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ABSTRACT

Light propagating in a water-filled pool is perturbed by the water surface, creating
patterns on the pool floor. In this report, I use ray tracing to compute an
approximation of the light intensity field on the pool floor using point source
and exploding surface models. The ultimate goal is to infer the water surface
from the intensity field. In a seismic imaging, it is similar to imaging using
amplitudes rather than travel-times. I present a geometric approach to invert
for a discretized surface from a ray-count representation of the intensity field.
With this formulation, the inversion becomes a combinatorial problem, which
can be solved using non-deterministic search techniques. The formulation has a
large inherent null space. The low cost of the technique allows a large number of
iterations to be applied.

INTRODUCTION

Light propagation is similar in both nature and theory to seismic wave propagation
in the subsurface. It is not surprising to see a large number of common problems
between the fields of seismology and optics. Claerbout (2007) poses a question about
the relationship between light patterns under water and seismology. One prominent
problem in reflection seismology is estimating seismic velocities in the heterogeneous
subsurface. Velocity is a measure that depends on travel time; i.e. it is determined by
the moveout of seismic events. It is always costly to estimate subsurface velocities,
whether using conventional velocity analysis or inversion methodologies. Unfortu-
nately, imaging algorithms rely on the accuracy of velocity models. Therefore, a
curious scientist might ask: Can we use amplitudes alone for imaging?

For the sake of simplicity, let us consider a simple imaging problem involving a
single wavefield caustic: a single reflector including a syncline. Using the exploding
reflector concept, we can simulate a zero-offset section (Claerbout, 1985). What we
will observe in the section is a bowtie that is caused by the syncline. The syncline
causes many ray paths between the exploding reflector to the receiver to converge at
some point before reaching the surface, forming a caustic. Given the correct velocity
model, migration algorithms like Kirchhoff migration will resolve the bowtie into a
syncline (Yilmaz, 2001).
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Now, let us consider a swimming-pool experiment where the goal is to infer the
water surface from the light patterns on the floor of the pool like the ones shown in
Figure 1. We might encounter similar difficulties as in seismic imaging. It is hard to
estimate the exact speed of light in the pool. In this case the question is as follows:
Can we use the light intensity field at the bottom of the pool to infer the surface of
water?

The two questions are closely related, and the pool experiment is easier to compre-
hend intuitively. In this paper, I implement the forward simulation using ray theory
to build a light intensity field at the pool floor that can be used for inferring the sur-
face. I will not follow the exact physics as it is done in optical simulations: I assume
infinite frequencies for ray theory and representing light with a finite number of rays.
The forward simulation is done using ray tracing and beam tracing. I finally discuss
a Monte Carlo ray tracing inversion that is based on ray counting.

Figure 1: Light patterns at the
bottom of a pool (Claerbout,
2007). [NR]

FORWARD SIMULATION

I simulate the light intensity field at the pool floor using ray tracing. For our purposes,
we assume that light travels with an infinite velocity; i.e. any ray refracting through
the water surface will project instantly onto another point on the floor. If multiple
rays for any reason converge at a point before reaching the floor, they form a refracted
caustic (Shah et al., 2007).

This simplistic view of the experiment has received considerable attention in the
field of computer graphics. Shah et al. (2007), for example, introduce a real-time
technique for rendering caustics from reflective and refractive surfaces. Ray tracing
techniques have a major deficiency, in that we need an infinite number of rays to
simulate a realistic distribution of light. This shortcoming is discussed by Watt
(1990) who suggests using beam tracing as an alternative. The vast majority of the
techniques developed in computer graphics, however, are developed for a 3D space
having point light source(s), polygonal objects, and a single observation point.
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Our simplified case inherits only a minor subset of the wide range of techniques
used in computer graphics. To start, we will not have an observer point, and therefore
do not need to ray trace from the pool floor to the observer point. Also, we have only
a single smooth surface of moderate relief, and the incident light direction is limited
to rays arriving from above the surface. In other words, we have an unique refraction
from each point on the surface. Because we have moderate topology in the water
surface, we will assume that the refracted rays do not re-intersect the water surface.

Surface Representation

In (x, y, z)-space, the surface of the water is given as a discretized function on a
uniformly sampled grid in one or two dimensions. The function has points that
represent the depth of the surface from the xy-plane. If we have a surface S = f(x, y)
in 3D space, the normal vector to that surface is

~n =
−∂S
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)2 + (∂S
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)2 + 1
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and for a surface S = f(x), in 2D space, it is

~n =
−∂S
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î + k̂√

(∂S
∂x

)2 + 1
. (2)

where î, ĵ, and k̂ are unit vectors along the x-, y-, z-axes, respectively. To compute the
first partial derivatives, we can use finite-divided-difference approximations (Chapra
and Canale, 2002). A design decision must be made at this point regarding where
the refracted rays will start with respect to the points on the surface function. For a
2D simulation with S(x), we can have the ray coming out of the points. In that case,
the preferred scheme is centered finite-divided-difference:

∂

∂x
S(xi) ≈

S(xi+1)− S(xi−1)

2∆x
. (3)

The same differencing scheme can be used for the partial derivatives with respect to
x and y for the 3D simulation. Using this scheme, it is not possible to compute the
partial derivatives for the edges of the surface, since more points are needed for the
computation.

The second design option is to have the rays launching from segments of the
surface between the points in the 2D simulation. For the 3D case, we divide every
quad – i.e. square between four adjacent points– using two diagonals. For every
possible triangle within a quad, we compute the normal and have a ray starting from
the center of the triangle. The advantage of this approach is that we have many more
rays than the number of surface samples. For computational stability, the surface
must be smooth locally with respect to a segment or a quad.
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An easy way to construct a synthetic water surface with a sinusoidal wave with a
decaying factor as a function of the distance from the source:

S(x, y) = c0 cos
(
c2|~d|

)
e−c1|~d| , (4)

where ~d is the distance from the source, and c0, c1, and c2 are arbitrary positive
constants to customize amplitudes, decay rate, and angular frequency of the ripples,
respectively. Waves originating from several source points can be summed to form
a more complex surface. This method of construction is for a time-invariant surface
without reflection at the surface boundaries. A more realistic water surface can be
obtained using finite differencing of the 2D wave equation. For the sake of simplicity,
I use the explicit differencing scheme in the (x, y, t)-domain. Figure 2 is the result
of finite differencing with three sources that are Gaussian wavepackets of different
amplitudes.

Figure 2: Finite-difference simu-
lation of a water surface with one
strong and two weaker sources dis-
turbing the water surface. [ER]
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Light Source

The light refracting into the pool can be from a fixed point source from which light
is spreading radially, or ambient light scattering from all directions. Usually, the
light incident on a real water surface is a combination of both. Because I use rays
for modeling light, I classify sources into two categories. The first category includes
point sources, from which light is represented as rays traveling to the surface and
refracting onto the pool floor (specular-to-specular transport (Watt, 1990)). In the
second category, ambient light refracts through the water surface and forms rays
(diffuse-to-specular transport (Watt, 1990)). I approach the second case with the
notion of an exploding surface.
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For a point source, I start by computing the incident ray ~s on each refraction
point on the surface. Snell’s law can be used in the plane containing both ~s and ~n
to find the refracted ray ~r into the water. First, however, the incident ray must be
checked to insure that it is not coming from below the surface. This occurs when the
source is located very close to the surface creating shadow zones behind high water
ripples where there are no rays incident on the surface. Figure 3 shows the refraction
of rays into water as well as some shadow zones.
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Figure 3: 3D ray tracing simulation with a point source. [ER]

As mentioned earlier, I use the exploding surface concept for the diffuse-to-specular
mechanism of light transport through the surface. This concept is analogous to the
exploding reflector concept that Claerbout (1985) uses as an introductory model for
imaging. The refracted ray from each point on the exploding surface travels in the
same direction as the surface normal at that point; i.e. ~r = ~n. This is an easier
approach to the modeling than working with a point source, but it is less accurate.
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Ray Representation

Having developed representations of the surface and of the light entering the surface,
the next step is mapping the refracted rays from the surface to the pool floor. At this
stage, a ray is simply a normalized vector ~r at a surface position pointing downward.
This vector controls the contribution to the light intensity field. The contribution
can be a simple binned ray or a beam.

It is a simple exercise of trigonometry to project the refracted ray ~r to a point ~p
the bottom of the pool.

~p =
depth

rz

~r (5)

The point ~p is unlikely to fall on a grid point, and therefore the ray amplitude distri-
bution can be binned. If each ray is given a unit amplitude, the sum of amplitudes
is the ray count for each bin. Figure 4 shows the result obtained using binning.
The observable caustics have sharp, though not continuous boundaries. Zones of low
light intensity can be confused with shadow zones, simply because the light is not
distributed continuously. Some of the image degradation might be attributed to the
nearest-neighbor interpolation; however, even with the best interpolation algorithms,
the result will not improve significantly. In Figure 3, the aliasing is due to an in-
sufficient number of rays and binning. de Ridder (2008) suggests using a Gaussian
distribution as a function of the lateral distance from the ray projection point on
the pool floor. The proposed method yields more stable results. Nevertheless, the
symmetry of the distribution neglects the tilting of rays.

Figure 4: The result of binning is
a good approximation but not re-
alistic. [ER]

x (cm)

y 
(c

m
)

Binned Intensity Field

 

 

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500 0

1

2

3

4

5

6

7

8

9
Ray Count

So far I have used the specular-transport mechanism within water and ignored
light diffusion, which is a shortcoming of the ray-tracing. It would take orders of
magnitude more rays for ray tracing to simulate diffusion, which is prohibitively
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expensive. Also, it will be inefficient, because diffusion does not change much from
one pixel to the next (Watt, 1990). Figure 5 shows the diffusion of light incident from
a point on a disordered medium (ICMM, 2008). It is obvious that light intensity
within a beam is dependent on the angle of refraction. It can be modeled with a
normal distribution as a function of the angle, with a decay factor that is a function
of distance from the refraction point. In vector notation, the contribution of the
diffusion to a point is

Figure 5: Diffusion of a light
beam in an isotropically disor-
dered medium (ICMM, 2008).
[NR]

ρ(~p) =
1√
2πσ

exp

{
−(|~r × ~p|)2

2σ2|~p|2
− α|~p|

}
, (6)

where ~p is the position vector from the refraction point (x0, y0, z0) on the surface that
is defined as

~p(x, y, z) = (x− x0)̂i + (y − y0)̂j + (z − z0)k̂ , (7)

σ determines how narrow the distribution is, and α is the rate of exponential decay.

Beams1 demonstrate some of the characteristics of both specular and diffusive
transport mechanisms. One way of handling diffusive and specular transport is to
model them separately and stack the results. However, I use beams to model the two
simultaneously.

In designing the beam shape, one can choose to favor either the diffusive or spec-
ular distribution. Favoring diffusion by using equation 6 can negatively affect the
resolution of the light patterns. The following equation can be used to describe the
distribution of light within the beam:

ρ(~p) =
1

b
exp

{
−|~r × ~p|

2b
− α|~p|

}
, (8)

where b controls the width of the beam, and α is the rate of exponential decay. Figures
6 and 7 show the beam coming from a single point on the surface and the section
obtained by stacking all the beams coming from the surface respectively.

The disadvantage of using beam tracing is that every beam contributes to a very
large number of points, which can be computationally more expensive –O(N2)– than

1Beams discussed here are different from beams used in seismic imaging.
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Figure 6: A single beam refracting
into the pool. [ER]
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Figure 7: 2D forward modeling us-
ing beam tracing. The refracted
light focuses into caustics. [ER]
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binning–O(N), where N is the number of samples on the surface function. As men-
tioned earlier, the boundaries of the caustics are not as sharp. However, they become
more realistic, as in Figure 1, where the details of caustics are not usually seen with
sharp boundaries. Figure 8 is the result of the 3D beam tracing of the surface in Fig-
ure 2. Figure 9 shows the light intensity field of a surface distorted by many ripples.
Although it is more expensive, beam tracing works better than ray tracing. We can
distinguish shadow zones and the elongated caustics that usually connect two point
caustics.

Beam tracing has many of the limitations of ray tracing with binning. The promi-
nent limitation is that beam tracing needs a large number of beams to model light
intensity under a very narrow trough on the surface. Also, for depths where many
rays do not project on the pool floor, there are too few beams to construct the correct
intensity field. Moreover, the quality of the forward modeling results is sensitive to
the beam width chosen; too wide beam hinders the resolution, and too narrow beams
behave like rays and can produce aliased results.

Figure 8: Intensity field under the
surface at Figure 2. [CR]
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RAY-TRACING INVERSION

As shown earlier, ray tracing with binning can give a quick but crude approximation
of the light intensity field at the pool floor. If we have a ray count for light intensity
created using the exploding surface model, we can use a simple geometric approach for
inversion. In two dimensions, the ray count in a single bin corresponds to the number
of surface segments whose normal vectors point to that bin. If no rays hit the side-
walls of the pool, the surface can be reconstructed by assigning each surface segment
to one unit of ray count in the intensity field; every assignment means the starting
and the ending points of a refracted ray. However, there are many permutations of
assignments that can produce the same intensity field. With this formulation, the
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Figure 9: A result from the ex-
ploding surface model. [CR]
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inversion becomes a combinatorial optimization problem which could be implemented
using a heuristic search method. The right panel of Figure 10 shows one possible
surface obtained using simulated annealing. Although the obtained solution might
be physically inaccurate, the ray counts produced by the two surfaces in the figure are
identical. This numerical non-uniqueness is the result of simplified implementation
of the theory – finite ray tracing with binning.

Despite the large null space, a large number of solutions can be tested at a minimal
cost because the full forward modeling is not needed. The desired solution lies within
the null space. Most of the solutions in the null space are physically impossible.
Therefore, these solutions can be discarded using an energy function. For example,
for a pre-caustic slice the energy function can be the sum of distances traveled by the
rays:

E(solution) =
N∑
i

|~pi| . (9)

Minimizing the energy function proposed yields the correct solution if given enough
iterations (see Figure 11). In fact, simulated annealing can be reduced to the greedy
algorithm, which moves only toward better solutions. Inversion for intensity fields
below caustics needs a more elaborate energy function. The resolution that binning
provides is insufficient to resolve the caustics, especially where the caustics overlap.
In three dimensions, there are more constraints on the solutions because neighboring
quads of the surface must match for the surface to be continuous. Therefore, I
expect that the search space reduces radically, and it can be traversed using a tree
search algorithm to find a good approximate solution. Using this geometric search
for a solution might not obtain the result but it can provide very cheaply a good
approximation that can be used as a starting model for other inversion of real function.
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Figure 10: Left: ray tracing forward modeling for a surface. Right: One of the many
surfaces obtained by inversion using ray-count. The upper graphs are the surface
function, middle plots are the ray tracing of light under the surface, and the bottom
plots show the ray count at the bottom of the pool. [CR]
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Figure 11: Left: ray tracing forward modeling of pre-caustics intensity field. Right:
The inversion result by minimizing distances traveled by rays. [CR]
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CONCLUSIONS AND FUTURE WORK

In this paper, I show how we can construct the light intensity field at the pool floor
using approximate operators. A light intensity field can provide information about
the geometry of the water surface. Inversion using patterns obtained from ray tracing
and binning suffers from a large null space– i.e. many surfaces can produce the same
patterns at the bottom of the pool. Future directions include using the proposed
geometric inversion approach in three dimensions, and formulating and implementing
the inversion problem using a realistic light intensity field.
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