next up previous [pdf]

Next: kinematics of 3D multiples Up: Image space mapping of Previous: Introduction


The mathematical formalism and the methodology for computing 3D ADCIGs as a function of the aperture angle $\gamma$ and the reflection azimuth $\phi$ was given by (). They showed that for the primaries the ADCIGs as a function of the aperture angle, for a fixed reflection azimuth, is flat only for those aperture angles that illuminate the reflector at that reflection azimuth and appear to have curvature at other aperture angles even if the migration was carried out with the correct migration velocity field. I will show that for the multiples the 3D ADCIGs are not flat as a function of aperture angle for fixed azimuth angles. Instead, they exhibit a residual moveout curve similar to that of 2D multiples that I showed in Chapter [*].