt for helpful discussions and Jerry A. Ware for encouragement.
I also thank Bob Clapp for help with the preparation of the final figures.

SEP-13/



Berryman 16 MESA

TRACE
A==
==

(a) (b)

Figure 2: Two checkshot traces: (a): The first two seconds of an unexpanded check-
shot trace. The windows indicated in the Figure are repectively: (0.0,2.0), (0.1,0.5),
(0.15,0.45), (0.15,0.25), and (0.175,0.225) in seconds. (b) Same as previous case for
a slightly different trace. [NR]
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Figure 3: The ordinary power spectrum of the traces in Figure 2 as a function of fre-
quency (0-60 Hz). Windows from top to bottom are (0.0, 2.0), (0.1,0.5), (0.15,0.45),
(0.15,0.25), and (0.175,0.225) in seconds. [NR]
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L

Figure 4: The maximum entropy power spectrum of the traces in Figure 2 as a
function of frequency (0-60 Hz) with operator length M = 2N/In(2N). Windows
same as in Figure 3. Windows from top to bottom are (0.0, 2.0), (0.1,0.5), (0.15,0.45),
(0.15,0.25), and (0.175,0.225) in seconds. [NR|]
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Figure 5: The maximum entropy power spectrum of the traces in Figure 2 as a
function of frequency (0-60 Hz) with operator length M = N/2. Windows same
as in Figure 3. Windows from top to bottom are (0.0,2.0), (0.1,0.5), (0.15,0.45),
(0.15,0.25), and (0.175,0.225) in seconds. [NR]
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Figure 6: Same as Figure 5 with M = N. Windows from top to bottom are (0.0, 2.0),
(0.1,0.5), (0.15,0.45), (0.15,0.25), and (0.175,0.225) in seconds. [NR]
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Figure 7: Same as Figure 5 with M = N/In N. Windows from top to bottom are
(0.0,2.0), (0.1,0.5), (0.15,0.45), (0.15,0.25), and (0.175,0.225) in seconds. [NR]
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APPENDIX A

The following derivation of the relationship between entropy and power spectrum is
essentially the same as that given by ?. The derivation is included here for complete-
ness.

The entropy of N random variables X7, ..., Xy is given by

Hy = —/P(Xl, LX) eV P(X, . XN)]dYX = —2NIna — /Pln PaV X,

(A-1)
where P is the joint probability density and a is a constant with the same units as X.
The power spectrum P(f) computed from the autocorrelation values Ry, ..., Ry_1

depends only on the second-order statistics of the time series {X,,}. Therefore, the
given time series cannot be distinguished from a normal (Gaussian) process.

The joint probability density for a normal process with N variables of zero mean
is (using matrix notation, where X7 is the transpose of X)

1 1
P(X1,..., Xy) = [(27re)Ndet TN,l}  exp <—§XT T, -X) , (A-2)
where T_1 is the N x N Toeplitz matrix [see ?| given by Equation (11) and X is
the N-vector determined by X7 = (X;,..., Xy). Substituting (A-2) into (A-1), we
find ]
Hy = 3 In [(ZWe)N det TN,I] — 2N Ina. (A-3)

Setting the arbitrary constant a = (2me)"/* for convenience, Equation (A-3) then
becomes

1
HN = 5 In (det TN—l) . (A—4)

Since (A-4) necessarily diverges as N — 00, a better measure of the information
content of the series is the average entropy per variable given by

H
h= lim =Y = lim In(det Ty_;)"*" . (A-5)
N—oo N—oo
The eigenvalues {Ay, ..., Ax} of Tiy_; are real and nonnegative since T is Hermitian
and nonnegative definite. Furthermore,
det Tv_y =TI |\, (A-6)
SO
X
h=lim o ; In \;. (A-T7)

The Szégo theorem (77?) states that, if F' is any continuous function, then
i > PO = 5 [ W R (A
im — )= — : -
N—o0 N 1 2W W
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where, as before, W is the Nyquist frequency, P(f) is the power spectrum, and the
A’s are the N eigenvalues of Ty _.

Combining Equations (A-7) and (A-8), we find
n[2W P(f)] df, A-

which is the sought after result.

APPENDIX B

We need to compute the integral

1 [T ) PV. dz
%/_Wln lexp(i0) — Zp| df = —— 7|{Z| 11 n(Z - 2Zy) — 7 (B-1)

211

where P.V. stands for the principal value of the contour (complex) integral when the
logarithm’s branch cut is taken along the negative real axis.

First, note that

L exp(i6) — 2] do = - / Inexp(i0)d0 + — | n[L — exp(—i6)Zo] db.
2m J_, 2 J_. 2r ) .
(B-2)
The first integral on the right is just
L ' 0do =0 B-3
% . — Y ( - )

since the integrand is an odd function. When |Z,| < 1, the integrand of the second
integral on the right can be expanded in a convergent power series. Integrating term
by term, we find that

Z — eXp (inf) do = 0, (B-4)

since exp (inm) — exp (—inm) = cos(nm) + isin(nw) — cos(—nm) — isin(—nn) = 0 (the
two cosines cancel and the two sines both vanish individually for all integer values of
n). Thus, we find (B-1) is identically zero for all |Z,| < 1. In particular, it vanishes

when Z; = 0, so
PV dz
v 7{ mZx 2 . (B-5)
|Z|=1 zZ

211
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