ONE-WAY WAVE EQUATIONS BY FACTORIZATION INTO PSEUDO-DIFFERENTIAL
OPERATORS FOR THE VARIABLE COEFFICIENT CASE

David Brouwm

In the following discussion, it is assumed that the reader is
familiar with at least the concept of wave equation factorization and
knows something about the deviation of one-dimensional one-way wave
equations in terms of asymptotic expansions in the time derivative

(see SEP 13).

Begin by making the following definitions:

Fourier transform dual variables are:

X > 70 (instead of kx)
z > & (instead of kz)

Then the scalar wave equation may be written

- 1 -
-Lu =@ +D -—=5D Ju = 0 @)

where u 1is the state variable. We write then

- L(x,2,D.,D ,D) = D_ +D - ——— (2)
v (x,z)
and for the fourier transform of L ,
- L(x,z,n,8,w) = n? 4 EZ N SR (3)

v (x,z)
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To get the one-way wave equations with 2z as evolution direction, we want

to make a factorization of (3) into the following form:

-L(x,2z,n,8,w) = [E+ A(x,z,n,w)1[E - A(x,z,n,w)]. (4)

Note particularly that X does not depend on & . The second factor is
the operator for the one way wave equation. We see that this is so because
it may stand alone while the first operator cannot since it operates on

the second operator.

In order to determine the pseudo-differential operator, we will
assume that it may be expanded in an asymptotic series with terms of

decreasing order of homogeneity, i.e.,
1 0 -1
Ax,z,n,w) = A (x,z,n,0) + A (x,z,n,0) + A (x,2,n,0) +..., (5)

where A7 is a homogeneous function in n and w of order j, i.e.,
Moo= O(lnlJ + [le) for n, w large. (See Engquist and Majda, 1977).

Before continuing, we will need to review (or learn) the rules for
multiplication of pseudo-differential operators. [See also Nirenberg:

Lectures on Linear Partial Differential Equations, (1973)].

First of all, we need a formal definition of the pseudo-differential

operator P(x,DX). This is done by relating it

i

P(x,D) U(x) feig" P(x,6) u (§) dE

H 1% 18 px,E) u(y) didy. (6)

Here wu(§) = u(kx) is the fourier transform of u(x), and y is a dummy

variable.

To "multiply" two pseudo-differential operators together, we can

apply the rule given by (6). Let

R(x,DX) = Q(X,DX) N P(x,DX),
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by which we mean that R(X,DX)lJ(X) should give the same result as

Q(x,DX) . P(x,DX)u(x). From (6),

R(x,DX) Q(x,DX) J]rein(z_Y)P(z,n) u(y) dndy

[117'eig(X—Y)Q(x,E)ein(Z_Y)P(z,n)u(y)dgdzdndy.

Matching terms using (6) again,

R(x,n) = ﬁei(”'g)(Z“X)Q<x,a>P(z,n>dzda 7

We can take Q outside the integral if we expand it in a power series

about Q(x,n):

QGe,m) + T o7 2 QG (E-m
k=1

Q(x,8&)

We get:
RGn) = ¥pr o Q(x,n)ffei(””z)(Z“X)P(z,n)(a—n)kdzda
k

Integrating over =z,

R = Ty o Q(x,n)fei(g_n)x B(&-n,m) (6-n)“de
k

H

ELET 3? Q(x,n)jrei(g_n)x §(£—n,n)(i—n)kd(€—n),
k

and then over (n-%&),

R(x,n) = §:§%-3ﬁ Q(x,n) - Di P(x,n),

(8)
k

where we have used the theorem for the derivative of a Fourier transform

to get the final result.
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Let us return now to the problem of determining XA (x,z,n,w). The approach
we take is to substitute A' for A 1in equation (4) and demand that the
equality be satisfied to first order in n and w. We then add the second
term in the asymptotic series and require that the resulting product give
the true differential operator to zeroth order. The process is recursive,
i.e., each term can be determined from the previously determined ones.

The first approximation will come from
1 _ 1 .
[g + A (X;y’n’w)][g - A (X9Y)n9w)] = = L(X,Y,E,ﬂ,w)
+ o(n|+w|). (9

Using the formula in equation (8), we get

2
£2 4t - el DXAl s S @§-+ o(|nl+|w])
v

The fourth term on the left is O(|n|+|wl) and can be neglected, hence

2
Fo= Ve o (10)
v
or Fourier tranforming,
1 _-\/L 2 2
X (X’Z’Dx’Dt) = 5 Dt - DX (11)
v
Thus, the first approximation gives the one-way wave equation
1
1 2 2
(% - A\/~§ Bt - ax )y u = 0. (12)

v

We get the second approximation by including AO in the expansion for A:

1 0

1 - A ] = —L(X,y,g,ﬂ,w) + O(ln|0+lwl0)9

[e+ b+ 207 -
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from which
2 - (el + Dx)\l) - (A0 + DXAO) + (Aly)
- (Al o+ anxlnyxl + %a‘zn Al Dy2 Lo+ (W%
- (A1A0 + anxlnyxo + ...) = (A0 4 9 a0 Dyxl + ...)
— (A0 4+ 3p A0 DAY+ ...) = €242 - @2/v2) + o(|n|0+[u]%).

Using (10), we get

A0 = - (Dxxl + Alnyxl)/le , (13)

where terms of 0(|n|0 + |©|%) and lower have been neglected. We can

follow the same process to get A7l:

- 2
A= - (DX>\0+8n AlDy)\O + an A0 Dyxl +%a nal Dy2 AL+2020y 7221 | (14)

The one-way wave equation for the second approximation is found by using

(10) and (13). 1Its Fourier transform (i.e., the dispersion relation) is

given by
2
w 1/2 ;v_ 2
C w2 1/2 1w20—T - nz) i—jiﬁiw n
- [ o + 2v3 Vv L2v© = 0, (15)
2
3/2
v [W2/v?) - n2}™

and the pseudo~differential equation itself is given by

; v 1/2 v
{’ 1 2 re| /2 72“(1“"2 3tt> "TXBt
%8 ~;3tl—V3XX + £¥ XX Xlag = o. (16)
L (1 - v2 att)3/2
XX

The one-way wave equation suggested by Engquist (SEP-13), can be obtained

by expanding the square-roots and dropping the appropriate higher-order
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terms. We see that the equation proposed by Engquist is not unique, i.e.,
we can make expansions of arbitrarily high order by, say, making a Padé
expansion of the square-root terms. The one-way wave equation for the
third approximation can be determined also using equations (14), (15),

and (10) to find A !(x,z,n,w). The equation will then be given by
- ! ~ 30 _ 371 -
[Dz A (x,z,Dx,Dt) A (x,z,DX,Dt) A (X’Z’Dx’Dt)]u 0. (17)

The algebra is rather tedious, and is left as an exercise for the

reader.
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