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ABSTRACT

Most conventional marine reflection seismic data lack sampling of near offsets. We
address this problem by interpolating data with a nonstationary prediction-error
filter (PEF) that is first estimated from fully-sampled training data and then is
used to interpolate missing data to produce an interpolated output. These train-
ing data need not be perfect, and may differ in amplitude and phase but should
contain the local multi-dimensional amplitude spectra of the data we wish to
recreate. We generate pseudo-primary data by crosscorrelating multiples and
primaries in the recorded data. These pseudo-primary data can be generated at
missing near offsets, but contain many artifacts, so it is undesirable simply to
replace the missing data with the pseudo-primaries. Fortunately, many of the
problems with the pseudo-primaries do not influence PEF estimation, so a de-
sirable PEF can be obtained from these data, and then used to interpolate the
missing near inline offsets to produce a result that is superior to direct substitu-
tion of the pseudo-primaries into the missing offsets.

INTRODUCTION

In most data sets, after the over-sampled time axis, the inline receiver axis is the most
densely-sampled axis; the receivers are attached to a single cable so the sampling is
dense and regular along this cable. Since both the air-gun source and receiver cable
are usually towed by the same boat, the maximum inline offset, the largest inline
distance between the source and a receiver, is limited by the length of the cable.
The near end of the receiver cable is not at the source for obvious reasons; instead
the receiver cable is towed a fixed distance behind the source. This distance, the
inline near-offset, is consistent throughout the survey and is typically several times
the inline receiver sampling interval. An example of a single shot from a 2D marine
survey showing this near-offset gap is in Figure 1.

Near-offset traces are particularly valuable. Many methods attempt to recreate
zero-offset data from larger offsets; standard multiple-removal techniques, such as
surface-related multiple elimination (SRME) (Verschuur et al., 1992), require zero-
offset data. Moveout differences between primaries and free-surface multiples are
slight at these near-offsets thus compromising the performance of radon-based multi-
ple removal algorithms that discriminate based on differential moveout.
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Figure 1: A single shot profile
from a 2D Gulf of Mexico seismic
survey. The nearest offset is at
330 ft for a near-offset gap of four
traces. [ER]

There are many methods that could be used to reconstruct this near-offset gap. A
simple way of recreating the missing near offsets is to replace the missing offsets with
an NMO-corrected trace from the nearest offset. More sophisticated radon-based
methods (Sacchi and Ulrych, 1995; Trad et al., 2002) are commonly used, as are
Fourier-based methods (Liu and Sacchi, 2001; Xu et al., 2005). These methods all use
existing data recorded adjacent to the missing near offsets to create the missing data,
so the performance degrades as the gap increases in size, common in undershooting
situations.

Another approach to generating data at the missing near offsets starts by first
creating pseudo-primary data. Pseudo-primary data are created by crosscorrelating
every trace with every other trace within a shot (Berkhout and Verschuur, 2003; ?).
The free-surface multiples correlate with the primaries at lags comparable to times
when a primary reflection would arrive if one of the receiver locations was the source.
Since the receivers now act as virtual sources, near-offset traces can be generated
by crosscorrelating traces from nearby receivers, and zero-offset traces by autocor-
relating a single trace. These crosscorrelated traces contain many spurious events
from correlations other than those between primaries and free-surface multiples or
between free-surface multiples and higher-order free-surface multiples, so that the
pseudo-primary signal-to-noise ratio for a single crosscorrelation is poor. This can be
improved by summing crosscorrelations of the same receiver location pair for many
source positions, so the desired pseudo-primary correlations sum while the other cor-
relations interfere destructively. The resulting pseudo-primaries are data that honor
the kinematics of the recorded data, but also contain noise, have a different amplitude
scale, and have a squared wavelet compared to the recorded data.
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Simply substituting these pseudo-primaries for the missing data does not produce
an adequate result, as the data contain a squared wavelet, a high level of noise, and
spurious events that do not correspond to primary reflections. Instead, here we use
the pseudo-primary data as training data for a nonstationary prediction-error filter;
whereas the data are inadequate as an interpolation result, they are quite acceptable
as training data. The PEF estimation process is relatively insensitive to the phase,
amplitude, and squared-wavelet issues that make direct substitution undesirable. This
PEF is then used for the interpolation step to fill in the inline near-offset gap.

This approach of using the pseudo-primaries as training data for a PEF can be
performed in the time and offset (t-h) domain, the time, offset and source (t-h-s)
domain or the frequency, offset and source (f -h-s) domain. In the t-h domain, we
interpolate each shot record independently, using a separate non-stationary 2D t-h
PEF generated from the corresponding pseudo-primary shot, while in t-h-s a single
PEF is estimated for the entire data set. In the f -h-s domain, the process is performed
on overlapping time windows of shot records NMO-corrected using water velocity. A
non-stationary 2D PEF is estimated on each frequency slice of each time window of
the pseudo-primaries, which is then used to interpolate the near-offset gap of the data
for the same frequency slice and time window of the original data. The interpolated
result is then inverse Fourier transformed back to the time domain, the time windows
reassembled, and the NMO correction removed.

GENERATING PSEUDO-PRIMARIES

Multiple reflections are typically viewed as undesired noise to be removed from re-
flection seismic data. One way to do this is first to predict the multiples and then
subtract them from the data. Free-surface multiples can be predicted by autocon-
volving data so that the convolution of primaries with themselves creates events at
arrival times that are the same as those of multiple reflections with a single bounce
point at the free surface. This approach creates free-surface multiple reflections with
correct kinematics without the need for any additional subsurface information except
the recorded data (Riley and Claerbout, 1976; Reiter et al., 1991; Verschuur et al.,
1992).

Autocorrelation can be used to extract synthetic active source data from incoming
waves that reflect at the free surface and return within the recording array (Claer-
bout, 1968; Cole, 1995; Schuster, 2001; ?; ?). This has traditionally been thought of
in a passive context, where random noise is assumed to be arriving from all locations.
The reflecting waves from active-source experiments can be treated in the same man-
ner, where the primary reflections correlate with the free-surface multiples (Reiter
et al., 1991; Berkhout and Verschuur, 1994, 2003; Shan, 2003). Autocorrelating data,
d, (implemented as multiplication of complex-conjugates in the f domain) for two
receiver points, r1 and r2, both for a single shot, s, gives the pseudo-primaries, p,

p(s, r1, r2, f) = d(s, r1, f)d̄(s, r2, f). (1)
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One of the receiver coordinates, r1, becomes the virtual source location, while the
other receiver coordinate, r2, remains the receiver location, or vice-versa, and the d̄
denotes the complex-conjugate of d. This is similar to 2D surface-related multiple
prediction, where instead of cross-correlation the data are convolved with itself, so
that the convolution of primaries with primaries produces surface-related multiples
(Verschuur et al., 1992).

Figure 2a shows an example of a fully-sampled split-spread shot from the Sigs-
bee2B data set, while Figure 2b shows a slice of the pseudo-primary output of auto-
correlating the zero-offset trace with all of the other traces within that single shot.
Clearly, the original shot and the pseudo-primaries generated from the autocorrela-
tion are different. The water-bottom reflection at zero offset is present as are the first
group of diffractors, but they are not present at the more distant offsets. The many
other correlations between events produce undesired noise in the output. Primaries
can correlate with other primaries, multiples with multiples, and noise with other
noise or signal. Much of these undesired correlations, however, vary as a function of
source position, s, so when the correlations for the same receiver pair r1 and r2 are
performed for many different source locations, s, and are then summed, the unwanted
events destructively interfere, while the correct pseudo-primaries constructively inter-
fere.

p(r1, r2, f) =
∑

s

d(s, r1, f)d̄(s, r2, f). (2)

As shown in Figure 2c, where 496 sources were used, this summing over multiple
source positions thus can greatly improve the pseudo-primary signal. The range of
usable offsets is greatly improved, as is the signal-to-noise ratio. The pseudo-primaries
now look more similar in character to the original data.

Pseudo-primaries generated from recorded multiples are interesting in part be-
cause they have different illumination than do the recorded primaries. Figure 3a
illustrates a desired near-offset primary ray-path that is not recorded because of the
gap between the source and the nearest receiver. In Figure 3b, the source is positioned
such that the raypath first travels from the source to the water-bottom and back up
to the water surface within the recording array. This ray then reflects back into the
subsurface and eventually returns into the recording array at another receiver. This
four-segment raypath is a free-surface multiple, which can be reconsidered as two
distinct events: the first, a recorded primary event from the source s to the first
receiver r1 and the second, another primary from the virtual source r1 to another
receiver r2. Crosscorrelating the multiple recorded at r2 with the primary recorded
at r1 produces a pseudo-primary trace with a virtual source at r1 and a receiver at
r2. Comparing Figures 3a and 3b, we see that we can transform multiples that we
record into pseudo-primaries with virtual source locations where we did not originally
record data. This is most useful at unrecorded near offsets.

The generated pseudo-primaries differ from the recorded data in several ways.
First, the crosscorrelation of the data squares the amplitude spectrum of the pseudo-
primaries relative to the original data, meaning that the wavelet of the pseudo-
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Figure 2: Crosscorrelation of a single shot. (a): Original fully-sampled split-spread
shot; (b): The same shot recreated from crosscorrelating the traces in (a) using
equation 1. (c): correlations are made for 496 shots and are then summed using
equation 2. The quality of the pseudo-primaries is poor for a single shot, but improves
after the summation of many shots. All data are scaled by t. [CR]

SEP-134



Curry and Shan 6 Near-offset interpolation
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Figure 3: Raypaths of a primary and multiple reflection. (a): an unrecorded primary
reflection that hits the surface at near offset. (b): a recorded multiple that first
reflects at the surface within the recording array, then returns within the recording
array. [NR]

primaries will become zero-phase, different than that of the input data. Second,
the amplitudes of the pseudo-primaries will differ from the amplitudes of the ac-
tual primaries, as the pseudo-primaries are a correlation and summation of different
events. This amplitude difference will be both on a global scale difference between
the pseudo-primaries and the primaries, as well as different relative amplitudes within
each data set. Third, spurious events from other correlations may still exist in the
data as the number of sources is limited.

Because of these differences between the pseudo-primaries and primaries, a direct
substitution of the created near-offset pseudo-primaries is not adequate. The pseudo-
primaries, however, can be used as training data for a nonstationary prediction-error
filter, as the PEF is insensitive to the phase of the training data. This PEF is
then used to interpolate the missing near offsets, so that the negative aspects of the
pseudoprimaries, such as the incorrect wavelet and extra noise, do not affect the PEF,
while the positive aspects of the pseudo-primaries, contained in the autocorrelation
of these data, are used.

INTERPOLATING WITH NONSTATIONARY FILTERS
IN T -X OR IN F -X

Interpolation can be phrased in two steps, where a nonstationary prediction-error
filter is first estimated from fully-sampled training data and is then used to interpolate
missing data. The training data required by this method should have the same local
autocorrelation as that of the desired output interpolated data. Pseudo-primaries,
having roughly the same dip as the missing data, serve as training data for a PEF.
Some of the problems with the pseudo-primary data, such as the different phase and
amplitude, do not influence the PEF.
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To estimate a nonstationary PEF, we solve,

min
fns

‖rd‖2 + ε2‖rf‖2, where

rd = DnsKnsfns + d
rf = Rfns

. (3)

Here, the unknown nonstationary PEF coefficients, Knsfns, are estimated from the
pseudo-primary data, d, a convolutional matrix, Dns, that is a function of d, and a
regularization operator, R, that applies a Laplacian filter across the spatial axes of the
PEF coefficients. This system of equations is solved to estimate a multi-dimensional,
nonstationary prediction-error filter from a set of fully-sampled pseudo-primaries,
such as was generated in the previous section.

Once this filter has been estimated from the pseudo-primary data, the filter is
used in a second least-squares problem. In this problem, we estimate an interpolated
output, m, composed of missing data, munknown, and known data, mknown, that, when
convolved with the nonstationary PEF, produces a minimized output,

rm = Fnsmunknown + Fnsmknown. (4)

Here, the known nonstationary PEF convolution matrix, Fns, derived from fns ob-
tained in the previous step, is multiplied with both the known and unknown data
values, mknown and munknown, to create a known quantity and a term with the un-
known values to be interpolated. These terms are summed to form the residual rm.
We minimize the L2 norm of this residual to estimate the interpolated data values.

Interpolation in time and space

The output pseudo-primaries from equation 2 are in frequency, source position, and
receiver position. We can reorganize this to time, offset, and source position, and
then estimate a nonstationary PEF, either shot-by-shot by estimating 2D PEFs in
time and offset, solving equation 3 for each shot, or on the entire data set with a
single 3D PEF in time, offset, and source, solving a much larger version of equation
3. This PEF, or series of PEFs, is then used to fill in the missing near-offset gap
using equation 4 either once or for each shot.

Interpolation in frequency and space

Interpolation in the frequency domain requires a different approach than in the time
domain. Spitz (1991) shows that 2D plane waves can be predicted for a single fre-
quency by using a 1D spatial prediction filter, because a single plane wave at each
frequency appears as a complex sinusoid in space. The wavenumber of this sinusoid
increases as a function of frequency, so each frequency requires a unique 1D PEF.
Data containing a combination of plane waves appear as a summation of complex
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sinusoids at each frequency, which can still be predicted by a reasonably short 1D
PEF. In three dimensions, this filter would be a 2D filter, in four dimensions a 3D
filter, and so on, making the frequency-based approach a series of smaller problems
whereas the same region in time would be solved as a single larger problem.

Nonstationarity is addressed in a slightly different manner in f -x. Along the
spatial axes, a nonstationary PEF can be used to capture slopes that change as
a function of position. Since a Fourier transform is performed on the time axis to
convert both the training and interpolated data to the frequency domain, we implicitly
assume that the slopes of the plane waves do not vary as a function of time.

We address this problem of time nonstationarity by breaking up the problem into
overlapping time windows that we assume to be stationary. First, perform a water-
velocity normal move-out correction on both the pseudo-primaries and the original
recorded data to (roughly) flatten them, and then break up the data into overlapping
windows along the time axis. We perform the NMO to reduce the amount of energy
crossing the boundaries between patches. From there, each time window of both
the pseudo-primaries and the recorded data is Fourier transformed along the time
axis, so that the data are sorted into source, offset, frequency, and time window. A
unique 2D nonstationary complex-valued PEF is estimated in source and offset on
each frequency of each time window of the pseudo-primary data by solving equation
3. This nonstationary source-offset (h-s) PEF is then applied to fill the missing data
in offset on the corresponding time window and frequency of the recorded data by
solving equation 4, and this series of problems is repeated for each frequency of each
time window.

After the data are interpolated, they are first inverse-Fourier transformed back
to time, then the time-windows are reassembled with appropriate weighting in over-
lapping regions, and finally are inverse NMO-corrected to return the data to their
original form of time, source, and offset.

SIGSBEE DATA EXAMPLE

In order to test the effectiveness of this pseudo-primary-based method, we use a
synthetic example where we already know the answer. To create a challenging test
case, we take a split-spread version of the Sigsbee2B synthetic data set, with a zero-
offset section and a shot gather shown in Figures 4a and 4b, respectively, and remove
the nearest 2100 ft of offset on either side, for a total of 4200 ft of missing offset, or
a gap of 29 traces at the 150 ft sampling in offset, shown in Figure 4c. While this
gap is overly large for a single boat, a two-boat undershooting of an offshore platform
could have gaps this large.

Let us first examine the cross-correlated pseudo-primaries prior to the summation
in equation 2 for a single output trace from one receiver pair for all shots, both using
the fully sampled input data, shown in Figure 5b, and using the data missing the near
offsets, shown in Figure 5c. This would correspond to p(s, r1 = 41000, r2 = 41000, t) in
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Figure 4: Original Sigsbee data. (a): zero-offset section. (b): one shot. (c): resampled
shot. The near 4200ft or 29 traces of offset were excluded. All figures have amplitude
scaled by t0.8. [ER]
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equation 1. We refer to these images as pseudo-primary-contribution gathers, as they
fulfill a role similar to multiple-contribution gathers in the SRME algorithm (Dragoset
and Jericevic, 1998). The summations of these gathers, the predicted pseudo-primary
traces, are shown in Figure 5a, plotted alongside the original trace. We see that the
traces in Figure 5a look quite similar, especially the two pseudo-primary traces, so
the missing sources at near-offsets did not significantly detract from the result.

Moving up from the single output trace in Figure 5, we now look at an entire
zero-offset section in Figure 6. Figure 6a shows the original zero-offset section while
6b shows pseudo-primaries generated using fully-sampled data, and 6c shows pseudo-
primaries generated from data with missing near offsets.

Note four important differences between Figures 6a and 6c. First, the pseudo-
primaries have different illumination than do the true primaries, so the relative am-
plitudes within each image differ. The amplitude of the water-bottom reflection in
the pseudo-primary image with limited offsets in Figure 6c is more variable than is
that in the original image in Figure 6a, or even that in the pseudo-primaries gener-
ated with all of the offsets in Figure 6b. Also, the subtle reflections below the water
bottom on the left side of the image at 4-5s are much less pronounced when the input
offsets to the pseudo-primary generation are limited. Second, the pseudo-primaries
compared to the original data exhibit cross-talk. The cross-talk is composed of both
coherent events such as those above the water bottom and water-bottom multiple in
Figure 6c, and more random noise. This cross-talk increases only slightly when the
offsets are limited in the input to the pseudo-primary generation. Third, the wavelet
of the pseudo-primary data differs from that in the original data as a result of the
cross-correlation of the primary wavelet and the multiple wavelet. Finally, the ampli-
tude scale of the pseudo-primary images (6b-c) is roughly a factor of 20 higher than
in the original data.

Figure 7 shows the nearest 10000 ft of offset of the pseudo-primaries generated
from all of the split-spread shots from Figure 4c that are missing the near offsets.
The common-offset section on the left panel is at zero offset. Looking at the shot
gather on the right panel, we see that the water-bottom reflection is the strongest
event at early times, but a considerable amount of cross-talk is present before the
water-bottom reflection. The time slice shown on the top panel of Figure 7 shows
that in addition to the desired reflections and diffractions extracted from the multiple
reflections, there are also strong spurious events that are not easily identifiable as
cross-talk; in particular, note the event at roughly 60000 ft and near offsets.

The most straightforward way to use these pseudo-primaries to interpolate the
missing near offsets would be to replace the missing traces with the pseudo-primaries,
shown in Figure 8. The pseudo-primaries were scaled by a factor of 0.05 to match
the mean amplitude of the sampled data. The cross-talk and squaring of the wavelet
are both obvious in this Figure 8, making the region of interpolated data easily
distinguishable, as do the spurious events seen at (1) and (2), and the extra slope
in the more complex areas like (3). As we see next, we can improve greatly on this
result by using the pseudo-primaries as training data for a prediction-error filter.
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Figure 5: Generation of a pseudo-primary trace for p(s, r1 = 41000, r2 = 41000, t).
(a): comparison of traces of (left to right) original data, pseudo-primary data gen-
erated from fully-sampled input data, and pseudo-primary data generated from data
with missing near offsets. (b): A pseudo-primary contribution gather, where the hor-
izontal axis is shot location s. (c): The same pseudo-primary contribution gather
as (b), but with the missing near offsets. The images are scaled by t0.8 for display
purposes. [CR]
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Figure 6: A comparison of zero-offset sections: (a) original data, (b) pseudo-primaries
generated using all offsets, (c) pseudo-primaries generated using all offsets other than
the missing near offsets. The quality of the pseudo-primaries degrades slightly with
missing near offsets. The images are scaled by t0.8 for display purposes. [CR]
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Figure 7: The near 10000 ft of offsets of pseudo-primaries generated from input data
missing the 2000 ft of near offsets. The front panel is a constant-offset section, the
right panel is a single shot, and the top panel a time slice. The image is scaled by
t0.8 for display purposes. [CR]
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Figure 8: Original data missing the near offsets, with pseudo-primaries spliced into
the locations where traces were missing. Note three points of interest, a spurious
event caused by the correlation of primaries with other primaries, seen in both the
constant-offset section (1) and a shot (2), and an area with crossing events and noise
(3). The image is scaled by t0.8 for display purposes. [CR]
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Interpolation of Sigsbee in time and offset

A single output shot record of the pseudo-primaries (p(r1, r2, t)) generated in Figure
7 is used as the training data (d) in equation 3 to generate a nonstationary PEF, fns.
The regularization operator in equation 3, Rns, is a two-dimensional Laplacian that
operates over time and offset for each local filter lag. Once estimated, the PEF is
then used to interpolate the missing near offsets of the sampled data, munknown, using
equation 4. This process is repeated for all of the shots of both the pseudo-primary
data and the original sampled data.

Figure 9 was generated by interpolating the near-offset gap using a t-h nonsta-
tionary PEF estimated on each shot record of the pseudo-primary data. Each 2D
PEF has ten points in time and six points in offset, and varies every four points on
each axis for a total of 76000 free coefficients for each shot. We applied 400 iterations
of a conjugate-direction solver to solve both the filter-estimation and interpolation
problems.

There are several interesting things to see in the t-h interpolated result in Figure
9. First, little cross-talk is present in the interpolation, such as the spurious event at
(1) and (2). This is one of the benefits of using the t-h PEF-based approach, since
low amplitude at the edges of the known data results in no large residuals in equation
4, regardless of the crosstalk present in the training data for the PEF. Second, the
events present in the original data in a single shot shown in the right panel are
interpolated, in most cases with good results, although the quality of the interpolation
degrades deeper in the section. This can largely be traced to the quality of the input
pseudo-primaries. It also appears that problems with the relative amplitudes in the
pseudo-primaries are amplified in this result. Third, the common-offset section shows
significant differences from shot to shot. This is because a 2D PEF is used and each
shot is interpolated independently. This is different when a 3D PEF in time, offset
and shot is used, where correlations between shots are used and the inconsistencies
between shots penalized, discussed next. Finally, the wavelet issues in the pseudo-
primaries appear to be mostly removed in the t-h interpolated result.

While the t-h approach gives a reasonable result when viewing a single shot, the
extremely choppy constant-offset section shows one limitation of the t-h approach.
We next use a 3D nonstationary t-h-s PEF that is 10 × 5 × 5 elements and varies
every 10 elements on the time axis, 3 elements on the offset axis, and 4 elements on
the source axis. We solve for this PEF using 100 iterations of a conjugate-direction
solver. Once estimated, we use this PEF, with 121 million coefficients, to interpolate
the missing data, using 200 iterations of a conjugate-direction solver on equation 4,
using a starting model for the unknown near offsets of NMO-corrected copies of the
nearest recorded offset for that midpoint.

This 3D result, shown in Figure 10, is in part an improvement over the 2D ap-
proach. The roughness of the 2D approach along the source axis is gone, with a
smoother result that contains slightly more noise. The spurious event present at (1)
and (2) is still gone, and the the diffractions in the constant-offset section are more
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Figure 9: Interpolation with pseudo-primaries and a t-h PEF. The front panel is
an interpolated constant-offset section, the right panel is a single shot record, and
the top panel a time slice. The spurious event in (1) and (2) is not present, but
the region with conflicting slopes (3) is only partially interpolated, with an incorrect
slope present. The image is scaled by t0.8 for display purposes. [CR]
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Figure 10: Interpolation with pseudo-primaries and a 3D t-h-s PEF. The front panel
is an interpolated constant-offset section, the right panel is a single shot record, and
the top panel a time slice. The spurious event at (1) and (2) is not present and the
region with crossing slopes (3) is better interpolated than in the 2D example. The
water-bottom is more variable in amplitude, but the constant-offset section is more
consistent from shot to shot. The image is scaled by t0.8 for display purposes. [CR]
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continuous, although the water-bottom amplitude is more variable. Next, we show
that using a 2D PEF on frequency slices provides most of the benefits of using a 3D
t-h-s PEF, but with a much lower computational cost and memory requirement.

Interpolation of Sigsbee in frequency, offset, and shot

Figure 11 shows the result of near-offset interpolation using 2D PEFs in the f -h-
s domain. Here the training and sampled data were first NMO-corrected at water
velocity, then were broken into overlapping windows along the time axis. Both sets of
these time windows were then Fourier transformed to frequency. Each frequency slice
of each window is treated independently, where we estimate a nonstationary PEF
on a frequency slice of the pseudo-primaries, solving equation 3 with the frequency
slice of the pseudo-primaries serving as training data (d) to generate a nonstationary
complex-valued PEF fns. This PEF is then used in equation 4 as Fns, where mknown is
the corresponding frequency slice of the recorded data, and munknown are the missing
near offsets of this frequency slice.

In Figure 11 the time axis (1500 samples long) of both the input sampled data
and the pseudo-primaries were broken into 40 overlapping windows of 64 points each.
Both sets of windows were then Fourier transformed to produce 2560 2D frequency
slices. Each frequency slice is treated as a separate problem, with a 2D nonstationary
PEF estimated on the pseudo-primary frequency slice; the 2D PEF was four samples
long on both the offset and shot axes, and the filter varied every four points on each
axis, for a total of 67456 filter coefficients for each 496-shot by 136-offset frequency
slice, estimated with 100 iterations of a conjugate-direction solver. The data were
then interpolated using 200 iterations of a conjugate-direction solver on equation 4,
again with an initial model of the missing data an NMO-corrected nearest-offset-trace
from the same midpoint.

The frequency-domain interpolation in Figure 11 differs in several respects from
the t-h domain interpolation in Figure 9. First, the f -h-s result still has some crosstalk
present, while the t-h and t-h-s results have almost no crosstalk from spurious events.
This is most visible prior to the water-bottom reflection. We believe this is in part
due to the stationarity assumption within each time window. However, the large
spurious event at a (1) and (2) is not present in the result in either case. Second,
the f -h-s result shows less shot-to-shot variation than does the t-h result, and less
amplitude variability than the t-h-s result. This is because in the t-h result each shot
is interpolated separately as an independent problem, while the f -h-s interpolation
estimates a PEF that spans both the offset and source axes, minimizing this jitter.
Finally, the f -h-s result appears to contain more detail in the result than does the
t-h result. In particular, events below the water-bottom in the shot that were not
interpolated in the t-h case, in the right panel of Figure 9, were interpolated in the
f -h-s case on the right panel of Figure 11.

This synthetic data example produced promising results for interpolation of a large
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Figure 11: Interpolation with pseudo-primaries with 2D f -h-s PEFs. The result
is more consistent from shot-to-shot, but still contains some cross-talk (around the
water bottom) from the pseudo-primary data. The spurious event (1 & 2) has been
removed and the crossing slopes (3) are believably interpolated. The image is scaled
by t0.8 for display purposes. [CR]
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gap using information only from the recorded data. The f -h-s approach improved
results and was still multiple times faster than the t-h or t-h-s interpolation methods.
The synthetic data were noise-free, and only contained the desired primaries and
multiples, with an idealized 2D geometry. Next, we examine how this method works
on field data.

FIELD DATA EXAMPLE

Many have used the Mississippi Canyon multiples dataset from WesternGeco as a
benchmark for testing multiple removal methods (?????????). We now use the strong
free-surface multiples present in these data to generate pseudo-primaries. Figure 12
shows a source-offset cube of the recorded data; we created split-spread data from the
off-end marine acquisition using source-receiver reciprocity. The near-offset gap in this
case is six traces, which is much smaller than that in the Sigsbee2B example. However,
these field data contain much more than just primary and multiple reflections.

Pseudo-primary generation from field data

The pseudo-primary-contribution gather, shown in Figure 13, does contain the water-
bottom, top-of-salt, bottom-of-salt reflections, and water-bottom multiples, caused by
the correlation between the water-bottom reflection and the first-order multiple of the
water-bottom, top-of-salt, bottom-of-salt, and second-order water-bottom multiple,
respectively. This cube is a series of cross-correlations of single traces, with no am-
plitude scaling or additional deconvolution performed before cross-correlation. The
signal-to-noise ratio in the data is lower than that in the synthetic example. The
side panel shows the same receiver-pair correlation for multiple shots that are later
summed to produce a single output trace.

Figure 14 shows the volume of pseudo-primaries generated by summing the cross-
correlations from all of the sources in the recorded data. The pseudo-primary data
are somewhat poorer than the recorded field data in Figure 12, with the long wavelet
present in the original data strongly featured in the pseudo-primaries. Additionally,
when compared to the pseudo-primaries in the synthetic case, the quality of the
pseudo-primaries for this example is significantly worse. Reviewing three of the points
we made about the pseudo-primaries in Sigsbee, we see that these problems are
even more pronounced in this field data example. For example, while there were
variations in the relative amplitude of the Sigsbee pseudo-primaries, the variations in
the pseudo-primaries from the field data are much more obvious; where the water-
bottom reflection is dipping, the pseudo-primary reflection is nearly absent, and the
pseudo-primaries of the salt body have higher amplitude than anywhere else. Second,
the amplitude spectrum in the Sigsbee example was squared as a result of the cross-
correlation involved in pseudo-primary generation. The much longer wavelet in the
field data makes this more obvious, with the side-lobes of the water-bottom reflection
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Figure 12: A Gulf of Mexico dataset. The front panel is a constant-offset section,
and the side panel is a single shout, with the negative offsets predicted by reciprocity.
The image is scaled by t0.8 for display purposes. [ER]
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Figure 13: Pseudo-primary contribution gather. The front face is a constant-offset
section, while the side face contains the shots that will be summed to produce the
pseudo-primaries. The image is scaled by t0.8 for display purposes. [CR]
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appearing before the water-bottom reflection in the recorded data. This ringing is
probably associated with a water bubble from the source. Third, the cross-talk in
this field data is also present in this pseudo-primary result. These slight smile-shaped
events have a slope the direction opposite that of the desired pseudo-primaries, and
are more obvious at farther offsets, although the base of these smiles are at roughly
zero-offset in Figure 14.

Interpolation of field data in f-h-s

As in the Sigsbee example, we first take the pseudo-primaries in Figure 14, perform a
water-velocity normal moveout, and then break the result into 150 overlapping time
windows of 32 samples each. These time windows are then Fourier transformed into
150× 16 source-offset frequency slices. We then estimate a 3× 4 nonstationary PEF
that varies every sample along the source and offset axes for each of these slices, and
use it to interpolate the corresponding slice of the recorded data with the near-offset
gap. For each frequency of each time patch, we use 80 iterations of a conjugate-
direction solver both to estimate the PEF and to interpolate the missing data. The
data are then transformed back to time, the windows are reassembled, and the NMO
correction is reversed. This result is shown in Figure 15.

The interpolation result in Figure 15 is greatly improved over that in the pseudo-
primary data. The most obvious differences between the pseudo-primaries and the
interpolated result are that the ringing wavelet has been removed and the polarity of
the images differ. The dipping portions of the water-bottom that were not present
in the pseudo-primaries were not interpolated. While this gap is much smaller than
that in the Sigsbee example, the result is not as impressive. The water bottom, top
of salt, bottom of salt, and the associated multiples are reasonably well interpolated,
but the subtle stratigraphic reflectors outside of the salt body and the steeply dipping
portions of the water bottom are not present in the interpolated result. For example,
the diffractions below the bottom of salt reflection or at the edges of salt are not
present in the interpolated result. The subtler stratigraphic reflections flanking the
salt body are well interpolated, even at later times.

PSEUDOPRIMARIES IN 3D

The pseudoprimaries generated so far have been either for a two-dimensional synthetic
model or for two-dimensional field data example with strong multiple reflections. We
now attempt a 3D pseudoprimary generation on 3D prestack synthetic data where
the geology is fully known and the acquisition is along ideal overlapping straight lines.

Figure 16 is an illustration of the source distribution for a single receiver line from a
3D synthetic dataset, courtesy of ExxonMobil.The data are composed of a horizontal
water-bottom reflection under which there is a prism filled with point diffractors. At
slightly below the arrival of the diffracted multiples, three reflectors are present. The
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Figure 14: Pseudo-primaries of data. The front face is a constant-offset section, and
the side face is a shot gather. The gross structure of the original data is present,
but the squared wavelet strongly dominates the data. The image is scaled by t0.8 for
display purposes. [CR]
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Figure 15: Interpolation of field data with a 2D f-h-s PEF using pseudo-primaries.
The front face is a constant-offset section, and the side face is a shot. The near
offsets appear much more reasonable than the pseudo-primaries in Figure 14. The
top and side panels are zoomed in relative to earlier figures in order to emphasize the
interpolated values. The image is scaled by t0.8 for display purposes. [CR]
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Figure 16: Crossline source distri-
butions for a pseudoprimares gen-
erated from a single receiver cable
at zero offset. [NR]

acquisition geometry, shown in Figure 16, is ideal, so that at each subsequent sail line
the cables shift by a distance exactly equal to that between four receiver cables. As
such, any one receiver cable location occurs for three sail lines given the recording
aperture of 550 m, which when multiplied by the two crossline source positions per
sail line, gives six crossline source contributions for any one crossline receiver location
under these ideal circumstances.

Figure 17 is the result of creating pseudoprimaries for zero crossline offset for
a single receiver cable, where each active receiver location is cross-correlated with
every other receiver location along the same cable for all sources in the three sail
lines. These 640 sources for each of the three sail lines are added together to produce
the pseudoprimary image in Figure 17, generated from roughly 4 TB of individual
crosscorrelations. While the water-bottom reflection initially appears to be in the
correct place, the diffracted multiples are a blurred mess at near offsets and are absent
at the far offsets where the limbs of the recorded diffractions are in the recorded data.
There are also apparent reflectors below the water bottom that are created from
the correlation of the water-bottom primary reflection with the much deeper series of
three primary reflections at below the water-bottom multiple arrival time, illustrating
the potential pitfalls of unwanted correlations.

In order to determine the variability of the predicted pseudoprimares with crossline
source position, we have produced a crossline gather similar to the pseudoprimary
contribution gathers we produced earlier in this chapter. While the full 3D uncol-
lapsed cube of crosscorrelations would have 7 dimensions: time, inline and crossline
source, inline and crossline first receiver, and inline and crossline second receiver, we
only show the predicted multiples for a single first receiver (virtual source), second
receiver, and inline source position, showing how the predicted multiples vary as the
crossline location of the source varies. Figure 18 contains two of these gathers, where
18a is a zoom in on an area of the data with little diffracted multiples at the water
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Figure 17: pseudoprimaries generated for a single receiver cable from six different
crossline source positions. [CR]

SEP-134



Curry and Shan 28 Near-offset interpolation

bottom. The arrival time of the water bottom changes as a function of distance from
the receiver cable to the source, with the stationary phase point at zero. Looking at
a larger section of the time axis for a different location located in the cloud of diffrac-
tions below the water-bottom in Figure 18b, there is some similarity between the
traces in adjacent flip-flop shots, but very little similarity between the three different
sail lines, which in part explains the incoherence of the diffracted pseudoprimaries in
Figure 17.

Figure 18: A crossline pseudopri-
mary contribution gather. The lo-
cation of the water-bottom reflec-
tion changes as a function of the
crossline distance from the inline
location of the pseudoprimaries to
the six sources. [CR]

CONCLUSIONS AND FUTURE WORK

The results in both the synthetic and field data examples show that this method
works at capturing large inline features in the data. The field data example shows in
particular that the PEF is insensitive to issues with the squared spectrum, amplitude
scale and phase, which avoids the need for preprocessing involving amplitude scaling
and deconvolution prior to cross-correlation.

The utility of this method in 3D is limited by the poor spatial distribution of
sources, which has also been the case with passive interferometric methods. However,
future acquisition methods may increase source density and aperture, which could in
turn produce more useful pseudoprimaries in the crossline direction. Alternatively,
this approach could be combined with moveout operators to produce data to add to
the correlation.
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