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ABSTRACT

In this paper we adapt a phase unwrapping algorithm to estimate the depth shift
in Angle-Domain Common Image Gathers (ADCIGs). We show how to set up
a linear system of equations tailored to the seismic case and how to solve it by
minimizing an L0 measure via iterations of weighted least-squares problems. For
this procedure a meaningful choice of initial weights is crucial.
We propose to unwrap jointly several angle gathers and show that this can over-
come sampling deficiencies in the angle domain, such as those that come from
processing a limited number of subsurface offsets for angle-gather generation.

INTRODUCTION

Migration velocity analysis is a class of techniques used for updating the velocity field,
starting from a migrated image. These techniques are based on linking the curvature
of image gathers (for instance Angle-Domain Common Image Gathers) to migration-
velocity error. When this relation is linearized, it leads to a simple inversion problem.
However the linearization of the wave field with the first-order Born approximation
comes with an important limitation: it can handle delays only up to a fraction of the
wavelength.

This problem has been given a possible solution in Sava and Biondi (2004). A
viable alternative is to transform the ADCIGs to the Fourier domain and do phase
unwrapping there, which is roughly equivalent to determining the delay in the orig-
inal domain. This is suggested in Sava and Biondi (2003) concerning the Rytov
approximation. Synthetic Aperture Radar Interferometry and Magnetic Resonance
Imaging literature offers many examples of unwrapping techniques. Although they
share common principles, each one must be carefully tuned to the specific application.

In this paper we adapt a phase-unwrapping algorithm to unwrap ADCIGs. We
describe how to formulate the unwrapping problem, solve it, and test it on a simple
synthetic case. We show that by unwrapping jointly several gathers we can overcome
some sampling limitations in the angle domain.
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PHASE UNWRAPPING

When a signal is delayed, the phases of its Fourier spectral components are rotated
proportionally. However, due to the periodic nature of Fourier components, the ob-
servable phases are always limited to the interval [−π, π]; i.e. there is no record of
the number of entire cycles that may have intervened. This phenomenon is usually
referred to as phase ambiguity, because different delays can correspond to the same
observed phase shift. Phase unwrapping is the problem of recovering the number of
2π cycles that unambiguously reconstructs the original delay.

Phase unwrapping can be approached in various ways. In this work we follow
the recipe presented in Ghiglia and Romero (1996) and Ghiglia and Romero (1994),
where the unwrapped phase is found as the solution of a linear system.

The general principle is that even though the unwrapped phases are usually outside
the interval [−π, π], differences in unwrapped phases of “neighboring” points are often
included in that interval, so that they can be recovered also from the wrapped values,
which are available. Thus we write a number of equations that describe differences
in the unwrapped phases and rely on the solution of the system to integrate those
differences.

Of course some of the original equations are wrong (they assume the phase differ-
ence to be within the interval [−π, π], when in fact it is not) and conflict with others.
The algorithm that solves the system will eventually have to make a decision and
discard some equations, favoring others.

First we have to define a graph that represents the equations we will use. Then
we describe the algorithm for the solution of the system.

GRAPH AND LINEAR SYSTEM

In our domain, the signal is a function of angle (α), vertical wavenumber (kz) and
midpoint inline position (x). Each equation we include in our system connects two
points, so that each equation corresponds to a link and the entire system to a graph.
A simple cartesian grid was used in the angle-kz plane. Each point is connected to its
four neighbors, so for example the point A(α, kz, x) is connected to A(α, kz ± 1, x)
and to A(α±1, kz, x). Points at the boundary of the domain have fewer connections.

To increase the robustness of the unwrapping procedure we do not consider each
gather independently but connect several gathers in the inline direction, presuming
continuity along that axis too. So A(α, kz, x) is also connected to A(α, kz, x ± 1),
raising to six the number of equations in which a given point typically appears.

An example of the basic equation is the following:

φ(α, kz, z) − φ(α − 1, kz, z) = [ϕ(α, kz, z) − ϕ(α − 1, kz, z)]2π (1)

SEP–131



De Zan and Biondi 3 Angle gathers unwrapping

where the other cases are straightforward. The expression [·]2π represents the wrap-
ping operator, or the remainder after integer division by 2π; φ are the unwrapped
values and ϕ their wrapped, observed counterparts.

The system is not complete without some boundary equations that serve as a
phase reference. We set to zero the zero-angle phases of a reference gather for all the
considered wavenumbers.

The whole system can be written in matrix form:

GΦ = d, (2)

where G is the graph incidence matrix plus border equations, Φ is the unknown
vector of unwrapped phases and d is a function of the observed phases (the wrapped
differences). G is a very sparse matrix with typically two non-zero entries per row.

L0 SOLUTION AND WEIGHTED ITERATIONS

The solution of the above system of equations (2) can be found by minimizing a chosen
indicator. Given the particular nature of the unwrapping problem, the L0 measure is
considered a good choice. The point is that we are not looking for a smooth solution
that tries to accomodate all equations (like the L2 norm does); we instead want the
algorithm to make hard choices between alternatives and to produce a solution that
satisfies, with no approximation, the highest possible number of equations. Ghiglia
and Romero (1996) describe a way to minimize the L0 measure via successive steps
that are computed solving weighted least squares problems. Ghiglia and Romero’s
algorithm is more general and provides a way to minimize any Lp measure, with p in
[0, 2]. An application of the L1-norm is found in Lomask (2006).

The following is the outline of the suggested algorithm, (setting p = 0 for our
specific case):

• Set up the initial weights, W0.

• Set i = 0.

• Until i has reached the maximum number of iterations, repeat the following
steps:

1. Solve (to convergence) the Weighted Least Square (WLS) system:

GTWiGΦi = GTWid. (3)

2. Compute new weights according to the formula

Wi+1(n) =
ε0

ε0 + |g(n)Φi − d(n)|2−p
Wi(n). (4)
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3. Increase i by 1.

• End.

Wi is a diagonal matrix with elements Wi(n), the weights for each equation. The
vector g(n) is the nth row of G, so that g(n)Φi is a scalar and ε0 an adequately
small value. For efficiency reasons the WLS step is implemented by preconditioned
conjugate gradient.

With this iterative mechanism and this particular choice of weights, each equation
which is not satisfied at a given iteration is almost ignored for the next iteration,
provided that more trusted equations exist that involve the same points.

Thus the choice of the initial weights is critical to yielding good results. We
preliminarily used the amplitude information as a measure for the phase reliability:
each equation was given a weight proportional to the harmonic average between the
amplitudes of the two points involved.

Figure 1: The velocity used for modeling the seismic data.

EXAMPLE

For a first test we create a model with a negative Gaussian anomaly in an constant
velocity background (see Fig.1) and migrate (incorrectly) the modeled data using a

SEP–131



De Zan and Biondi 5 Angle gathers unwrapping

constant velocity model. After migration we apply an offset-to-angle transformation
using 33 offsets. The result is seen in Figure 2. As expected, the angle gathers show
some deviation from being flat. This curvature can ideally be used to correct the
migration velocity and improve the focusing. Notice the jump at near angles because
of the insufficient angle sampling, a consequence of the number of processed offsets.

Figure 2: An Angle-Domain Common Image Gather computed using 33 offsets.

We pick 33 gathers equally spaced in the inline direction, from a position where
the presence of the anomaly is unfelt to directly under the anomaly. After windowing,
we tranform the z axis so that for each gather we have now a kz-angle panel instead of
the original z-angle panel. Applying the described unwrapping procedure, we obtain
the result shown in Figure 3, which refers to the gather right under the anomaly.
The left image is the original wrapped phase, referred to the 0 angle for visualization
convenience. The right image is the corresponding unwrapped phase. Please note
that the wrapped phase field is not devoid of ambiguity, i.e. the integration path
is not irrelevant. However the algorithm is able to cut the phase at approximately
the right position, at low angles for high frequencies. This is possible because of the
choice of initial weights and the linking of several gathers together.

To confirm the result, we apply the same algorithm to the case where we have
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Figure 3: Wrapped (left) and unwrapped (right) phase for an ADCIG computed using
33 offsets. Phase measured in radians.

computed a larger number of offsets, 65 instead of 33. This increases the resolution
in the angle domain (see Fig. 4), and the discontinuity disappears from the z-angle
domain. The same happens in the kz-angle domain (see Fig. 5, left), where we no
longer see a jump in the wrapped phase. The unwrapped phase is comparable to the
previous one.

When dispersion effects can be ignored, it is possible to derive from the unwrapped
phases a single number representing the delay for a given gather and a given angle.
We interpolate lines into reliable unwrapped phase values, again using amplitude as
a reliability criterion. The slopes of the lines correspond to the z-domain delays.
Figures 6 and 7 display these delays in terms of samples for the two cases, with 33
and 65 offsets. For visualization purposes we subtracted the average delay for each
gather, so that the effect of the anomaly is more clearly visible. A mask is used
because midpoints have different angular coverage.

Phase unwrapping makes it possible to treat different wavenumbers independently,
i.e. to take advantage of the information carried by the dispersion. Even in this
simple example we can actually see some dispersion effects. Figure 8 shows the delay
predicted by the single wavenumber for all gather-angle pairs, after subtraction of the
“average” delay. Lower wavenumbers have a higher dispersion, but higher ones are
more prone to unwrapping problems.

CONCLUSIONS

Phase unwrapping in the kz-angle domain can be used to evaluate the delay of angle
gathers, a preliminary step towards velocity analysis. Simple numerical test indicates
that some limitations that come from angle sampling or illumination can be overcome
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Figure 4: An ADCIG computed using 65 offsets.
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Figure 5: Wrapped (left) and unwrapped (right) phase for an ADCIG computed using
65 offsets.
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Figure 6: The delay (in samples) for a number of ADCIGs as a function of aperture
angle. Gathers were computed using 33 offsets.

Figure 7: The delay (in samples)
for a number of ADCIGs as a func-
tion of aperture angle. Gathers
were computed using 65 offsets.
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Figure 8: An example of the resid-
ual delay (converted to samples)
for a given kz, after subtract-
ing the delay identified using all
wavenumbers.
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by considering jointly a number of gathers from the same horizon. The application
of this unwrapping technique may require more investigation about image windowing
(which should ideally follow the still-unknown gather curvature) and gather picking
to ensure phase continuity.
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