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Improving multiple prediction in image space using ADCIGs for
limited-offset recordings

Madhav Vyas

ABSTRACT

Auto-convolution is a convenient way of generating multiple models and is the basis for
Surface Related Multiple Prediction (SRMP). The completeness of the multiple model,
however, relies on recording all the primary paths that contribute to multiple generation.
In practice, with limited offset recordings and in areas of complex subsurface geometries
(especially steep dips), we might record only the multiple path and not the primary, lead-
ing to incomplete multiple models. In image space, this translates to modeling multiples
at fewer opening angles than are actually present. In this article, I show that the Angle
Domain Common Image Gathers (ADCIGs) of multiple models provide useful angular
information which may be used to infill or extrapolate missing angles and account for the
missing multiples in the model generated using SRMP.

INTRODUCTION

Removing multiples from seismic data is essential to producing interpretable subsurface im-
ages. Multiples can be categorized on the basis of kinematics and the mechanism of gener-
ation. Multiples can be of different types, including specularly reflected or diffracted multi-
ples, peg-leg multiples, surface-related multiples or inter-bed multiples. Strong surface related
multiples associated with the free surface are common in marine surveys. With the increase in
marine acquisition, surface-related multiples have received more attention, and techniques for
handling and removing these multiples have improved.

Kinematics of surface-related multiples can be predicted by auto-convolution of recorded
data (Anstey and Newman, 1966). However, due to discrepancies between modeled and ob-
served multiples in terms of their amplitudes and frequency content, direct subtraction is not
possible. Various iterative and adaptive subtraction schemes have been proposed in the past
to address this issue. The problem of multiple removal can also be attacked in image space
instead of in the data domain (Sava and Guitton, 2003, 2005; Alvarez et al., 2004). There are
some intuitive reasons to prefer image-space prediction over data-space modeling. First, the
image space is much smaller than the data space, and hence there are associated computational
savings. Second, if we assume perfect knowledge of the velocity, discriminating between mul-
tiples and primaries with the help of common-image-point gathers (offset and angle) is fairly
straightforward.

213




214 Vyas SEP-129

Artman and Matson (2006) extended the SRMP approach through commutability of wave-
field extrapolation and convolution to predict multiples in image space during shot-profile mi-
gration. The image-space SRMP algorithm is computationally cheaper than first carrying out
SRMP in the data space and then migrating the data and the multiple model independently to
the image space. However, since SRMP is based on convolving recorded data with itself, it
yields perfect multiple prediction only when we record all the primary paths that lead to mul-
tiple generation. This is true when either our recording geometry is infinite or the subsurface
structure is flat. In practice, neither of the aforesaid conditions are likely; in addition, there are
situations when the primary escapes the recording geometry, but the corresponding multiple,
after hitting a steeply dipping reflector bounces back in and gets recorded. Figure 1 shows
the ray path for one such possibility. It is not possible to predict this multiple using SRMP,
because we do not record the contributing primaries.

Figure 1: A ray path illustrating the
situation where the primary escapes
the recording geometry but the mul-
tiple bounces back and gets recorded.
madhav1-raypath ‘ [NR]

It is difficult to model such multiples; however, image space gives us a better chance to
handle them. We can make use of the redundancy present in the image space to address
this problem. Multiple events in the data space migrate to a single point in image space (if
perfect multiple velocity) but with different opening angles, and a missing event in data space
translates to a missing angle in image space. If we can spread the information consistently
from one opening angle to another, we may be able to reconstruct the missing part of the
multiple model. When the migration velocity is perfect, events in the image space will appear
flat in the angle domain, and we can easily infill the missing angles to reconstruct the multiple
model. But in general, multiples have very different velocities than the primaries recorded at
similar times and show curvature in the angle domain when migrated with the true velocity.
The task of infilling is thus not as straightforward as it is for flat gathers. There are two
ways to approach this: either we can migrate with the multiple velocity, do infilling and then
demigrate, or alternatively, we can use Radon-style transforms to infill gathers with curvature.

In this article I first demonstrate the problem using a simple synthetic example and then
illustrate a possible corrective approach. I give a second example using the Sigsbee model,
which is a more realistic case.



SEP-129 SRMP 215

THEORY - SRMP

A multiple event can be modeled or predicted by convolution of two primary traces. Only
surface-related multiples (multiples that reflect at the surface) can be estimated by such a
prediction scheme. Understanding the assumption of convolving raw traces with themselves
rather than with the primaries, multiple prediction (SRMP) can be written in the Fourier do-
main (Berkhout and Verschuur, 1997) as

M (XX, 0) = Y R(XgiXa, ) R(Xa3 X, 0) , (1)

Xa

where R is the data-space volume of shot-gathers defined at geophone (x,) and source (x;) lo-
cations on the acquisition surface. M is the multiple model and w is the frequency. Equation 1
is a trace-by-trace operation to produce the multiple prediction with any geophone-source
combination. Artman and Matson (2006) showed that equation 1 can be re-written in terms of
wavefields ( U(x,X;)) as

M.—o(%:X;,0) = Y Ur—0(X: Xg, 0)Uz—0(Xai Xy, @) . 2)
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With a little bit of algebra and the use of reciprocity, Artman and Matson (2006) also showed
that equation 2 reduces to

mo(x.h) =Y "> "U.(x+h:x,,0)U.(x— hx,,0) , 3)
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where m; is the multiple model in image space defined at the image coordinates, surface lo-
cation x and offset 4. A direct analogy can be drawn between equation 3 and the imaging
condition for shot-profile migration, the difference being that the shot wavefield is now re-
placed by the receiver wavefield.

Using the scheme proposed above, multiple prediction can be carried out in the image
space, which is theoretically equivalent to doing SRMP in the data space, followed by mi-
gration. In this article, I use both the image-space SRMP and data-space SRMP to generate
multiple models.

SYNTHETIC DATA

I generate a synthetic data set using finite-difference modeling for the velocity model given
in Figure 2. The velocity model is a combination of a flat layer and a layer having a dip of
30 degrees. The simulation is done with a free surface condition to model multiple events
as well. I modeled about 225 shots with offsets ranging from -8000 ft to 8000 ft and shot
spacing of 40 ft. Figure 3 is a sample shot record corresponding to a shot located at a surface
location of 5000 ft. In the given shot record we have primaries and both first- and second-order
multiples coming from the flat as well as the dipping reflector. There are also different types
of first-order multiples having varied trajectories, including multiple bounces on the flat layer,
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multiple bounces on the dipping layer and one bounce each on the flat and dipping layers.
Finally, there are second-order multiple events which have higher degrees of freedom in terms
of possible ray combinations and have further complicated trajectories. Most of the multiple
analysis carried out henceforth focuses on first order multiples.
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Figure 2: Velocity model used for modeling the synthetic data |madhav1-vel.dipl ‘ [ER]

First Order Multiples - Analytics

To identify different multiples and to understand their behavior, I analytically modeled the ray
paths for all possible first-order multiple events for the given synthetic model. For simplicity
of referencing to these events I use the nomenclature given in Table 1.

Table 1. Nomenclature for different first order multiples.
‘ Type ‘ Ray-path ‘ Name ‘
1 Both the bounces on the flat part FF
2 | First bounce on the flat part and second on the dipping | FD
3 First bounce on the dipping part and second on the flat | DF
4 Both the bounces on the dipping part DD

Equations 4 and 5 give the travel time and offset as a function of 6 (take-off angle) for the
event FF,

4d

1(0) = ,
©) V cos6

“4)

h(0) = 4d tan6. &)
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Figure 3: (a) A shot record corresponding to a shot located at a surface location of
5000. (b) Shot record with first order multiples modeled analytically overlaid on them
| madhav1-shot5000 | [CR]

In the equations above, d is the depth of the flat reflector, V is the velocity, and & and ¢ are
offset and travel time respectively. There are different conditions and constraints on the value
of 6 depending on the shot location, which determines the range of take-off angles where these
events take place and get recorded. Equations 6 and 7 give the expressions for travel time and
offsets for the event FD.

1 2d (xg+-L —x; —2dtanf)(sina) cosf
HO) = —. tana [1 6
®) \%4 {0059 + cos(ax —6) [ +cos(2a—9)]} ©)
. sinw d
h(@) = [sinf —cosOtan(Rae —0)].———— .[xy + —— — x;, — 2d tan6] + 2d tand (7
cos(ax —0) tano

In these equations, x; is the horizontal location where the dipping reflector meets the flat
layer, x; is the source location and « is the dip of the dipping reflector. There are two other
possibilities for the first-order multiples: DF and DD. Travel time and offsets are given in
equations 8 and 9 for the first category and equations 10 and 11 for the second category.
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Once again, all the above equations are functions of the parameter 6 and are valid only for a
range of 6 values corresponding to angles at which the event actually takes place. On Figure
3 (b) are overlaid the first-order multiple events modeled using the above equations.

Surface Related Multiple Prediction

The next step is to model these multiples using SRMP. Ideally, when we record all the offsets,
SRMP could perfectly model surface-related multiples. In this section I test how the SRMP
algorithm performs when we do not have access to far offsets. To simulate this situation, I
throw away half the modeled offsets, keeping only the offsets from -4000 ft to 4000 ft instead
of -8000 ft to 8000 ft. We would expect SRMP to fail for events that bounce back into the
recording geometry (Figure 1). For the given synthetic example, first-order multiples that have
either one or both bounces on the dipping surface bounce back into the recording geometry
(FD,DEDD). In the subsequent analysis we focus on the multiple which gets back into the
recording geometry after bouncing twice on the dipping surface (DD), though the same may
apply to other kinds of multiple events as well.

To estimate first-order multiples using SRMP, we need to record two primary paths that
contribute to the multiple. In Figure 4, I draw a crossplot corresponding to a shot at a sur-
face location of 5000 ft. Where on X axis is the offset at which the multiple DD is actually
recorded, and on Y axis is the offset of both the primaries contributing to this multiple. Note
that for the multiple recorded at an offset of about -4000 ft, the corresponding primaries are
recorded at offsets of -5800 ft and -1800 ft. When we limit the maximum recording offset to
-4000 ft, we will not be able to model this multiple event as one of the primary events will
not be recorded. Likewise, any multiple event having either of its primaries recorded at offsets
greater than 4000 ft will not be modeled. The circled portion in the figure indicates that the
multiples recorded at offsets between -4000 ft and -2000 ft will not be modeled as one of the
contributing primaries come at an offset greater than the maximum recording offset (4000 ft).
The maximum recording offset would thus limit us to be only able to model multiples recorded
at offsets of -2000 ft or less.

Figure 5 shows the shot gather, the multiple model created using SRMP, and the gather
after adaptively subtracting the multiple model. Notice that the tail of the particular multiple
event DD is not modeled between offsets of -2000 ft to -4000 ft (circled), as predicted by the
crossplot in Figure 4.
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Figure 5: The (a) shot gather, (b) the multiple model and (c) the gather after subtracting the
multiple model | madhav1-srme.s0.5000] [CR]
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Once we migrate the data after subtracting the multiple model obtained using SRMP, we
expect to see some remains of the multiples in the image space, since we were unable to
completely model all the multiple events. Figure 6 compares the two images obtained by
migrations carried out on the data with and without multiple subtraction. The image obtained
from the data after removing the multiple model is devoid of the flat portion of the first-order
multiple, but some portion corresponding to the dipping layer remains. This dipping multiple
in the image space corresponds to the event DD in data space; we were not able to model
this perfectly because of limited-offset recording. Some multiple energy also remains in the
bottom portion of the image, corresponding to the second-order multiple energy, but here I
limit the analysis to the first-order multiple events.
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Figure 6: Image obtained by migrating the data (a) before multiple removal and (b) after
multiple removal | madhav1-compim ‘ [CR]

Use of ADCIGs

There are many events in data space that migrate to the same point in image space (if the mi-
gration velocity is perfect), but with different opening angles. In the class of events discussed
above, because of limited recording geometries we do not expect to model all those angles.
However, if we can capture some subset of angles, we can make use of the ADCIGs to infill
these missing angles and generate a more complete multiple model. When migration velocity
is same as the multiple velocity, this reduces to simple interpolation or extrapolation, because
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events will be perfectly flat in the ADCIGs. In cases of imperfect velocity, Radon-style trans-
forms can be used to accomplish the same goal.

To illustrate the point, I extract an ADCIG corresponding to a surface location of 8000
ft (where the dipping multiple persists). Figure 7 (a) is the ADCIG of the recorded data
and shows angles at which the multiple is actually illuminated. Figure 7 (b) displays the
illumination range of the modeled multiple. Note that the modeled multiple is missing at far
angles where the recorded multiple exists. This indicates that SRMP in this case was unable to
model far angles. Figure 7 (c) is the ADCIG for the data obtained after removing the multiple
model generated using SRMP (data space removal). Again, we were able to get rid of multiple
energy close to zero offset, but we still have multiple energy at far offsets.
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Figure 7: ADCIGs for (a) complete data (b) multiple model and (c) data after removing the
multiple model | madhav1-ADCIG| [CR]

For a given velocity model and recording geometry, we can analytically compute the an-
gles up to which we will be able to model a particular multiple, and the angles up to which it
will be actually recorded. The multiple event DD maps as a dipping reflector with twice the
dip in image space. ADCIGs above also show the angular illumination for this multiple event.
Figure 8 shows a plot between illumination angle and offsets for an image point located at the
multiple event, with twice the dip of the original and having an X position of 8000 ft. The plot
shows the relation between surface offsets and illumination angles for the first-order multiple
event DD along with the two primaries that contribute towards it. It can be noticed from the
plot that if we limit our recording from -4000 ft to 4000 ft, the multiple will be illuminated
from -10 to +10 degrees. To model this multiple we need to record both the primaries that
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contribute towards it. The plot shows that for limited offsets we record both primaries only
in an angular range of -5 to +5 degrees. This would be the range in which we will be able to
model the multiple, which reiterates the inability of SRMP to model multiples at far opening
angles, with such geometries and limited offsets.
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Figure 8: The relation between
recording offsets and opening angles
for the multiple event with several
bounces on the dipping layer, and the
primaries that contribute to it, for an
image point corresponding to the X
position of 8000 ft. |madhav1-angoff
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To obtain Figure 7 (c) we constructed the multiple model in the data space, removed it
from the data and then migrated it to image space and constructed ADCIGs. Equivalently, this
process could have been carried out in image space, in which case we would migrate the data
and the multiple model independently to the image space and then do the subtraction.

Reconstructing missing angles

The advantage of working with image-space SRMP is that we have access to angle-domain
information, which can be used to infill the missing angles in the multiple model. When
using the perfect migration velocity, angle gathers look flat and extrapolating farther angles is
fairly straightforward. A simplistic approach like stacking along angles and then spraying the
normalized energy to other angles (stack and spray) can work well in case of flat gathers.

I use the algorithm proposed by Alvarez and Guitton (2006) (matching filters and adaptive
subtraction) as a tool for removing multiples. If the image space subtraction is carried out on
an ADCIG by ADCIG basis, the algorithm tries to account for the differences in amplitudes as
well as the illumination range of modeled and recorded multiples. Adaptive matching works
well for the ADCIGs corresponding to this example. When we do multiple removal in the
data domain, we also use adaptive subtraction, but it is easier to match the missing parts in
the angle domain, since the patterns are much simpler. If the velocity is perfect, events in
the angle domain are flat. Secondly, in the angle domain we can enhance the performance of
adaptive subtraction using the stack-and-spray approach or the Radon transforms in the case
of complex situations, which is difficult to do when we are dealing with subtraction in the data
domain.

In Figure 9, I compare angle gathers for the original multiple model, the reconstructed
multiple model generated using a stack-and-spray approach, and the one reconstructed using
the adaptive-matching algorithm. Once we reconstruct the missing angles, we can carry out
the process of subtraction.
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Figure 9: ADCIG for (a) multiple model and reconstructed multiple model using (b) stack and
spray and (c) adaptive approach |madhav1—recon | [CR]

Finally, let us compare the image and the ADCIGs created by doing multiple removal in
the data space to the one created in the image space using adaptive subtraction, working on
one ADCIG at a time. Figure 10 is the result of multiple removal in the data space followed
by migration, and Figure 11 is the result of multiple modeling in the image space followed by
adaptive subtraction. The ADCIGs on right show the remains of the multiple energy in the
former case at high angles, but nearly all the energy is gone in the latter.

SIGSBEE

Moving to a more realistic and complex subsurface geometry, in this section I discuss the ap-
plication of SRMP on the Sigsbee data set. Figure 12 and 13 show the Sigsbee velocity model
and the migrated image respectively. Figure 14 shows the corresponding multiple model in
the image space. The side face in these figures is a representative ADCIG corresponding to
sediments, left of the salt body. Since we migrate with the correct velocity, primaries appear
flat in the ADCIGs, and multiples show a frown since they are migrated with velocities higher
than their actual velocities.

The complex velocity model and especially the salt body cause the multiples to image
in a very complicated fashion. It is difficult to identify even the water-bottom multiples that
image underneath the salt body. Our goal here is to analyze multiples modeled by SRMP
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Figure 10: Image and a representative ADCIG at a surface location of 8000, created by data
space multiple removal followed by migration ‘madhavl-imgbf ‘ [CR]

Sul"face X (ft) Aperture Angle(deg)
0 2000 4000 6000 8000 000 1
O
)
@]
O
N O
-
NUEFN
@]
O
O

Figure 11: Image and a representative ADCIG at a surface location of 8000, created by image
space multiple removal | madhav1-imgaf ‘ [CR]
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Figure 12: Velocity model for the Sigsbee data | madhav1-vel.sig ‘ [NR]
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Figure 13: Image and a representative ADCIG for Sigsbee data migrated with the true velocity
madhav1-imgtr.sig| [CR]
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Figure 14: Multiple model (in image space) and a representative ADCIG for the Sigsbee data
migrated with the true velocity ‘ madhav I-multr.sig ‘ [CR]

and improve our estimate if we have some missing parts in our model. Ideally, we would
like to look at multiples in a domain where they can be easily identified and understood. To
accomplish this I use water velocity as the migration velocity. Not all multiples travel at the
water velocity, but many that emanate from shallow layers almost do that. Figures 15 and 16
show the image and the multiple model, with an ADCIG on the side. The first- and second-
order water-bottom multiples look much more interpretable as we used water velocity for
migration. These multiple events also appear flat in ADCIGs.

The Sigsbee data set has offsets of about 30000 ft. To illustrate the limitations of SRMP in
the case of limited-offset recordings, I retain only near offsets (5000 ft) to model the multiples.
In Figure 17, I compare the image (top) with the multiple model (bottom). Second-order
multiples corresponding to the dipping part of the water bottom and salt canyon are present in
the image but are not modeled using SRMP (compare circled events). These events correspond
to the ray paths that tend to bounce back into the recording geometry, which we could not
model because of limited recording offsets.

To demonstrate the possible use of angle gathers in SRMP, I focus on the dipping part of
the first-order water-bottom multiple. The dip of that part is about 10°. Figure 18 (a) shows
the ADCIG drawn from the image around the location of the dipping water bottom. Figure
18 (b) is the ADCIG of the multiple model at the same location. The first-order water-bottom
multiple (at about a depth of 15000 ft) is illuminated at a much wider range of angles than it is
actually modeled. If we subtract the multiples in the data space and then migrate the resulting
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Figure 15: Image and a representative ADCIG for Sigsbee data migrated with the water ve-
locity ‘ madhav1-imgwv.sig ‘ [CR]
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Figure 16: Multiple model (in image space) and a representative ADCIG for the Sigsbee data
migrated with the water velocity ‘ madhav1-mulwv.sig ‘ [CR]
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Figure 17: A window extracted from the (a) image and (b) the multiple model after migrating
with the water velocity. | madhav1-smloff.comp ‘ [CR]

data set, our image has some remnants of the multiple, which is understandable, since we
did not model all the multiples that we recorded. Figure 18 (c) is the ADCIG from the same
location, but corresponding to the data for which we subtract modeled multiples in the data
space. For the specific water-bottom multiple, the energy is removed close to the zero opening
angle but is present at higher opening angles. This observation is similar to the one in the
simple synthetic example discussed in the previous section.

As in the simple synthetic example applying adaptive subtraction in the image domain
gives us a better chance of removing this class of multiples. This is because in the angle space,
multiples appear flat when migrated with the perfect velocity, and it is relatively straightfor-
ward for the matching filters to adaptively match the pattern of recorded multiples. When the
velocity is not perfect, and multiples show curvature, it may be better to use Radon transforms
to reconstruct missing multiples at higher opening angles. To draw a comparison for the given
example, I plot in Figures 19 (a), (b) and (c) the ADCIG for the modeled multiple, the re-
constructed multiple using the matching filter, and the multiple-free gather after subtraction in
image space. The angle gather looks relatively cleaner after subtraction in the image domain
(right panel).

Since we carried out migration with the water velocity, we now demigrate with the water
velocity and re-migrate with the true velocity to obtain a multiple-free image. This proposition
appears expensive, but may be useful when the multiple noise is overwhelming. Again, an
alternative may be to use the true velocity but use Radon transforms to infill missing angles
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Figure 18: ADCIG for (a)the image, (b) the multiple model and (c) the image after multiple
removal in the data domain ‘ madhav1-adcig.sig ‘ [CR]
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Figure 19: ADCIG for (a) the multiple model, (b) the reconstructed multiple model and (c)

the image after multiple removal in image domain ‘madhavl—adcigZ.sig ‘ [CR]
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and assist adaptive subtraction in the angle domain.

DISCUSSION AND CONCLUSIONS

Surface-related multiple prediction works well for predicting the free-surface multiples, but, as
shown through a series of tests and examples, it fails for certain ray paths where the subsurface
geometry is complicated, and we have access to only small offsets. Though data-space and
image-space SRMP are mathematically equivalent, image-space subtraction gives us a better
chance of reconstructing the missing parts of the multiple model because of the redundancy
associated with the image space. In the present analysis we used angle gathers as a preferred
domain of reconstruction.

In the presence of complicated structures and salt bodies, multiples migrate to the image
space in a fairly complicated fashion when we use the true migration velocity. The use of
the multiple velocity for migration takes us to a domain where multiples are identifiable and
appear flat in ADCIGs. We may carry out the process of reconstruction relatively easily in
this domain. But the drawback is that this should be followed by the process of demigration
and migration, making it computationally very expensive. As discussed earlier, we may also
use Radon-style transforms for reconstruction, which should work even when the multiples
are not absolutely flat in ADCIGs. This allows us to migrate with the true velocity in one step,
avoiding the extra steps of migration and demigration. Although the performance of the Radon
transform depends upon how many angles we actually have, in the case of a very narrow range
of angles, the spectrum would be very smeared, and effective reconstruction would not be
possible.

To illustrate these points, in the examples above I retain only very small offsets, which
might appear unrealistic for the inline direction. However, there is a trade-off between the
offsets and dip of the structure; for instance, if dip is very high, SRMP can fail even for
large recording offsets. Furthermore, in 3D surveys, along with many limitations of SRMP,
extremely limited crossline offsets might be a concern for even a gently dipping water bottom.
The heuristic extension of the idea discussed here would be that in 3D, a multiple event might
be perfectly modeled for some azimuths, but not all. In that case we may spread information
across azimuths to reconstruct the multiple model, like we did across aperture angles in the
2D case.
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