
Lloyd and Viterbi for QC and auto-picking

Robert G. Clapp

ABSTRACT

Automatic picking and the QCing of these picks are crucial step in the velocity
analysis loop. In this paper I show that a modified version of Viterbi’s algorithm
can be an effective auto-picker when used interactively. In addition I show that
Lloyd’s algorithm can reduce densely auto-picked information to a representative
subset that simplifies the QCing process.

INTRODUCTION

To speed up the velocity analysis loop it is important to allow the computer to do as
much as work as possible, particularly in the human intensive picking portion of the
loop. As essential is an easy way to evaluate and modify (QC) these automatic picks.

Dynamic programming is an effective tool for finding a solution for certain types of
relatively small, non-linear problems such as semblance picking. In biology, dynamic
programming is used for pairwise alignment of amino acid sequences (Needleman
and Wunsch, 1970). In electrical engineering, it is used for error correction in wireless
communication and speech recognition (Hosom et al., 1999) among many other things.
We can also find examples of its use in geophysics. Kruse (1988) used dynamic
programming for signal correlation and trace interpolation. Kruse (1988) calculates
an error function based on the difference in instantaneous frequency between all points
along two signals. Dynamic programming is then used to find the error path with
the least energy. Liner and Clapp (2004) used dynamic programming for alignment.
Zhang (1991) used it for a starting solution when doing event picking.

Quantization is an important field in both electrical engineering and computer
graphics. In speech compression, it is important to accurately describe a signal in
as few bytes as possible. In image processing, it is often important to reduce the
number of colors in image with as little loss in image quality as possible. One family
of method often employed in quantization is based on Lloyd’s method (Lloyd, 1982),
an iterative technique that allows for variable rate quantization. For QCing automatic
picks, the ability to reduce densely picked functions to a smaller set of representative
points simplifies substantially the QCing process.

In this paper I use a dynamic programming technique to automatically pick sem-
blance gathers and reflectors. In addition, I show that quantization can be used to
represent a function by a subset of representative points.

SEP–134



Clapp 2 Picking

VITERBI

Dynamic programming, and specifically the Viterbi algorithm, offers a way to solve
certain classes of non-linear problems. It is useful for problems that can be thought
of as making one decision after another. To understand how it works, it is easiest
to start with our final decision. Our goal is to maximize our ‘score’ S of a series of
decision 1...n. Each decision has several potential outcomes (1...m). Our final score
is going to be based on some score we have calculated for all of our possible options
(called ‘states’) at j = n − 1, and the best score we can get from moving from all of
the possible states at n − 1 to all possible states at n. We can write the score as

S(i, j) = maxk=1...m[S(k, j − 1) + v(i, j, k)], (1)

where i is the given state and v(i, j, k) is the value obtained from moving from state k
to state i at decision j. The best series of decisions is then found by going backwards,
taking the state at each decision i that corresponding to the highest score.

In this most general form, the algorithm is quite expensive. The cost on the order
of n ∗m ∗m. For a large number of states the problem quickly becomes impractical.
The easiest way to reduce the cost is to limit the number of states that we must
search when moving from one decision to another.

For the interactive picking problem we are looking for the best path through a
series of points in 2-D. In this example I am requiring that the solution is single
valued along one axis (e.g. only one velocity at each time sample). I am looking
for the best path between my first and last picks along the single value axis. I form
an initial path by linear interpolation between the selected points. I am then going
to limit my search space so it is no more than x points away from the linear path
(limit the possible states of k). Figure 1 demonstrates this concept. The left panel
shows a semblance scan along with three selected points. The right panel shows the
semblance extracted along the path represented by the three points.

In term of equation (1) we have n decisions (the number of time samples between
the first selected point and the last selected point) with m states (2 ∗ d + 1 in size
where d is the search distance from the initial linear path.) Generally v takes the
form

v(i, j, k) = m(i, k) − p(j, k), (2)

where m is the semblance at a given location and p is a scalar that punishes jumps in
the selected semblance path. What is used for equation 2 can have dramatic effects
on the solution. For the applications discussed in this paper I defined p so that a
single sample jump was mildly punished with rapidly increasing penalty with larger
gaps. This has the effect of tending to create smooth solutions.

To further create a smooth path I only search in the range abs(j−k) < 5. Finally
to force the user selected points to be honored I modify m in a manner similar to
Harlan (2001). I add large values to m which has the effect of forcing the solution
through these points. Figure 2a shows the generated score matrix from the data

SEP–134



Clapp 3 Picking

Figure 1: The left panel shows a semblance gather overlain by three picks. The
right panel is the result of linearly interpolating between the picks and extracting
semblance along the resulting line. [ER]

shown in Figure 1b overlain by the traced back path through these points. The path
is calculated by finding the maximum in the first row and then searching for the
maximum within some range in the next row, proceeding to the bottom of the score
matrix. Figure 2b shows the path on the original data

Reflectors can also be auto-picked by this method. In the case of picking reflectors,
m becomes the correlation of the data along with an initial linear path. Figure 3
demonstrates the concept. The left panel of Figure 3 show the data with a set of four
points selected. The right panel of Figure 3 shows the path picked by the algorithm.

LLOYD

The concept of quantization originates in the field of electrical engineering. The basic
idea behind quantization is to describe a continuous function, or one with a large
number of samples, by a few representative values. Let x denote the input signal and
x̂ = Q(x) denote quantized values, where Q(·) is the quantizer mapping function.
There will certainly be a distortion if we use x̂ to represent x. In the least-square
sense, the distortion can be measured by

D =
n∑
i

(x − Q(x))2. (3)

SEP–134



Clapp 4 Picking

Figure 2: The left panel (A) shows the score matrix calculated using equation 1
overlain by the maximum tracked path. The right panel, B, shows the path overlain
on the original semblance display. [ER]

Consider the situation with L quantizes x̂ = (x̂1, x̂2, · · · , x̂L). Let the corresponding
quantization intervals be

Ti = (ai−1, ai), i = 1, 2, . . . , L, (4)

where a0 = min(x) and aL = max(x). The distortion function then becomes

D =
L∑

i=1

ai∑
x=ai−1

P (x)(x − x̂i)
2, (5)

where P (x) is the discrete version of the probability density function, or normalized
histogram (

∑
x P (x) = 1). To minimize the distortion function D, we take derivatives

of equation (5) with respect to x̂i, ai and set them equal to zero, leading to the fol-
lowing conditions for the optimum quantizers x̂i and quantization interval boundaries
âi:

âi =
x̂i + x̂i+1

2
, (6)

x̂i =

∑âi
x=âi−1

P (x)x∑âi
x=âi−1

P (x)
. (7)

A way to solve this coupled set of nonlinear equations is to first generate an initial
set {x1, x2, . . . , xL}, then apply equations (6) and (7) alternately until convergence

SEP–134



Clapp 5 Picking

Figure 3: The left panel shows the original with four seed points selected. The right
panel shows the result of using the Viterbi algorithm to pick the reflector. [NR]

SEP–134



Clapp 6 Picking

is obtained. This iteration is well known as the Lloyd-Max quantization algorithm
(LMQ). A common modification is to form

D(i) =
ai∑

x=ai−1

P (x)(x − x̂i)
2, (8)

and to remove ai where the distortion is small and possibly add as in regions where
the distortion is large. The resulting a locations is often much smaller than the initial
set of values.

The LMQ scheme is designed to find the best representation of a distribution,
which is not what I am trying to do in this instance. Instead I am trying to the
achieve the representation of y(x) with as few xi, yi points as possible. The twist
on the standard LMQ scheme is the replacement of P (x) in equation 5. Instead
of being the probability density function I construct an error from a background
piece-wise linear function. I first construct z(x) by linear interpolating between xi, yi

samples. I then calculate d(x) = y(x)−z(x)+min(y(x)), the error from the piecewise
linear background. Figure 4 demonstrates the methodology. Figure 4a shows a curve
with ‘*’ the initial xi, yi points and the resulting z(x) function. Figure 4b shows
the d(x) function constructed from y(x) and z(x). We now have something that
is approximating the shape of a probability density function except that it can be
positive or negative. To get around this problem I first

sn =
xi∑

i=xi−1

d(i), (9)

then if sn is positive I define P (x),

P (xi−1..xi) = d(xi−1...xi) + min(d(xi−1...xi)). (10)

If sn < 0 I define

P (xi−1..xi) = −d(xi−1...xi) − max(d(xi−1...xi)). (11)

As a result P (xi−1..xi) is always positive. Flipping the signs does not violate the
LMQ concept. What equation 7 is attempting to do is a local center of mass calcu-
lation. By applying equation 10 or 11 we are transforming our coordinate system to
obtain an accurate center of mass calculation. How accurate the curve is represented
is determined by the number of ai terms. In practice it is best to start with a dense
representation of ai to avoid local minima and then use the fitting criteria of equation
8 to eliminate points in regions with small deviations. Figure 5 demonstrates this
concept. The solid curve in Figure 5 is the original function. The three dashed curves
show different deviation criteria. With increasing accuracy an increasing number of
points are needed to represent the curve. In this example 2, 9, 28 and points are used.

SEP–134



Clapp 7 Picking

Figure 4: Panel (a) shows the
original curve (solid line); an ini-
tial set of a value, asterisks; and
the background, dashed, curve z.
Panel (b) shows the deviation d
from the piece-wise linear back-
ground. [ER]

Figure 5: The effect of modifying
the deviation criteria. In panel
(a) the solid curve in Figure 5 is
the original function. The three
dashed curves show three different
deviation criteria. The closer the
fit to the original curve the more
points that are needed for an ac-
curate representation. Panel (b)
shows the error in the fitting func-
tions. [ER]

SEP–134



Clapp 8 Picking

Extensions

As demonstrated in Clapp (2006); Tang and Clapp (2006) Lloyd’s algorithm is easily
extended to multi-dimensions. A dense two or three dimensional volume of picks
could be reduced to a few hundred or thousand points enabling a relatively easy QC
process.

CONCLUSION

Dynamic programming can be effective in automatically picking surfaces and sem-
blance. The method, in current form, is limited to 2-D, limits its applicability to
the surface picking problem. Lloyd’s algorithm offers a way to QC automatically
picked volumes. By replacing the probability distribution function with an error mis-
fit function, Lloyd’s algorithm can be used to effectively characterize a dense series
to a sparser set of picks while maintaining its essential character.

REFERENCES

Clapp, R. G., 2006, A modified lloyd algorithm for characterizing vector fields: SEP-
Report, 124, 249–256.

Harlan, W., 2001, Automatic moveout picking: WWW.
(http://billharlan.com/pub/paper/autopick.pdf).

Hosom, J.-P., R. Cole, and M. Fanty, 1999, Speech recognition us-
ing neural networks at the center for spoken language understanding:
http://cslu.cse.ogi.edu/tutordemos/nnet recog/recog.html.

Kruse, C., 1988, A new method of nonlinear signal correlation using the instantaneous
spectrum: 68th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,
1321–1323.

Liner, C. L. and R. G. Clapp, 2004, Nonlinear pairwise alignment of seismic traces:
Geophysics, 69, 1552–1559.

Lloyd, S. P., 1982, Least squares quantization in pcm: IEEE Transactions on Infor-
mation Theory, 127–135.

Needleman, S. and C. Wunsch, 1970, A general method applicable to the search for
similarities in the amino acid sequence of two proteins: J. Mol. Biol., 48, 443–453.

Tang, Y. and R. G. Clapp, 2006, Lloyd’s algorithm for selecting reference anisotropic
parameters during wavefield extrapolation: SEP-Report, 124, 257–270.

Zhang, L., 1991, Automatic picking and its applications: SEP-Report, 70, 275–292.

SEP–134


